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A Free Boundary Problem for Minimal
Surface Equation

Yoshihiko YAMAURA * (L) 2§ ?;\ %, )

1. Introduction

In this note we introduced a free boundary problem for minimal surface equation.
The following variational problem had been treated by H.W.Alt, L.A.Caffarelli and A.Freedman [1],[2]:

V2 2X 450 " — min.
L (FQvar)+@xeso Yoz o

loc

uGI(E{wGL2 (Q)IVwELz(Q),w=u°onS},

where  is a connected Lipshitz domain contained in n-dimensional Euclidean space R*. F' = F({) is a
function belonging to C%1[0,00) with F(0) = 0,0 < ¢ < 8,F < C < 00 and 0 < lthat?F < C < oo.
Q is a given measurable function with 0 < Qmin < Q(2) < Qmax < o0 for all z € §, and X,50 denotes
the characteristic function of domain Q (u > 0) %—f {z € Qlu(x) > 0}. dL™ denotes the integration by n-
dimenisonal Lebesgue measure. u° is a given non-negative function belonging to L (Q) with Vu® € L*(Q)
and S is a subset of 8§} with positive H™ l-measure, where H*! is the (n — 1)-dimensional Hausdorff
measure. They obtained the next three main results:
(1) The existence of a minimum:
A minimum is attained in function space I.
(2) The global regularity of the minimum:
Let u be the minimum for (1.1). Then u € C%}(9).
(3) The regularity of a free boundary for the minimum:
Let w be the minimum for (1.1). Then if Q € C*(2) (3 € (0,1)), free boundary of u:
o0 (u > 0) ana [Q(u > 0)] is an (n — 1)-dimensional C1-surface (3B € (0,1))
near the point where the free boundary is sufficiently flat in some sense (Pricise]y see [1},
[2) |
On the other hand, S.Omata [10] and S.Omata & Y.Yamaura [11] proved the same results {for the non-
linear version of (1.1) when n = 2:

/ (a,"j(u)D.-uDju + QX0 )dL" — min.
Q

(1.2)
veK = {w €L (9 I Vw € L*(Q), w =% on S},

where a*(z) is a smooth function with the following property: there exist positive numbers A and A in-
dependent of z such that 0 < A[¢? < a"(2)&¢; < Al¢|? < 0o (Y2 € RY) for all ¢ € R*\{0}, and matrix

[a%(2)] is positive definite: 0 < a(2)&¢; (Yz € RY) for all £ € R™.
Now in this note we would like to treat the following variational problem:

/(\/1+|Vu|2 +Q2xu>0)dL“ — min.
Q

(1.3)
uEI?E{wEPVl’I(Q)Iw:uO on S}.
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The first term of energy in (1.3) denotes the area of the graph of w in { and then we naturally assume § is
bounded in addition to the conditions above mentioned. u° is a given function belonging to W11(£2), and
the other notations are as above.

In the special case Q2 =1 in  and § = 80, the positive part of the graph of the minimum for problem
(1.3): graph*u = {(a, u(z)) lw €N(u> 0)} describes the soap film, which is constructed by the following
physical experiment: Prepare a connected framework and a sufficiently large container filled with soap liquid.
We lift up the framework, which has been completely flooded under soap liquid at the beginning. When the
whole of the framework rises above the surface of the soap liquid, we get a soap film with the edge consisting
of both the given framework and a {ree boundary on the surface of the soap liquid.

Now unlike (1.1) or (1.2) the minimum in (1.3) is not necessarily attained in K, because the function
space W1(Q) does not have L'-compactness. Thus we must extend admissible function space Wh1(Q) to
BV(£) and generalize the problem itself in the same way as [7]:

J(u) = / 1+ |Vul? +/Q2Xu>o arL" +/ |u — u®|dH™™! — min.
Q Q s .
v € BV(Q).

(P)

BV(Q) is the space of {functions, whose distributional derivatives are Radon measures of locally total varia-
tion, and the first term of J(u) is well-defined as Radon measure:

/ V1+|Vul? & sup / (g"H +u div ff)dL".
Q geECH (R JQ
lgl<t

Moreover it is well-known that BV-function has a L!-trace on the Lipshitz bondary, then for a given non-
negative BV-function u°, the third term of J(u) is also well-defined. Other notations, which will also be
used throughout this note are as follows:

Q : bounded, connected Lipshitz subdomain of R,
Q? : given positive L'-function in Q,
Xu>0 : the characteristic function of Q(u > 0),

S : non-empty connected open subset of 3f2.

