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F. Nakamura, Y. Hattori and T. Kambe

Depar.tment of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan

Abstract

Motion of an ideal fluid is represented as geodesics on the group of all volume

preserving diffeomorphisms. Explicit form of the geodesic equation is presented for

the fluid flow on a three-torus. Riemannian connection, cornmutator and curvature

tensor are given explicitly and applied to a couple of simple flows with Beltrami

property. It is found that the curvature is non-positive for the section of two ABC

flows with different values of the constants ($A,$ $B$ and C). The present study is an

extension of the Arnold’s results in two dimensional case to three dimensional fluid.

motions.
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We are concerned with a method to connect the problem of hydrodynamics of

an ideal (incompressible and inviscid) fluid with a problem of finding geodesics on

the group of $aU$ volume preserving diffeomorphisms. The fact that this group is

the appropriate configuration space for the hydrodynamics of an ideal fluid was first

remarked by Arnold.’ Under the restriction of two dimensional flows on the torus

$T^{2}=R^{2}/(2\pi Z)^{2}$ ( $R$ : space of real numbers; $Z$ : set of integers), explicit formulas for

the commutator, inner product, riemannian connection and geodesic equation are

presented. These formulas $aUow$ us to calculate the riemannian curvature tensors on

the geodesics of any two-dimensional cross-section. By the Jacobi equation in the

differential geometry, the stability of the geodesics is determined by the curvatures

on them. By the stability it is meant here kinematically how the difference of particle

positions between two flows of different initial conditions develops with time. Neg-

ative curvature leads to enhanced growth of the deviation in initial conditions with

time. (This problem is different from that of the dynamical stability of the velocity

field.)

In this paper, we present an explicit form of the geodesic equation for the motion

of an ideal fluid on a three-torus $T^{3}$ . It is possible to determine an expression of

the riemannian curvature of the group of volume preserving diffeomorphisms. It

is interesting to find that the curvature tuns out to be non-positive for the two-

dimensional section consisting of a particular vector (velocity) field ( $i.e$ . a simple

flow with Beltrami property) and a general vector field.

Consider a flow of an ideal fluid of uniform density in a $n$ dimensional flow domain
$M$ (a bounded riemannian manifold without boundary). The present analysis is

aimed at the the flows in three dimensional space although the formulation is valid

for $n$ dimensional flows. The manifold $M$ is provided with the metric given by the

inner product $(X\cdot Y)$ and the covariant derivative $\nabla_{X}Y$ (or riemannian connection for

this metric) at any point $x\in M$ for any two vector fields $X$ an $dY$ on M. The covariant
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derivative is a differentiation of the vector field $Y$ in the direction of $X$ . When the

velocity $v_{t}(y)$ of fluid motion is given for $y\in M$ and $t\in R$ , the particle motion $y(t)$ is

described by the ordinary differential equation, $dy/dt=v_{t}(y)$ with $y(0)=x\in M$ ,

where $x$ is the initial position of the particle. The solution is written in the form:

$y=g_{t}(x)$ , which describes a smooth curve in $M$ starting from $x$ , usually called

Lagrangian particle path.

For each $t$ , the mapping $g_{t}$ : $Marrow M$ is an auto-diffeomorphism carrying every

particle of the fluid in $M$ from the place it was at time $0$ to the place it is at time $t$ ,

and in the other sense for the time parameter $t$ in an open interval $1\subset R,$ $g_{t}$ describes

time development of the configuration of particles, caUed a flow. In case that $v_{t}(x)$

is divergence-free, the diffeomorphism is volume preserving. The volume preserving

diffeomorphisms from $M$ to itself form an infinite dimensional group, which is denoted

as $\mathcal{D}_{v}(M)$ (shortly $\mathcal{D}_{v}$ ), and the flow $g_{t}$ is a curve in the group $\mathcal{D}_{v}$ .
Here we make some remarks about the infinite Lie group $\mathcal{D}_{v}$ according to Ebin

&Marsden.2 (i) For two elements $f$ and $g$ in the group, the operation $fg$ is defined

by $fog,$ $i.e$ . $fog(x)=f(g(x))$ for $x\in M$ . Unit element $e$ is the identity map of M.

