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On the Classification of Locally Hamming Distance-Regular Graphs

BY MAKOTO MATSUMOTO

Abstract. A distance-regular graph is locally Hamming if it is locally isomorphic to a
Hamming scheme H(r,2). This paper rediscovers the connection among locally Ham-
ming distance-regular graphs, designs, and multiply transitive permutation groups,
through which we classify some of locally Hamming distance-transitive graphs.

§1. Introduction.

By a graph we shall mean a finite undirected graph with no loops and no multiple
edges. For a graph G, V(G) denotes the vertex set and E(G) denotes the edge set
of G. For a vertex v of a graph G, N(v) denotes the set of adjacent vertices with
v. By F2 we denote the two-element field, and by H(r) we denote the r-dimensional
Hamming scheme for r > 1; that is, H(r) is such a graph that its vertex set is the
vector space F§ and u,v € F] are adjacent if and only if the Hamming distance
d(u,v) = 1; ie., #{i | u; # v;} = 1 where u = (uy,... ,u,) and v = (vy, ... ,v,). The
graph obtained from H(r) by identifying antipodal points is called a folded Hamming
sheme(or a folded Hamming cube in [3, p.140]). The graph H(3) is called a cube,
and the induced subgraph obtained by removing one vertex together with the three
incident edges from a cube is called a tulip. A tulip contains exactly three vertices
with degree two, and these vertices are called petals. The unique vertex which is not
adjacent to any petals is called the root of the tulip. A locally Hamming graph G is
a connected graph such that

(1) G has no triangle,

(2) for any u,v € V(G) satisfying d(u,v) = 2, there exist exactly two vertices
adjacent to both u and v,

(3) for any subgraph T of G which is isomorphic to a tulip with petals p,q,r,
there exists a vertex x € V(G) adjacent to all p,¢, and r. (The uniqueness of
z follows from the condition (2).)

Of course H(r) is an example of locally Hamming graphs, and it was proved that a
distance-regular graph with parameters a; = 0, a2 = 0, ¢, = 2, and ¢3 = 3 is a locally
Hamming graph[2][3, Lemma 4.3.5]. For a generalization to H(r,q) for ¢ > 3, see
[10]. (A locally Hamming graph is exactly the same thing with a rectagraph such that
any 3-claw determines a unique 3-cube in Brouwer’s terminology(3, p.153].)

Our objective is to classify all locally Hamming distance-regular graphs(LHDRG).
A number of authors have contributed to this aim[2][3][5][10]. This paper provides
an approach to this goal using a universal covering of a LHDRG. Main result is as
follows.
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MAIN RESULT. Let G be an r-regular distance-regular graph with parameters a; =
az = 0 and ¢y = 2, c3 = 3, other than H(r). Take the minimum number t such that
either a; # 0 or¢; # t occurs. Putd = 2t+1 if ¢; = t, and put d = 2t otherwise. Then,
there exists a t-(r,d, \) design with A < (r —t)/(d —t). If G is distance-transitive,
Aut(@) contains a |(d—1)/2|-homogeneous group of degree r acting on the block set

of the t-(r,d, \) design.

COROLLARY. (See Theorem 3).
Any distance-transitive graph with a; = as = a3 =0 andc¢; =¢ forv=1,2,3,4 is a
Hamming scheme or a folded Hamming scheme.

For the case t = 2,3, some nontrivial examples are listed.

§2. The universal covering.

Let G, H be graphs. A mapping f: V(H) — V(G) is said to be a covering if it is
surjective and for any u € V(H), fy(u) is a bijection N(u) — N(f(u)). For a vertex
u of G, the set f~1(u) is called the fiber on u.

In the previous paper[9] we proved the following propositions.

PROPOSITION 1. Let G be a locally Hamming graph with valency r. Then, there
exists a covering f : H(r) — G. Let H be a locally Hamming graph andlet h : H — G
be a covering. For any vertex u € V(G) and for any verticesz € f~1(u), y € h™1(u),
there exists a unique covering ¢ : H(r) — H such that g : z — y and f = hg hold.