It is problem (P) that we will treat in this note. We now remark that even if a minimum for problem (P)
exists, the trace of the minimum on S does not necessarily coninside with 4°. Taking it and the results for
problem (1.1) into account, the following four questions arise

(1') Is a minimum of J attained in function space BV(2)?

(2') If the minimum exists, how global regularity does it have?

(3') If the minimum exists, does it have boundary regularity: u = 4% on $?

(4'} If the mirimum exists, how regularity does a free boundary 8§ (u > 0) have?
We study (1°) and (2') in this note. We will see the affirmative answer for (1') in section 2. Moreover in
section 2 we show the maximum principle for the minimum. In section 3 we obtain the first variation formula,
which tells us the information about the gradient on the free boundary. For question (2'), We expect the
following results: If 8Q(u > 0) # ¢, then

(a) v € COH(Q) when Q%(z) € Q2. <1 in Q.
(b) v € CO*(Q) (P € (0,1)) when Q%(z) <1 in Q. (1.4)
(c) w € BV(Q)\C°() when 1 < Q2; < Q*(z) < Q%,, <oo in .

To study the behavior of the graph u, in section 4,5 we deal with the parametric argument, which is created

by De Giorgi. Using the result there, we construct a solution for radially symmetric {free boundary problem
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‘in n = 2 (Section 6). In particular when Q2 > 1, we will obtain the example of minimum, which does not
have even Wll-regularity in the whole of the domain .

2. Existence Theorem
THEOREM 2.1 (Existence)

There exists a function v € BV{(Q) such that
J(u) =

inf J.
BV(Q)

Proof. There exists a bounded Lipshitz domain V such that VN3Q = S. For given function Q2 € L}()
we set function {2 defined in extended domain QU V as follows:

Qg - Qz in Q, _
0 in V\Q.
Moreover we define a function w belonging to BV(V\Q) such that
wtr™ = (u0)'" on S,
w=0 in V\?e (Q.={seR |dis(z,0)<e}),
minimum for the next variational problem:

where tr+, tr— denote the inner, outer trace operator on § respectively, and ¢ is a sufficiently small positive
number such that V\?l—: # ¢. To prove the assertion of theorem it is sufficient to show the existence of a
(P)

J(u) = / 1+|Vu? + / Q*Xy0 dL* — min.
QUV QuVv

ve X(auV)={veBV(QUY)

v=w in V\Q }
In fact when we denote the extension of u € BV(Q) to the domain QU V by w as & € X(QU V), mapping
u — U gives the byjection from BV (£2) to X(QU V), and

J

(@) = J(u) + /‘;\_ﬁ\/l TTVwP  for Vue BV(Q).

(2.1)

The second term of the right hand side of (2.1) is a constant independent of » € BV(Q2), and thus the
We now show the existence of a minimum for problem (ﬁ) We take a minimizing sequence {u;}32; C

minimum for problem (P) is obtained by restricting the minimum for problem (13) to £, if the latter exists.
X(@QuV): lim J(u;) = i‘l}f J, then obviously
j—oo

/ quj! < M, forVj e V.
QuUV
® such that

(2.2)
In order to estimate the L!-norm of trace of uj on 8(QUV), we deform domain QUV to Br(0)x (0, R) (Here
R def
6 =

and subsequently we denote (n — 1)-dimensional ball by Bg.) for some R > 0 by Lipshitz homeomorphism
d(V\Q.)=D

[Br(0)\Br-5(0)] x (0, R) U Br(0) x (R - 6, R),
®(0(QU V)N Q.) = Br-s(0) x {0}

for some positive number § << R. Moreover we define u; by

-3
o

1

u;()

u; (@7 (z))

r € BR(O) X (0, R)
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Since u; € BV (Bg(0) x (0, R)), for some t; € (R - §, R) and for L'-a.a.c € (0, R)

/ | %(%,€) = %(7, 1) | dF < / |vi;).
Br(0) Br(0)x{e,t;]

Recalling that %; = 0 in DF for all j € A, this inequality implies

/ |%(z,0)| dF < / Ivi;| < 3.
Br(0) Br(0)x(0,R)

Letting € | 0, by the definition of the trace,
[ l@yart < o fervie.
Bgr(0)

In this way we get
/ Il dH* < My for i € N. (2.3)
a(QuV)

From (2.2) and (2.3)

/ IVUJI = / ‘Vu,‘[-l-/ IuJI dH™™? < M, for Vj EN,
R Quv a(QuV)

where
— { u; in QUYV,
U =

0 otherwise.