Inverse element of $f$ is the inverse map of $f$ itself, so we denote it as $f^{-1}$ . (ii) Right

translation by an element $g$ is defined by $R_{9}f=fog$ . (iii) The Lie algebra, $i.e$ . the

tangent space $T_{e}\mathcal{D}_{v}$ of the group at the identity $e$ , is a set of all divergence-free vector

fields on M. (iv) Tangent space $T_{f}D$. is a set of $aU$ divergence-free vector fields along

$f,$ $i.e$ . consisting of every vector field $V$ such that $Vof^{-1}$ is divergence-free. The

right translation of a vector $V_{f}\in T_{f}D_{v}$ by $g\in D_{v}$ is defined by $V_{f}og\in T_{fog}D_{v}$ . We

use the same notation of the right translation of a vector as that of an element of
$\mathcal{D}_{v}$ . $(v)$ The initial position $x$ of all the particles is usuaUy taken as the Lagrangian

(particle) coordinates. The flow $g_{t}$ starts at $e$ . The fluid vclocity with respect to $x$

at each $t$ is a tangent vector $\dot{g}_{t}\in T_{9t}D_{v}$ . To get the Eulerian velocity field $v_{t}(y)$ at a

fixed point $y$ in the space $M$ , we must carry this vector to the tangent space at the
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identity $e$ . This can be done by the right translation $v_{t}=\dot{g}_{t}og_{t^{-1}}$ , or equivalently

$\dot{g}_{t}(x)=v_{t}(g_{t}(x))$ . (vi) The group $\mathcal{D}_{v}$ admits a riemannian metric $<$ , $>$ and

riemannian (Levi-Civita) connection V.

The metric for two tangent vectors $X,$ $Y\in T_{f}\mathcal{D}_{v}$ is defiried by

$<X,$ $Y>|_{f}=\int(X(x)\cdot Y(x))|_{f(x)}dx$ , (1)

where $dx$ is the (riemannian) volume element on $M$ , and $Q|_{f}$ denotes the quantity

$Q$ evaluated at a point $f$ . Due to the volume preserving nature of the mapping, we

have the right invariant property: $<Xog,$ $Yog>|_{fog}=<X,$ $Y>|_{f}$ , for $f,$ $g\in \mathcal{D}_{v}$ .
Concerning the connection $\tilde{\nabla}_{X}Y$ , first we consider right invariant vector fields $on$

$\mathcal{D}_{v},$ $i.e.\tilde{X}(f)=Xof,\tilde{Y}(f)=Yof$ for $f\in \mathcal{D}_{v}$ where $X,$ $Y\in T_{\epsilon}\mathcal{D}_{v}$ (divergence-free

vector fields on M). The connection V determines a new right invariant vector field
$\tilde{\nabla}_{X}\tilde{Y}$ on $D_{v}$ called covariant derivative of $\tilde{Y}$ in the direction of $\overline{X}$ defined by

$\tilde{\nabla}_{\tilde{X}}$

ワ

$|_{f}=P[\nabla_{X}Y]of$ , (2)

where $\nabla$ is the riemannian connection of $M$ , introduced previously. The covariant

derivation $\nabla_{X}Y$ is not necessarily divergence-free for two divergence-free vector fields

$X,$ $Y$ on M. The operation $P[$ $]$ denotes the projection to divergence-free part on M.

It is shown2 that the operation (??) gives the right invariant riemannian connection

on $\mathcal{D}_{v}$ associated with the riemannian metric (??).

Next we take a curve $g_{t}$ in $\mathcal{D}_{v}$ which satisfies $\dot{g}_{l}\equiv dg_{t}/dt=v_{t}og_{t}=v_{t}(g_{t})$ , that

is, the flow $g_{t}$ is generated by $v_{t}$ . Let $\tilde{X}_{t}$ be a vector field along $g_{t}$ which is given by

right translation of a time-dependent vector field $X_{t}$ on $M$ : $\tilde{X}_{t}=X_{t}og_{t}$ . Then the

connection determines a new vector field called the covariant derivative of $X_{t}$ along

$g_{t}$ ,
$\ovalbox{\tt\small REJECT}_{X_{t}^{\ovalbox{\tt\small REJECT}}/dt}=(\partial X_{t}/\partial t+P[\nabla_{v_{t}}X_{t}])og_{t}$ . (3)

Since $\tilde{D}/dt$ is the differentiation with respect to the parameter $t$ , we have to add the

term $\partial X_{t}/\partial t$ .
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The operations {X, $\tilde{Y}$ } $arrow\tilde{\nabla}_{\overline{X}}\tilde{Y}$ and $\tilde{X}_{t}arrow\tilde{D}X_{t}/dt$ is characterized uniquely

by the axioms in the riemannian geometry. 3,4 In particular, a vector field $\tilde{X}_{t}$ along