The above covering f is called a universal covering. We define the fundamental

group 7(G, f) of the pair G and f: H(r) — G as

m(G,f) = {v € Aut(H(r))|fr = f}.

This definition depends on the choice of f, but unique upto conjugacy in Aut(H(r)).
(Note that this definition is not equivalent to the fundamental group of G as a one-
dimensional topological object.) : /

Let T’ be a subgroup of Aut(H(r)). We define the discreteness dr of I' by

dr = min{d(u,yu) |y € T, # id,u € V(H)}

where d denotes the Hamming distance. For the trivial group {id}, its discreteness
is defined to be co. Let T' be a subgroup of Aut(H(r)) with dr > 5. Then we define
the quotient graph H(r)/T as follows. The vertex set is the set of coset of V(H(r))
by T; i.e., the set {Tu|u € H(r)}, where T'u = {yuly € T'}. The two vertices I'u, I'v
are adjacent if and only if there exists a vertex w € 'y such that w is adjacent with
v. The obtained graph was proved to be locally Hamming. The canonical mapping
f: H(r) — H(r)/T defined by f : u + T'u is a universal covering. (For a detailed
proof, see [9].)
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PrROPOSITION 2. Let G be a locally Hamming graph with valency r, and let f :
H(r) — G be a universal covering. Then, dr(g,) > 5 and G = H(r)/n(G, f) hold.

Thus, the classification problem of LHDRG with valency r is converted to the

problem to determine for which subgroup I' of Aut(H(r)), H(r)/T is a distance-
regular graph.
REMARK 1: Proposition 1 was proved by Brouwer[2][3, p.153|, without emphasis on
the universality. Almost equivalent propositions to Propositions 1 and 2 will also be
found in the book by Brouwer et. al.[3]. What is new in this paper is that we regard
a covering f not only as a partition but as a coset by a group T'.

NoOTE: In this paper, the letter d always denotes not the diameter but the discrete-
ness.

§3. Designs.

Recall that a t-(v, k, A) design is a family B of k-element subset of a v-element set X
such that for any k-element subset K of X, the number of B € B containing K is .
In Lemmas 3 and 3*, we shall prove a LHDRG produces a design with an additional
property.

To begin with, we classify LHDRG using the discreteness of its fundamental group.
Let LHDRGY, denote the set of LHDRGs with valency r such that the discreteness
of its fundamental group is equal to d. Later it will be proved that a distance-
regular graph belongs to LHDRG/, for some d > 7 if and only if its parameters satisfy
a; =0,a; =0, cg =2, and ¢c3 = 3. Thus, the classification of LHDRGY, implies
the classification of distance-regular graphs with such parameters. The reason why
the cases d = 5,6 are also considered is that some interesting LHDRG with d = 5,6
obtained from Golay codes exist, as shown in Section 5.

The next lemma is useful to shorten some proofs.

LEMMA 1. Let H(r) be an r-dimensional Hamming scheme and let I be a subgroup of
Aut(H(r)) with dp > 5. Let I'zq,T'zs,... , Tz, be a walk in H/T; ie., 'z} is adjacent
tolzjyq for j=1,2,...,t— 1. Then, there exist a5, ...,y such that I'z; = I'z; for
J=2,...,t and that z1,z),... ,z} is a walk in H. Consequently,

dyryr(Tz,Ty) = dpey(2,Ty)
holds, where RHS denotes the minimum of dg((z,vy) for all v € T.

PRrOOF: Since I'z; is adjacent to 'z, there exists an =) € Iz, adjacent to z;.
Thus, the existence of ¢ is inductively proved. Then there exists a v € T such that
zy = vy. Thus, dg(r)r(T'z,Ty) > dyy(z,vy). Converse inequality follows because
a path connecting z with vy is mapped to a path connecting 'z to I'y by f. =

The behavior of parameters of LHDRG] slightly changes according to the parity of

d. For a graph G and its vertex v, Ny(v) denotes the induced subgraph of G by all
vertices at distance at most ¢ from v.
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LEMMA 2. Suppose that G belongs to LHDRGY,, , let T' be its fundamental group,
and identify G with H(r)/T'. Take an arbitrary vertex v € V(G) and take a vertex u
in the fiber f~(v). Then, f embeds Ny(u) into Ny(v), and f : V(Ny(u)) — V(Ny(v))

is surjective.