Using BV-version Sobolev’s imbedding theorem BV,(R™) — L=*T(R"), Holder inequality and the fact that
spt T; C QUV forall j € N,

n-l

/R" 5| dL* < {/R w,-lﬁ‘f} @uv)” < C(n)/n V| < My,

and therefore

/QUV luj| dL® < My  forVj € N. (2.4)

Since QU V is the bounded Lipshitz domain, (2.2) and (2.4) enable us to apply BV-version Rellich’s com-

pactness theorem BV(Q) — L*(Q): there exists a subsequence {uz} C {u;} and a function us belonging to
L}Y(QU V) such that
Up — Uoo in L'(QuV).

By the lower-semi-continuity (0.4) we can easily check that ue € X(QU V).
Now sequence {X,,0}{%, C L®(QU V) is uniformly bounded with respect to norm || - {loos then there
exists a subsequence {w;} C {ux} and a bounded function v such that

Xu;>0 — 7 in weakly * L®(QU V).

We can readily show that

0<y(z) <1 for L™-a.a. z € QUYV, v
y(z) =1 for L"-a.a. mE{{EQUVIuOO(E)>O}.

Thus we get

A

j(uoo) < /qu V14 |Vuol]? + . Q%y dL®

UV

liminf/ V14+{Vyl|? + lim
QuUV {—o00

IA

l— o0

Q%Xy,>0 dL™ = inf 7.
Quv X



A Free Boundary Problem for Minimal Surface Equation
Q.E.D.

THEOREM 2.2 (Maximum principle) Let u be the minimum for (P). Then 0 < u < sup u® in
s
Q.

Proof. We show 0 < z in Q.
(a) Reduction 2.
It is sufficient to prove that for = = min (0, u)

/ |Vu-|=o. (2.5)
Q
In fact if (2.5) holds, then by the definition of the variation measure,
/ wdivgdL® =0  for Yg € C3(Q, R™).
o

Then we have Vu~ = 0 in 2 in the sense of weak derivative, and hence v~ = C in § for some non-positive
constant C. Especially it holds that € = 0, because if C < 0, then using the assumption «® > 0 on S,

J() :L"(Q)+/ |u° - C| aH™"?
S
—_-L"(Q)+/ |u°|dH"'1+/ |C| dH™?
S s
>L"(Q)+/ | dH"" = J(0),
5

which contradicts to the minimality of . Thus v~ = 0 in 2, ard hence we obtain » > 0.
(b) Reduction 2.
Equality (2.5) follows from the next fact:

It / IVu'|>0, then / 14 |Vur|? </\/1+|Vu|2, (2.6)
Q Q Q

because if (2.5) does not hold, using (2.6) we deduce J(u*) < J(u), which is a contradiction.
The fact we have to show is (2.6), but using the approximation argument it is easy to see that

/\/1+|Vu|2 _/ TV P 2/ ¥V - LMQ),
Q Q Q

then instead of (2.6) we prove the following:

If / |[Vu=| >0, then /\/1+|Vu‘|2 > L™ (). (2.7)
Q Q

(c) Proof of (2.7).

Define a positive number § as follows:

§ = min (3/ |Va], 4L"‘(Q)>‘
2 Ja
Then there exists vector valued function g, € Cg(f2, R™) such that

(a‘) ‘go 'oo <1,
{ (2.8)

(b) '/Qu'div g, AL™ > 6.
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Now for an arbitrarily fixed number M > 1, we choose a function g"*! € C3(Q) satisfying the next two

conditions:
M2 -1
(a.) Ignﬂloo < T’
(2.9)
NI
(a) / "t dL > (2 v -1 1) L*(Q).
Q M
(2.8-a) and (2.9-a) imply
gO n+l ? < lgoigo ‘n+l 2 <
AR _—MT'*‘IQ |°°_11
0
and hence using (2.8-b) and (2.9-b),
/ V14 |Vu|?2 = sup / (f"”+u‘div f) daL®
Q f€Cs(@,R™) Ja
1711
> n+l -1 &_ n
> L(g + u~div M) dL
VM2 -1 . )
We now choose 2L (9) s
M= = *3@
then we get
48°L™(Q)
T2 —_ 2N
/;\/1+|Vu | L(Q)216L"(Q)2+62 > 0.
In a similar way, we obtain u < supg ° in Q.
Q.E.D.