$g_{t}$ is said to be parallel if the covariant derivative is identically zero. The curve $g_{t}$

is a geodesic when its tangent vector $\dot{g}_{C}$ is parallel along itself (the curve $g_{\ell}$ ). In $\mathcal{D}_{v}$

endowed with the connection V, the geodesics are defined by the equation,

$\tilde{D}\dot{g}_{t}/dt=0$ . (4)

The principle of least $\cdot action$ asserts that the motion of an ideal fluid is a geodesic

with the (weak) riemannian structure (??) and riemannian connection (??). In fact,

the action $I$ is defined as

$I= \int<\dot{g}_{t},\dot{g}_{t}>|_{g\ell}dt=\int dt\int(v_{t}(x)\cdot v_{t}(x))|_{x}dx$ ,

and the variational problem leads to the equation (??).2

Using the right invariant property of the metric $<,$ $>$ , and identifying $X_{t}$ as $v_{t}$

in (??), we get the following equation,

$\tilde{D}\dot{g}_{t}/dt=(\partial v_{t}/\partial t+P[\nabla_{v_{\ell}}v_{t}])og_{t}=0$ . (5)

For the covariant derivative $\nabla_{v\ell}v_{t}$ , we have the orthogonal decomposition,2

$\nabla_{v\ell}v_{t}|_{c}=\{P[\nabla_{v\ell}v_{t}]-gradp\}|_{c}$ , (6)

where the function $p$ is a smooth scalar function on M. Thus, the right translation

of equation (??) leads to

$\partial v_{t}/\partial t+P[\nabla_{v_{t}}v_{t}]=0$ , (7)

or in view of (??), $\partial v_{t}/\partial t+\nabla_{v_{t}}v_{t}=-gradp$ . This is a generalized expression of the

Euler equation for an ideal fluid on riemannian manifold $M$ without boundary. It is

shown that Eq. (??) holds in most general cases with boundary.2 For a flat cartesian

space, the covariant derivative reduces to the form

$\nabla_{v}v=(v\cdot grad)v$ , (8)
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for the velocity field $v$ with cartesian components $(v_{i})$ at $x=(x:)$ . Thus in terms of

the hydrodynamic notations for $n=3$ , we have recovered the Euler equation,

$\partial v/\partial t+(v\cdot grad)v=-gradp$ , $divv=0$ (9)

where $grad=(\partial/\partial x_{i}),$ $(i=1,2,3)$ and $p$ is the pressure divided by the uniform fluid

density.

In the Lie algebra of the group $D_{v}$ , the commutator $[, ]$ , is defined for two

divergence-free vector fields $X$ , Yas

$[X, Y]_{*}=\tilde{\nabla}_{X}Y-\tilde{\nabla}_{Y}X$ (10)

The right invariant property of the metric and connection allows us to make

corresponding calculation at $e\in D_{v}$ . From now on we write $\tilde{\nabla}$ instead of $P[\nabla ]$ .
Given divergence-free vector fields $X,$ $Y,$ $Z$ and $W$ , a new divergence-free vector

field $\tilde{R}(X,Y)Z$ called the curvature tensor is defined by

$\tilde{R}(X, Y)Z=$ 一\nabla x $\tilde{\nabla}_{Y}Z+\tilde{\nabla}_{Y}$

\tilde コワ

$xZ+\tilde{\nabla}_{[X.Y]}.Z$ , (11)

and then the curvature $\overline{R}_{XYZW}$ is given by

$\tilde{R}_{XYZW}=<\tilde{R}(X, Y)Z,$ $W>$ . (12)

The sectional curvature for the section $\sigma\subset T_{\epsilon}\mathcal{D}_{v}$ spanned by $X$ and $Y$ is

$\tilde{K}(\sigma)=<\tilde{R}(X, Y)X,$ $Y>/(<X, X><Y, Y>-<X, Y>^{2})$

where the denominator is the square of the area of parallelogram spanned by $X$ and

Y. As we mentioned before, the stability of a geodesic $g_{t}$ is determined by the Jacobi

field $A_{t}$ along $g_{t}$ . The norm $|A_{t}|\equiv\sqrt{<A_{t},A_{\ell}>}$ denotes the evolution of distance

between two geodesics $g_{t}^{0}$ and $g_{t^{l}}$ per unit variation of $s$ which start from the same

origin $e$ with different initial tangent vectors $X$ and $X+sY$ respectively:5

$|A_{t}|=| Y|t-\frac{1}{6}\tilde{K}(\sigma)t^{3}+O(t^{4})$ (13)
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Thus negative $\tilde{K}(\sigma)$ means enhanced deviation of two geodesics in the section $\sigma$

spanned by $X$ and Y.