PROOF: Since f is a covering, it is sufficient to prove that f induces a bijection
V(Ni(w) = V(N()).

Take I'z € V(Ny¢(v)). Since d(I'u,T'z) < ¢, Lemma 1 shows that d(u,I'z) < ¢, and
thus there exists a vertex in I'z at distance ¢ from u. This shows surjectivity. For the
injectivity, take z,y € Ni(u) such that f(z) = f(y); i.e., 'z = T'y. Then z = vy for
some v € I, and from dr =2t + 1 >t +t > d(z,u) + d(u,y) > d(z,y) = d(vy,y),
~v =id follows. Thus z = y holds, and injectivity is proved. =

For an r-element set X, we can naturally identify the vertex set of H(r) with the
power set 2% = P(X). The symbol § denotes the empty set, which is identified with
a vertex of H(r). We denote the family of d-element subset of X by (‘}) We denote
by ai, b, ¢; the usual parameters of a distance-regular graph G(precise definition will
be found in [1] or [3]).

LeEMMA 3. Let G = H(r)/T be a graph in LHDRGS, ;. Then its parameters satisfy
equalities a; = 0, ¢; = 1 for 1 = 1,2,...,t —1land a; = (t + 1), ¢ = t for a
some positive integer \. Identify the vertex set of H(r) with the power set P(X)
for X = {1,2,...,r}. Then, the set T'd N (zﬁl) consists of the block set B of a
t —(r,2t + 1,\) design, with an additional property that for any B,B' € B, either
B =B'" or #(BnN B') <t holds.

Proor: Identify H(r) with P(X). The parameters a;, b;, ¢; for 1 <t — 1 are de-
termined immediately from Lemma 2 and the fact that f is a covering. We shall fix
the vertex I'0l as the one end to calculate the parameters. To determine ¢y, take a
vertex of G at distance ¢ from I'fl. By Lemma 1, this vertex can be written as I'v with
dur(0,v) =t;ie., withv € ()f) Let u be a vertex of H(r) adjacent with v. Then, ei-
ther dy(,)(0,u) = t—1 or t+1 holds. The number of such v € N(v) that dg(I'0,T'u) =
t, t+1, t—1, respectively, is by definition the number a¢, by, ¢c;. First we determine c;.
Suppose that dg(T'0,Tu) =t — 1 holds. Then, by Lemma 1, dy(y(0,yu) =t —1for a
v € T'. Consequently, dg(y(u,vu) < dgy(u, 0) +dpey(0,vu) < E+1)+(—1) < dr
holds, and « must be the identity. This implies dg(y(#,u) =t — 1, and conversely,
this equality implies dg(T'0,T'v) = ¢t — 1. Thus, ¢; coincides with the corresponding
parameter of H(r); in other words, ¢; = t holds. Next we determine a;. (In this pro-
cess, a design arises.) Take a u € N(v) such that dg(T'0,T'w) = ¢. Then, by Lemma
1, duy(v0,u) =t for ay € I'. If y = id, then dy()(0,u) = dg)(70,u) is equal to
t, and this is a contradiction because this value must be ¢ — 1 or ¢t + 1. Since we have
dur(79,0) < dgy(79, u) +day(u,0) < t4(t41) = dr for v # id, all the equalities
hold in the above inequality. That is, dg(y(7v9,0) = 2t + 1, dgy(u,0) =t + 1, and
dury(79,u) = t. By considering u as a (f + 1)-element set, the latter equality is
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equivalent to that u is contained in v@. Conversely, if w € N(v) with #(u) =t+ 1 is
contained in y0 with #(v0) = 2¢t + 1, then ¢t < dg(I'0,I'u) < dgy(v9,u) = ¢ holds.