3. The first variation formula

THEOREM 3.1 (The first variation formula ) Let v € BV(Q) be the minimum for (P) with
Q% € WH(Q). Assume u € C%(Q), then

1
lim (Q2— (1——)) mvs) dH* ' =0 3.1
ter Jo0(u>6) V1+|Va? mve) (3-1)

for all n € C3(Q, R*), and for some L C (0,supg u) with L' ((0,supg u)\L) = 0 where v; is the unit outer
normal for the boundary of domain Q(u > §) = {z € Q| u(z) > §}. Moreover }irr(l) is uniform for any

n € By(Q2) = {(p € C}(, R™) I lel +| Vol < M in Q}, where M is an arbitrarily fixed positive number.

Proof. We first note that by the assumption u € C%() it holds that u € C*°(Q (v > 0)) and u satisfies

v (ﬁ) =0 inQ(u>0) | (3.2)

in the classical sense. Moreover we can easily obtain « € Wl1(Q).
Now let 7.(z) = = + ¢ n(z) and u.(z) = v o 77} (z). Since u'* = u!* on § for sufficiently small € > 0,

J(u,)z/(\/1+|vu,|2 +Q2Xu.>0) dL"+/|u_u°| dH™1.
Q s
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Calculating the first integration-term of J(u,),

/Q(\/HIW,I'" +Q2xu,>o) aL"
L(Vr+19uz2@) @) + Q) xeso(77@))) d2(2)
L(\/l-}-qu (D)1 +Q%T,.'xu>0> |det Dr,| dL™.

I

]

Using (D7) ' =I—-¢ Dn+O(e ldet D'r,l =14e¢ le 7+ O(e?). (Here and subsequently in this proof
we omit the O(e?)-term.).

/Q<\/1+|Vu€|2 +Q2xu,>o) dr

=/(\/1’+qu—5 Vu~D77|2 +Q20'r¢-Xu>0> (1+e divn) dL”®

7 4 div = __eVu(Vu Dn)
/(\/1+|Vu‘ +edivy /14 |Vuf? iTIveE

+Q%07, - X “>0+5Q 07 + Xy>0 div n) dL™.

Then
[J(’U-:)—J(‘u)] = 6/ divn dL*
Q (v=0)
Vu(Vu- Vu(Vu-Dy)
+ef (dlvn \/1+[Vu|2 ) ar®
Q (x>0) \/1 +{Vul?
+/ ((QQOTe—Q2)+6 (Q o) div 7)) dL®
2 (£>0) ‘
. = Vu(Vu-Dg) .. 2 }
=- div 9+ /1 +[Vuf — —m——=- +div ((Q% - 1)n) ¢ dL", 3.3
/Q(s>o){ 1Vl 1+ [Vul? (( ) ) ( )
We thus get

0= hm [J(uc) - J(u)]

. ————  Vu(Vu.-Dy) .
:./n(oo){dw AR W +div <(Q2 - 1)7’)} dL”.

Here we remember the Sard theorem, then 9Q(u > §) is smooth (n — 1)-dimensional curve for L!-a.a.
§ € (0,supg u). Moreover by the Co-area formula for BV-function ([5],[7],{12]):

supq
/ d&/ IVXQ(“>5)I = / |Vu| < oo,
0 Q Q

H™ 1 (89 (u > §)) < oo for L -a.a. § € (0,supgu).
Thus there exists a set L C (0,supg u) with L ((0, supg w)\L) = 0 such that

88 (u > §) is smooth and has H™ !-finite measure for all § € L.