We will now investigate the three-dimensional fluid motion on the flat three-torus

$T^{3}=R^{3}/(2\pi Z)^{3},$ $i.e$ . $x=\{(x_{1}, x_{2},x_{3});mod 2\pi\}$ for $x\in T^{3}$ , and the curvature of

the group $\mathcal{D}_{v}(T^{3})$ . Note that this $T^{3}$ is actually bounded manifold without boundary.

The elements of the Lie algebra of the group $\mathcal{D}_{v}(T^{3})$ can be thought of as real periodic

vector fields on $T^{3}$ with the divergence-free property. Such a periodic fields are

represented by the real part of corresponding complex Fourier forms.

The Fourier base $e^{ik\cdot x}$ is denoted by $e_{k}$ , where $k=(k_{i})$ for $i=1,2,3$ . We
$l$

now complexify the Lie algebra, inner product, commutator and the riemannian

connection and curvature tensor, so that all these functions become linear (or multi-

linear) in the complex vector space of the complexified Lie algebra. The functions

$e_{k}(k\in Z^{3}, k\neq 0)$ form a basis of this vector space. The velocity field is represented

as

$v_{t}(x) \equiv u(t,x)=\sum_{k}u_{k}(t)e_{k}$ , (14)

where $u(t, x)$ and $u_{k}(t)$ have three components, the latter being written as $u^{i}(k)$ too

occasionally $(i=1,2,3)$ . The Fourier components must satisfy the two properties,

$(k\cdot u_{k})=0$ , $u_{-k}=u_{k}^{*}$ (15)

to represent the solenoidal and real conditions, respectively. Where the asterisk $*$

denotes the complex conjugate. It should be noted that $u_{k}$ has two independent

polarizations consistent with the first condition.

Let us take four vector fields satisfying the conditions (??) : $u_{k}e_{k},$ $v_{1}e_{1},$ $w_{m}e_{m}$ ,

$z_{n}e_{n}$ . Then we have the following expressions. From (??), the inner product is

$<u_{k}e_{k},$ $v_{1}e_{1}>=(2\pi)^{3}(u_{k}\cdot v_{1})\delta_{0,k+1}$ , (16)

which is non-zero only for $k+1=0.$ Using$\cdot$ (??) and operating the projection $P$ , the
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covariant derivative is

$\tilde{\nabla}_{u_{k^{\epsilon}k}}v_{1}e_{1}$ $=$ $i( u_{k}\cdot 1)\frac{k+1}{|k+1|}\cross(v_{1}\cross\frac{k+1}{|k+1|})e_{k+1}$ . (17)

The equation (??) gives the commutator:

$[u_{k}e_{k}, v_{1}e_{1}]_{*}=i((u_{k}\cdot 1)v_{1}-(v_{1}\cdot k)u_{k})e_{k+1}$ . (18)

From the definitions (??) and (??), the curvature tensor is

$\tilde{R}_{klmn}=<\tilde{R}(u_{k}e_{k}, v_{1}e_{1})w_{m}e_{m},$ $z_{n}e_{n}>$

$=(2 \pi)^{3}(\frac{(u_{k}\cdot m)(w_{m}\cdot k)(v_{1}\cdot n)(z_{n}\cdot 1)}{|k+m||l+n|}-\frac{(v_{1}\cdot m)(w_{m}}{|1+m|}$

. 1)
$(u_{k}\cdot n)(z_{n}\cdot k)|n+k|)$

The curvature $\tilde{R}_{klmn}$ takes nonzero value only for $k+1+m+n=O$ and nonzero

$k,$ $1,$ $m,$ $n$ . (The terms with zero denominator should be deleted.) An analysis for

the distance of each particle convected by two different velocity fields of $T^{2}$ , which

is related to the Jacobi field (??), has been carried out by $flattori^{6}$ and found to be

consistent with (??). This analysis can be extended to $T^{3}$ without difficulty.

The geodesic equation (??) reduces to

$\sum_{k}\frac{\partial u^{m}(k)}{\partial t}+i\sum_{p+q=k}\sum_{j,l}k_{j}(5_{ml}-\frac{k_{m}k_{l}}{k^{2}})u^{j}(p)u^{l}(q)=0$

.

by using (??) where $\delta_{ij}$ is Kronecker’s delta. It is interesting to find that this is

exactly identical to the Fourier representations of the Euler equation, or the Navier-

Stokes equation when the viscosity coefficient $\nu$ vanishes.7

In two-dimensional case, we may take $k=(k_{1}, k_{2},0)$ and $u_{k}=i(k_{2}, -k_{1},0)$ ,

and similar expressions for the other vectors. Then it can be readily shown that our

formulas reduce to those of Arnold.’