Thus, a4 is the number of u € N(v) N (t:!’_ml) for some v € I" with v0 € (Zfl-l)'
Suppose that such u is contained in two different v0, +'0 at distance 2t + 1 from
0. Since u C YO N0, #(v0 N ~'0) > #(u) = t+ 1 holds. Then, 2t +1 = dp <

duy(70,7'0) = #(7v0) +#(+'0) — 2#(+0N~'0) < 2t, a contradiction. Thus, any such

u is contained in at most one v0. Let A, be the number of v0 € (2:;_1) containing

~0
i+1

¥0 € (, t{\H) is exactly A,(¢t + 1), because the number of such u contained a fixed v
is dp(ry(v,70) =t + 1. Since G is distance-regular, the value a; = A,(t + 1) does not
depend on the choice of v, and this implies that the set {y0|#(y0) =2t + 1,y € T’}
consists of the block set B of t-(r,2¢t + 1, ) design with an additional property that
for any two different B, B’ € B, #(B N B') <t holds. (The last inequality follows
from dgy(B,B') > 2t+1for B# B'.) =

In the case of even discreteness d, the following lemmas hold.

v. Then, above argument asserts that the number of u € N(v) N (,7,) for some

LEMMA 2*. Suppose that G belongs to LHDRGY,, let T' be its fundamental group,
and identify G with H(r)/T". Take an arbitrary vertex v € V(G) and take a vertex u
in the fiber f~Y(v). Then, N;_;(v) & N;—y(u) holds.

PRrROOF: This lemma can be proved in exactly the same way as in the proof of Lemma
2, by substituting Ny—; for N; and putting dr = 2¢. =

LeMMA 3*. Let G = H(r)/T be a graph in LHDRG},. Then its parameters satisty
equalities a; = 0, ¢; = ¢ for 1 = 1,2,... ;¢ — 1 and ¢; = (A + 1) for some positive
integer A\. Identify the vertex set of H(r) with the power set P(X). Then, the set
r'on (;Yt) consists of the block set B of at-(r,2t, \) design, with an additional property
that for any B, B' € B, either B = B' or BN B' <t hold.

PROOF: From Lemma 2*, it is obvious that for 1 = 1,2,... ,t — 2, the parameters
coincide with the ones of H(r). For ai—1, bi—1, c1—1, take a vertex v of H(r) at
distance t — 1 from 0, and let u be one of its adjacent vertex. Then, we see that the
number of such u that dgy(u,T'0) =t —2,t — 1,¢, respectively, is ¢;_1, as—1, bi—1.
The nearest element in I'0 from v is, however, only @, and the other elements in I'}
are at least at distance ¢ + 1 from v. This implies that a;_1, b;—1, ¢;—1 also coincide
with H(r). Take a vertex v of H(r) at distance ¢ from @, and let u be one of its
adjacent vertices. Then, the number of such u that dg()(u,'0) = ¢t — 1 corresponds
to ¢;. If d(u,T'0) = t — 1 then either d(0,u) = ¢t — 1 or d(u,7y0) = t — 1 holds for
some vy € I with v0 € (g(t) In the latter case, #(u) =t + 1 and v C 0 holds. Any
such u provides an edge of c-type. Such u is easily proved to be contained at most
one 70 € (g‘;), otherwise d(v8,v'0) < dr holds for another '@ € (;{t) Let A, be the

number of v0 € (,ft) containing v. Then the c-type edges incident with v are exactly
ones in the spans between v and such v or §. Thus, ¢ = t(A + 1) for a number )



independent of the choice of v, since G is assumed to be distance-regular. Clearly

I'on @t) consists of the block set of a t-(r,2¢, A) design. =

Thus we have a slogan.

SLOGAN 1. If all t-(r,d, \) designs with d = 2t or d = 2t + 1 with an additional
property that the intersection of any two different blocks B, B' is of size no more

than t are classified, then LHDRG will be classified.