. . Vu(Vu- Dn) .
lim {dlvn~\/1+|Vu|2 - 4 div ((Q%* - 1)n) } dL* =0,
or Ja>e) V1+|Vul? (( ) )
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where we can easily check that for any 7 € By(Q) = {» € C3(Q, R™) l l¢|+|Ve| < M}. Using the minimal
surface equation (3.2),

0 = lim div (7; V1+|Vur -

ser v (e>8)

Vu (V’u, 17)
1+ |Vul?
Vau (Vu, 7))

=lim <n 14+ |Vu]?2 -~ ——=xr=L C",)2—1'17,1/>dH"‘1
Ser Joa (u>5) | V1+|Vul? ( v

+(@*- 1)n) aL*

1
=1lim (Q2 - (1 - ————)) 7,V dH”—l,
820 Jog (u>9) V14 |Vul? {m )

where we use Green's formula (noting that v, = —=Vu/|Vu|, on 8Q(u > §) for § € L).
Q.E.D.

4. A construction of the Radon measure

We would like to get a local estimate for the perimeter of D which is the subgraph of minimum « for
(P) (See Lemma 5.6). To do that we need the parametric representation for Q?X,>o-term. Thus our aim
of this section is to construct the Radon measure corresponding to Q%X >0, for general BV-function w, and
to obtain the parametric representation of J(w).

Before that we recall some defintions: Borel set E C B**! is called a Caccxoppoh set when

/[VYEI f sup /X;;divg dL*! (4.1)
gec(p,r"*1) /D
lgl<1

is finite for each bounded open set D C R™*!. We call the value defined by (4.1) a perimeter of E in domain
D. Moreover Caccioppoli set E is called a minimal set in some bounded domain D if

/ Vx| < / |VXg| (4.2)
D D
for every Borel set F' with spt(Xg — X¢) C D.

In this and later chapters we assume Q2 € L (Q2). We first show the following Lemma:

LEMMA 4.1 Define Q? € L*(f2 x R') as follows:
Q%(z,1) ‘%.=e_ Q*(z) forVte R.

Then for arbitrarily fixed v € BV(Q x R') and open set D C Q x RY, the following functional is bounded:

g — / v Q2,9 dL™*! (g9 € CLD)). (4.3)
D

Proof. Let g be a function belonging to C{(D) with |gle < 1. Noting that Q2 is constant with respect
to t-variable, Q20,9 = 8,(Q%g), and then

/vQ“)Btg dL™! = /vﬁ,(ng) dL**1, (4.4)
D D

Now let (Q2%g). be the mollified function of Q2g, then

/D v, [(ng),] dL™*!

2 1 ”
anax/ “31[‘“—2 (Q2g);] arL*
D max
< Q?na.x/ [Vv].
D
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Letting ¢ — 0, we get ;
/ v3,(Q2%) dL** < Qluax / V4] < co.
D D

Combining (4.4) and this inequality, we obtain- the conclusion.
Q.E.D.

DEFINITION 4.2 We denote the Radon measure, which is uniquely determined for functional (4.3)
as follows (See [12]):
/ Q%|0v].
D

We are now in a position to construct the Radon measure. Let w € BV(Q2), and W be the subgraph of

W= {(z,t) e x R | w(z)>1}.

It is well known that Xw € BV(Q x R') (See [7]). Then the following Radon measure is well defined:
/ Q%0 Xw] forYDCc Q xR,
D
We remark that by the construction of Radon measure (See[12]) it holds that

/ Qzlatle = sup / QZXW B,g dLn+1 (4.5)
D g€Cy (D) /D
lgl<1

for all open set D C Q x RL. We show that this measure corresponds to the second term of J. We begin
with the smooth case, though that will not be used later.

PROPOSITION 4.3 Let w € G2 BV(R), then
] Q%Xus0 dL* = / Q%0 xwl.
Q QxRL

Proof. The next equality is proved by using the Green'’s formula in the same way as [7):

/ Q*|oiXw| = / Q3lv| dH™,
QxRY awn[QxRL]

where v, is a t-compornent of urit outer normal for 3W. Thus

/ Qzlutl dH™ leu,| dH"
awn[QxRl]

/awn[(z(u>0)xnl]

1
= Q? —— /1 +|Vuw|2 dL®
/Q(w)O) V1+{Vuwl?

/ Q%Xwso dL™.
Q

Q.E.D.