As an application, we consider a flow with Beltrami property, that is, we assume

that the velocity field $U_{p}=u_{p}e_{p}+u_{-p}e_{-p}$ , $i.e$ . $2{\rm Re}[u_{p}e^{ip\cdot x}]$ , satisfies the condition,
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curl $U_{p}=\lambda U_{P}$ for a parameter $\lambda\in$ R. This eigenvalue problem can be solved with

$\lambda^{2}=|p|^{2}$ . It is readily shown that $U_{p}$ is a steady-state solution. Let $X=\sum v_{1}e_{1}$ be

any velocity field satisfying (??). Using the above formulas, we obtain

$<\tilde{R}(U_{P}, X)U_{P},$ $X>=-(2\pi)^{3}\sum_{1}\frac{|(u_{p}\cdot 1)|^{2}}{|p+1|^{2}}|\frac{(u_{p}\cdot 1)^{2}}{|(u_{p}\cdot 1)|^{2}}(v_{1} . p)-(v_{1+2p} . p)|^{2}\leq 0$ .

This non-positive property is considered to be a three dimensional version of the

Arnold’s result for the curvature of the group $\mathcal{D}_{v}(T^{2})$ in any two-dimensional section

containing the direction $\xi$ represented by the stream function $\frac{1}{2}(e_{p}+e_{-p})$ .

The above result can be extended to a two-mode Beltrami flow $U_{p,q}$ which is

defined by the linear combination $U_{p}+U_{q}$ of two Beltrami flows $U_{p}$ and $U_{q}$ . Al-

though it is not difficult to derive the curvature formula in the section of $U_{p,q}$ and

the general direction X, we show here only the case in which X is another Beltrami

flow represented by $V_{p,q}=V_{p}+V_{q}$ where $V_{p}=v_{p}e_{p}+v_{-p}e_{-p}$ . The two polar-

ization amplitudes $v_{p}$ and $u_{p}$ are linearly independent and the Beltrami condition is

satisfied with $\lambda=|p|$ . Then the sectional curvature is

$<\overline{R}(U_{p,q},V_{p,q})U_{p,q},V_{p,q}>/(2\pi)^{3}$

$=-N_{+}|(u_{p}\cdot q)(v_{q}^{*} . p)-(u_{q}^{*}\cdot p)(v_{p}\cdot q)|^{2}$

$-4N_{+}{\rm Im}[(u_{p}\cdot q)(v_{p}^{*}\cdot q)]\cdot{\rm Im}[(u_{q}\cdot p)(v_{q}^{*}\cdot p)]$

$-N_{-}|(u_{p}\cdot q)(v_{q}\cdot p)-(u_{q}\cdot p)(v_{p}\cdot q)|^{2}$

,

$-4N_{-}{\rm Im}[(u_{p}\cdot q)(v_{p}^{*} .q)]\cdot{\rm Im}[(u_{q}^{*}\cdot p)(v_{q}\cdot p)]$ ,

where $N\pm=2/|p\pm q|^{2}$ .
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Next we show an interesting example, that is an application to the ABC flow8

represented by

$U_{ABC}=$ A $[(i, 1,0)e^{ix_{3}}+(-i, 1,0)e^{-ix_{3}}]$

$+B[(0,i, 1)e^{ix_{1}}+(0, -i, 1)e^{-ix_{1}}]$

$+C[(1,0,i)e^{ix_{2}}+(1,0, -i)e^{-ix_{2}}]$ ,

where A,B,$C\in$ R. This is a three-mode Beltrami flow, $i.e$ . each term on the right

hand side satisfies the Beltrami property with $\lambda=-1$ . We have another ABC flow

$U_{A’B’C’}$ for $(A’\sim B’, C’)\neq(A,B, C)$ . It is straightforward to show that

$<\tilde{R}(U_{ABC}, U_{A’B’C’})U_{ABC},$ $U_{A’B’C’}>$

$=-2\{(AB’-BA’)^{2}+(BC’-CB’)^{2}+(CA’-AC’)^{2}\}$ ,

namely the curvature is non-positive. In particular the curvature vanishes when

$A/A’=B/B’=C/C’$. It is interesting to find that even in the case where both

$(A, B, C)$ and $(A’, B’, C’)$ are close and are not in the domain of chaos,8 particle

motion by $U_{A’B’C’}$ will not be predicted from the particle motion by $U_{ABC}$ in the

course of time.

It is expected that the present method may be applied to the analysis of rate of

growth of line-element or surface-element in various flow fields and turbulence.
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