Such nontrivial designs do exist. Some examples are shown in Section 5.
We will use the next criterion in the next section.

CRITERION 1. Let B be the block set of a design as in Slogan 1. Then,
A< (r=1)/(d—1) |
holds.

PrOOF: Let X be the v-element set. As shown in Lemmas 3 and 3*, every (¢ 4+ 1)-
element subset of X is contained in at most one block. Since one block contains ( tj_ll)

of (t + 1)-element subsets, the inequality ( 1.11) > b( H‘fl) follows, where b denotes the

cardinality of the block set B. Combining with a well-known identity /\(:) = b(‘tl), we
have the desired inequality. =

The next lemma was proved in [3, p.153] in a different terminology.

LEMMA 4. A distance-regular graph G belongs to LHDRGY, for some d > 7 if and
only if the parameters of G satisty a1 =0, az =0, ¢ = 2, and ¢3 = 3.

PROOF: The necessity immediately follows from Lemmas 3 and 3*. To prove the
sufficiency, let G be a distance-regular graph with the above parameters. It is sufficient
to prove that G satisfies the three condition of the definition of locally Hamming, since
dr > 7 follows from Lemmas 3 and 3*. The condition (1) follows from «y = 0. The
condition (2) follows from ¢z = 0. To prove (3), take a tulip T'in G, let p, ¢, r be its
petals, and let v be its root. From the conditions (2) and (1), we have a vertex z in
G which is adjacent with both p and ¢. It is easily checked that x is at distance 3
from v. Since ¢3 = 3, there exists a vertex y different from both p and ¢ such that a
path z,y, z,v of length 3 exists. Then, from the condition (2), there exists a vertex
w # y such that z,w, z,v is a path. Since ¢3 = 3, w must coincide with p or ¢q. We
may assume that w = p. Then, the condition (2) between v and p shows that z is in
T and adjacent to p. From the condition (2) between z and z, z must coincide with
the vertex in T adjacent with p but nonadjacent with ¢. Then, d(q,z) = 3 follows
from the condition a; = a; = 0. Now p, r, v, y are adjacent with z and at distance 2
from q. Since ¢3 = 3, y must coincide with one of p, 7, v, but p # y and d(v,z) = 3
holds, y = r follows; that is, z is adjacent with p, ¢, r. =

Lemmas 3 and 3* show how dr determines the parameters a;, ¢;. Conversely, the
parameters a;, ¢; of course determine the dr.
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FormMuLA 1. Let G be an r-regular distance-regular graph with parameters a3 =
as = 0 and ¢y = 2, c3 = 3, other than H(r). Then, the t in Lemmas 3 and 3* is the
minimum number k such that either aj # 0 or ¢ # k occurs, and we have

204+1 ife, =t
d:{ + ¢y

2t otherwise.

PrOOF: By Lemma 4, G is a LHDRG. Then, this formula follows from 3 and 3*. =

84. Multiply transitive groups.

Although the complete classification of designs is not accomplished yet, a similar
great problem was settled as a result of the classification of finite simple groups; that
is, the classification of multiply transitive groups. A permutation group of degree r
is said to be k-transitive if the induced action on the set of the ordered k-tuples of
the element of X is transitive, and said to be k-homogeneous if the induced action
on the set of the unordered k-tuples (i.e., on (’L\’)) is transitive. Even 2-transitive
permutation groups were classified[4][7]. In this paper we shall use the following two
group-theoretical theorems.

THEOREM 1. All k-transitive permutation groups of degree r with k > 6 are A,
and §,. All k-transitive permutation groups with k = 5,4 except A, and S, are
four Mathieu groups May, My2, Mag,and My,. The subscript denotes the degree of
the permutation group, and the former two are 5-transitive and the latter two are
4-transitive.