Next the general case is proved by taking an analogous testing function to Lemma 14.6 ([7]).
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THEOREM 4.4 Let w € BV(Q), then
J@xwsodrr = [ Qaxul
Q QxR}

Proof. We first suppose that u is bounded. We define a testing function 7.(t) as follows:

“n. €CH(RL) with

0 in (0, i) U (supw + 1, c0),
e = 2 @

1 in (g,sup w).
Q

Then for each fixed g € C}(N) with |g]oo < 1,

/ Q2|3txw|
Qx RY

v

/m; Q) Xw(= 1) {g(w) m(t)] dedt
Lo, @ "o, om0
[y @60 d2 [ " at
[, @) n(u) do

il

]

Letting ¢ — 0, n.(w(z)) — 1 {for each z € Q, and so

/ Q20,xw]
QxR‘+

v

| e,
Q(w>0)
and hence

/ Q*auxw| > / Q*Xw>o dL™.
QxR Q

On the other hand, for all g € CJ(Q) with |gle < 1,

w(z)
/ Q*Xw 8,9 dL™! = / Q*(z) dz'/ (8:9)(z, t) dt
QxR Q(w>0) 0

L., @@ otz w(e))] iz
/9 Q*Xy>o dL™.

IA

From (4.5) we deduce that
/ Q*loxw| < / Q*Xy>0 dL™.
QxRY Q

Now when w is unbounded, we first apply the above argument to wp = min(w, M), and then letting
M — o0, we obtain the conclusion.

Q.E.D.

Combinig Lemma 14.6 ([7]) and the preceding theorem, we get the parametric representation of J(w),
which is the aim of this section:
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COROLLARY 4.5 Let w € BV(Q), then

/ T Vel + /Q?xwo dL":/ 1Vxw] + / Q19,Xw]-
Q Q QxR QxR

+

5. Local estimate for perimeter of the minimum

Our aim of this section is to obtain a local estimate for measure |VXy|, where U is the subgraph of the
minimum for (P). To do that we need the next theorem:

THEOREM 5.1 Let u be the minimum for (P), and U be the subgraph of v, and let D be a bounded
subdomain of Q x R*. Then

/ V] + / Q%oixs] < / VXg] + / Q%9 e
D DN (QxRY) D DN (QxRL)

for all measurable sets F with spt(Xg — Xy) C D.

We shall show some lemmata to prove this theorem.

LEMMA 5.2 Let F be a measurable set with O x (=00,0) C FF C @ x(—o0,T), where T is a positive
number. We define function wp as follows:

def T
wp(z) = / Xp(z, 1) di forVz € .
0
Then
/Qﬁxw>0 i < / Q2uxel. (5.1)
Q QxRY

Proof. For simplicity we assume T = 1. Define

t
Xr(z,7)
]0 wr(2) ar for (z,t) € Q(wp > 0) x (0,1),
n(e,t) = {21t for (z,1) € Qwp > 0) x [1,2],
0 otherwise in Q x RY.

We have 0 < 7 < 1in Q x R}, and for each z € Q, 7 is absolutely continuous for t-variable, and 8,7 is as
{ollows:
(a) o € Q(wr > 0)
XF(Z'Q, t)

for t € (0,1),

wr(z0) (0,1)

dn(zo,t) = { —1 for t € (1,2),
0 for t € (—00,0) U (2, 00).

(b) otherwise
dym(zo,t) = 0.
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Moreover 9;7n belongs to L*(2 x R ), because

/ oz, )] L+ |0un] 4L+
Qx

Ry

/Q(-'up>0)xR;
/ d:c/ |8in(z, t)| dt
Qwr>0) 0

1 2
/ dz[/mdt+/1dt]
Q(wr>0) o wr(z) L

2L (Qwp >0)) < oo.

Now let g € C3(),]g] < 1, then from the property of 7 stated above we can take g(z)n(z,t) as a testing
function, and therefore

/ Q20|
QxR}'_

v

/Q - Xp(z,1)Q*(z) 0, [g(gr),,(x, t)] dedi

/ Xp(z,1)Q%(z)g(x)dyn(z, t) dzdt
Q(wp>0)x(0,1)

/Q(wp>0) Q*(z)g(a) d= /01 <XE(13 t) - Oyn(z, t)) dt
/Q(w;>0)Q2(z)g(x) dz /: (XF(x,i)z‘ wpl(x)) dt

/Q(wp>0)Q (2)9(z) d= wF(x)/o Xp(z,1)" dt

/ Q%*Xy o0 9 dL™.
Q

i

1]

Thus (5.1) follows on taking the supremum over all such g.
Q.E.D.