THEOREM 2. A k-homogeneous group is (k—1)-transitive. For k > 5, k-homogeneous
group is k-transitive. There exist only five 4-homogeneous but not 4-transitive groups
of degree more than 5; viz. PSLy(5), PGLy(5), PGLy(8), PI"Ly(8), and PI'L2(32) with
degree 6, 6, 9, 9, 33 respectively.

Theorem 1 is a consequence of the classification of finite simple group. Theorem 2
is proved in [6]. To connect the automorphism group with the fundamental group of
G, following lemma is crucial.

LEMMA 5. Let G = H(r)/T be a locally Hamming graph. Then,
Aut(G) = N(T)/T

holds, where N(I') denotes the normalizer of I' € Aut(H(r)).

PROOF: Let f: H(r) —» G = H(r)/T be the canonical covering. For an automor-
phism & : H(r) — H(r) with éI'6™! = T, we define 6,r : H(r)/T — H(r)/T by
Pz — Dézx. 1t is easy to prove that this mapping is a well-defined autocmorphism, by
using I'éz = 6T'z. The map N(I') — Aut(H(r)/T) defined by § — é,r is obviously a
homomorphism of groups. This map is proved to be surjective as follows. Take any



a € Aut(H(t)/T). Then, the universality of f asserts that there exists an automor-
phism ¢ : H(r) — H(r) such that af = f§ holds. This implies al't = I'6z for any z.
Thus, if ¢ is proved to be contained in N(T'), then clearly a = §;r holds and the sur-
jectivity follows, but for any v € ', we have fév6™! = afy6™! = aféd~ ! = f6671 = f
by definition of T, so §y6~! € I holds; in other words, § € N(T') holds. Thus we have
a surjective homomorphism N(T') — Aut(H(r)/I'). It remains to prove that the ker-
nel of this homomorphism is I'. Take any 6 € N(T') such that é,p = id. This implies
I'u = T'éu for all u; in other words, fu = féu for any u, and § € I" follows from the
definition of I'. Conversely, for any v € I, v;r maps any vertex I'z to I'yz = I'z, and
I is proved to be the kernel. n

LEMMA 6. Aut(H(r)) &£ S,.Wr.F, holds.
PROOF: Recall that the wreath product S,..Wr.F; is the set

{(o,d)|o € S;,d € F3}

with multiplication

(0,d)-(¢',d") = (c0’,0d'),

where o € S, is considered as a permutation matrix over Fo. We correspond (o, d) to
a mapping H(r) — H(r) defined by z — oz-+d. This defines the above 1somorph1sm
Injectivity and surjectivity are easily checked by using Proposition 1. »

From now on we deal with only locally Hamming distance-transitive graphs with
discreteness d and valency r(denoted by LHDTGY). Next lemma connects LHDTG
with multiply transitive group.

LEMMA 7. Let G & H(r)/T be a graph contained in LHDTG?. Define the point
stabilizer

N(T)p := {6 € N(T)|60 = 0}.
Then, N(T')g can be regarded as a subgroup of N(I')/T" & Aut(G). Also, N(I')y
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can be regarded as a subgroup of S, and is a k-homogeneous group acting on the

r-element subset X for k = |(d—1)/2|. Moreover, N(I')y acts on the block set of the
design defined in Lemmas 3 and 3*; i.e., on T') N (‘E)

PROOF:

Case d=2t+1. In this case we have £k = t. Take vertices u,v € H(r) such that
d(9,u) = d(0,v) =t holds. Since N¢(8) = N¢(T'0) holds, dg(I'0,T'u) = dg(I'8,T'v) =t
holds. Since H(r)/T is distance-transitive, there exists a §;r € Aut(H(r)/I") such that
6/p(I'0) = I'0 and 6r(I'v) = T'v. We can takea é € N(I") such that ép coincides with
the one defined in Lemma 4 by the surjectivity of 6 + §,r. Since I'68 = 6,p(T'0) = I'
holds, a v € T satisfies v60 = 0, and by retaking vé as §, we may assume that 60 = §;
i.e., 6§ € N(T')y. Now I'6u = I'v holds, and since N;(0) = N(T'0), u = v holds; i.e.,
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N(T)g acts on X t-homogeneously. Since I' has no fixed point, TNN(T')g = {id} holds,
and this implies that N(I')y can be embedded into N(I')/T" as a subgroup. On the
other hand, N(I')y can be naturally identified with a subgroup of S, since through
the identification Aut(H(r)) & S,..Wr.F,, we have N(I')y C {(¢,0)|c € S,} = &,
Take an element z = v0 € T'P N (;‘t) and an element ¢ € N(I')g. Then, ¢ = (0,0) and

oz =gz =gy0 =+'¢g0 =~4'0 € TON (2;‘;1) holds for some 4' € T" since ¢ € N(T).

Thus, we have gz € TON (Qt}il

ron (2 fH) For d = 2t, the same proof is also valid with modification on only the
parameters t and d. =

PrROOF OF MAIN RESULT: Using Formula 1, we see that the discreteness d is calcu-
lated as shown in Main Result. Then, all statements follow from Lemmas 3, 3%, and

7, and Criterion 1. =

LEMMA 8. Let G = H(r)/T', N(T')¢ be as in Lemma 7. If N(T')y is isomorphic to A,
or S;, then G is a Hamming scheme or a folded Hamming scheme.

), and consequently, N(I')y acts on the block set

PRrOOF: Let dr be the discreteness of I', and let B be the block set of the t-(r,d, )
design stated in Lemma 7. If dpr = oo then G = H(r), thus we may assume dr < oo.
Take a block B € B. Since any cyclic permutation of length 3 is contained in both A,
and S, there exists a v € I' with d(B,vB) < 2, unless B = X holds. Since dr > 5,
B = X must hold. Then, dr = r, and the fiber on the vertex '} contains exactly
two vertices 0, X € V(H(r)). A similar situation occurs on any vertex on G, and
consequently, G is obtained from H(r) by identifying two antipodal vertices; i.e., a
folded Hamming scheme. =

COROLLARY OF LEMMA 8. All graphs contained in LHDTGY, for d > 13 are the
Hamming schemes or the folded Hamming schemes.

ProoOF: For d > 13, either d =2t + 1 with ¢t > 6 or d = 2t with t > 7 holds. In each
case, N(I')g is at least 6-homogeneous, and the result follows from Theorems 1 and 2
and Lemmas 7 and 8. =

Combining a calculation on the admissibility of parameters of a design and Crite-
rion 1, we can improve the lower bound of d.

LEMMA 9. Corollary of Lemma 8 holds for d > 9.

PRrROOF: Since for any distinct B, B’ € B #(BNB’) < t holds, an inequality 2d—t < r
must hold. Thus, 18 < 2d < r follows, and the degree of the corresponding homoge-
neous group is no less than 18. There are three 4-homogeneous groups satisfying this
condition except A, and S,; viz, PT'L3(32), Mas, and My,.

Let G = H(r)/T" be a graph in LHDTG?, which is neither a Hamming nor a folded
Hamming scheme. The next table lists all [(d — 1)/2]|-homogeneous groups for dr =
10,11,12. The number s in the column homogeneousity shows that the group N(T')g
is at least s-homogeneous; ie., s = |(d — 1)/2], and the column N(I")4 lists all the



s-homogeneous groups. The column admaissibility shows the necessary condition on
A deduced from the well-known admissibility condition of a t-(r,d, \) design; that is,
( >|/\(T !), where a|b denotes that a divides b.

t—2

dr t Homogeneousity N(I')y r = #(X) Criterion 1 Admissibility

12 6 5-homogeneous Mgy 24 ALZ3 42|\
11 5 5-homogeneous Mgy 24 A<19/6 42|\
10 5 4-homogeneous  May 24 A<19/5 18|\
Mas 23 A<18/5 252|\

PTL,(32) 33  A<28/5  504|)

9 4 4-homogeneous Moy 24 A <4 24|\
Mas 23 A<19/5 18|\

PIL,(32) 33  A<29/5 21|

List 1. Possible parameters for LHDTGY, 9 <d < 12.