Combining Lemma 14.7 ({7]) and the last lemma, we obtain the following:

COROLLARY 5.3 Let F,wp be as defined in Lemma 5.2. Then

/ TFVorl + [ Q%usodl® < [ [Vxel+ [ Qouxel
Q Q QxR! QxRL

LEMMA 5.4 Let u be the minimum for (P), U be the subgraph of u, and let D be a bounded
subdomain contained in Q x R*. Then

[owxls [ @l < [ (vxel+ [ @il
QxR QxRY Qx R! QxR
for all measurable set F with

F>Qx(-00,0),

spt (Xp — Xy) C D.

Proof. Using Corollary 5.3,

/ |vxF|+/ Q2|9 Xxs| > / 1+ |Vwp|? +/Q"‘xw,,>0 dL™.
QxR! QxR Q Q
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Since w¥ = u'" on §,

v

/ 1+ |Vwp|? +/Q"’xw,,>o dL* / 14|V + / Q%*Xy>0 dL™
Q Q Q Q

f V] + / Q2o:x],
Qx Rl QxR}',

where in the last equality we use Corollary 5.5.

Q.E.D.

LEMMA. 5.5 Let u be the minimum for (P), U be the subgraph of u, and let D be a bounded
subdomain contained in Q x R*. Then

/ VXl + / Q%9ixu] < / [VXe] + / Q%9 Xz
QxR Q)(R‘+ Qx Rt QxRL

for all measurable set F with spt(Xp — Xy) C D.

Proof. Suppose the lemma is not true, then there exists measurable set F' with spt(Xg — Xy) C D such

that
/ Iqu|+/ Q%9 Xy| > / IVxFI+/ Q%8:X¢|.
QxR QxR}r Qx R! Qx R}

Now let H = {(=z,t) € R**! |t < 0}, obviously

/ [VXE|
Qx R!

v

/Q o IVXrun|
X

I

/ Q0. / Q%9 xpul.
xR} QxR

/ Vx| + / Q%9ixu] > / IVXron| + / Q%0 xpus].
QxR QxRi Qx R! QxR‘+

But F'U H satisfies F U H D Q X (—00, 0), then the last inequality contradicts to Lemma 5.4.

Therefore

Q.E.D.

Theorem 5.1 is immediately followed by the last lemma.

Now using Theorem 5.1 we can get a local estimate for a perimeter. Before that we recall the follow fact:
Let D be a connected domain in R**! and let E be a minimal set in D in the sense of (5.2). Then it is
well-known that (See[7]):

1
/B [VXxg] < -Q—(n + D wygrp” for VB, C D, » (5.2)

r

where w, is the measure of the unit ball in R*.

We can now state a local estimate for a perimeter:

THEOREM 5.6 Let u be the minimum for (P), and U be the subgraph of u. Then

1
/ [VXy| < -2-( 14 Qmax )(n + 1) wpi10” {or VB,, cc QxR

I3

13
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M C
in BP.

Proof. Let E be a minimal set in B, with
E=U

Then from Theorem 5.1
[ vxol+ | Q@looxul < [ (vxsl+ [ Q*l,xsl,
B, B,N(QxRL) B, B,N (@xRL)

/ |VXU| s ( 1+ Qma.x ) / IVXEI-
B, B,
Q.E.D.

and so

Using (5.2), we obtain the result.
6. Radially symmetric free boundary problem

In this section we treat the free boundary problem in the radially symmetric sitvation (n > 2), and finally
we will construct a solution in 2-dimensional case. We set
Q = Br = Bg(0) C R" : n-dimensional ball,

Q? = Const. > 0,

S = 0Q = 0Bpg,
O=h=Const.>0 in Bg,

that 1s, we consider the following problem:
Js(u) = / 14 |Vu? +/ Q%Xy 5o dL™ +/ [ut* — h| dH®™! — min
Bg Bp 8Bgr

(Ps) {
u € BV(BR)

Define function space BVS(Bg) as follows:
. def
BVS(Br) = {u€ BV(Bg) | u(z)=3(lz])},
then we first assart
PROPOSITION 6.1
inf Js = inf Js.
BV | BVS(BR) S
Proof. We shall only prove
i J. inf .1
Bx}l(lzfzn) BVS(Br) Is: (6-1)
because the reverse inequality is trivial. Let » be a minimum for problem (Ps), then to prove (6.1) it is
sufficient to show that there exists function v € BVS(Bg) such that
Js(’u.) 2 Js(’l}). (62)
u in BR,
u= .
in Byr\Brg.