In each case, Criterion 1 contradicts the admissibility. =

THEOREM 3. Let G be a distance-transitive graph with parameters a; = 0 for 1 =
1,2,3and¢; =t forev=1,2,3,4. Then, G is a Hamming scheme or a folded Hamming
scheme.

PrOOF: Formula 1 implies ¢ > 4 and d > 9. Thus, this theorem 1s a direct conse-
quence of Lemma 9. =

§5. Nontrivial Examples.

The next table lists some known locally Hamming distance-regular graphs other
than Hamming scheme and folded Hamming scheme. All these examples are cited
from [3, pp.480-483]. The column Intersection Array shows the intersection array
{bo,b1,... ,bp-1;¢1,C2,...cp}, where D denotes the diameter. After the array is the
reference to [3]. The * in the column N(I')g indicates that it is not distance-transitive.

No. drt r N(T')g #(V(G)) Intersection Array

1 8424 My = 4096 {24,23,22,21;1,2,3,24}, Ch.11.3.2

2 8 423 M, 4096 {23,22,21,20,3,2,1;1,2,3,20,21,22,23}, p.362
3 7323 My, 2048 {23,22,21;1,2,3}, Ch.11.3.4

4 7322 2048  {22,21,20,3,2,1;1,2,3,20,21,22}, p.365

5 6322 My 2048 {22,21,20,16,6,2,1;1,2,6,16,20,21,22}, p.363
6 6322 My, 1024 {22,21,20;1,2,6}, Ch11.3.5

7 5221 * 1024 {21,20,16,6,2,1;1,2,6,16,20,21}, p.365

8 5221 * 2048 {21,20,16,9,2,1;1,2,3,16,20,21}, p.365

9 5221 PILg(4) 512  {21,20,16;1,2,12}, Ch.11.3.6 |

List 2. Some known LHDRG] with 5 < d < 8.
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For No.1-6, we shall briefly describe the corresponding designs. For No.1, the corre-
sponding is a 4-(24,8,5) design, which coincides with the block set of the Witt system
S5(5,8,24). To No.2, a 4-(23,8,4) design corresponds, which has the same number
of blocks with the Witt system S(4,7,23). This design is obtained by adding one
element to each block in S(4,7,23) so that Mas acts on those blocks. To No.3, a
3-(23,7,5) design corresponds, which coincides with the block set of the Witt system
S(4,7,23). To No.4, a 3-(22,7,4) design corresponds, which has 2% - 11 blocks. The
author doesn’t know how to obtain this design from S(3,6,22). To No.5 and No.6,
a 3-(22,6,1) design, in other words, the Witt system S(3,6,22) corresponds. This
implies that the design does not determine the graph uniquely.

All of the listed graphs are obtained as a coset graph of modified binary Golay
codes[3, Ch.11.3]. Its fundamental group is a linear subspace in F} when regarded as
a subgroup of S, x F3. This invokes the next conjecture.

CONJECTURE 1. Let I' C Aut(H(r)) be a subgroup with discreteness at least 5. If

H(r)/T is distance-regular, then T is a linear subspace in F} through the identification
S 1 F3.

CONJECTURE 2. Under the same assumption, I' is a subset of a linear code obtained
from binary Golay codes by truncation or shortening.

Conjecture 2 implies the complete classification of LHDRG. To prove or disprove
these conjectures does not seem to be too difficult, at least for the distance-transitive
case with dr > 7; 1.e., with ay = a9 =0, ¢ = 2, ¢c3 = 3, because in this case the point
stabilizer is a 2-homogeneous group on which we have much information[7].

In this paper, we have not utilized any information on the parameters «a;, b;, ¢; for
1 > t+ 1, so the same proof can also be applied to graphs for which the parameters
with subscript ¢ > ¢ can not be defined. Also, we have not used the properties of
association schemes at all, so it seems to be possible that one proves a stronger result
with easier proof than this paper, using such structures.
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