We define
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Then % is the minimum for the next problem:

To(w) = / T Vol + [ Q%Xuso dL® — min
B2r B2r
w € {( € BV(BQR) [ (= hin BQR\BR}.

Let U be the subgraph of %: U = {(=z,t) € Bor x R' | %(z) > t}. From Corollary 5.5

Ts(a)=/ V5| +/ Q*[0,x;.
B;anl Bz};XR_I*

On the other hand, by the maximum principle it holds that

0<u<h

in BQ R
Therefore

F@= [ vl [ Qe
Bzax[o,h} B2rx(0,h

= VX~ | + f Q%8¢ X |-
/}‘l"x[o,h]| v ‘ Rrx(0,k] I U
Let ((7‘), be a symmetrized set for Ue (See [8]), that is,

~ def
T = {(z)e R ||z <p()},
where

W= (= [ xgtnar)

Since Q? is constant, we can apply [8] and so

3552/ VX . +/ Q%0:X .. |-
( ) R"x[O,h]] w )'l R~ x(0,h] Y )'I
By the method of symmetrization we readily deduce

Bl i

Bar x (h,00) C (U%), C Bar x[0,00),
and so

Vxgol + [ @loxg,]
/R"x[o,h] we), Rrx(0,4] e,

VX~ | + / Q*aX .. |-
/Bmxm w )" BarxRL .
Moreover by the definition of Radon measures

~ 2 ~
S X0+ [,y @050

B}RxR+

[ wxgl+ [ @l
Ba:rxR! B')RXR:_

where we denote U* = (Bzr x R')\(U®),. Combinig (6.3),(6.4) and (6.5),

Ts(@) > /

VX, + / Q0. .
BZRXRX . BQRXR}'_

(6.3)

(6.4)

(6.5)

(6.6)

15
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Now define function %* as follows:

h
() = /0 X, (2,1) dr.

Then %° is radially symmetric, because so is U*, and furthermore by Lemma 14.7 ({7]), @* € BV(Bag). Thus
%* € BVS(B2g). Using Corollary 6.4, we can estimate the right hand side of (6.6),

Ts(@) > / TFVaP + / Q*xz.,, dL* = T5(@).
an an

It holds that %° = h in Bog\B, by the construction of @*, and therefore

Js(u) > Js(u®),

where u® = %°|g,. We establish (6.2) taking u* € BVS(B,) as v.
Q.E.D.

COROLLARY 6.2 If Bvisn(l;a )Jg is attained nuiquely in BVS(Bg), then the function, which attains
R

B‘;?};R)Jg in BV(BR) is also unique.

Proof. If there exists function u belonging to BV(Bg)\ BVS(Bg) such that

= .inf J
Is() BY(Ba) ">

then by [8] we get the following strong inequality:

Js(u) > Js(us),

where u* € BVS(Bp) is constructed as shown in the proof of Proposition 6.1. This is the contradiction.
Q.E.D.

From Proposition 6.1 to construct a solution for (Ps) it is sufficient to do that for the next problem:

Js(u)z/ 1+ |Vuf? +/ QX0 dL"+/ [ut* — h| dH™! = min.
(P.IS) Br Br dBn

u € BVS(Bg).

Since the admissible function space is BVS(Br), by a slight variation of the proof of Proposition 4.4 we can

obtain the same result:
The minimum for (Pg) is uniquely determined as any of the following three type functions:

a)u>0 a.e. in Bp,
(a)
=0 ae inB, (%r € (0, R)),
(b) { >0 ae. in Br\B,, (8:7)

(c)u=0 a.e. In Bg.

Especially in case of (6.7-a) it is trivial that u must be identically A by the form of energy Js. Furthermore

in case of (6.7-b) u is a minimum for the next area minimizing problem in Bg\B,:

/ _TF VP +/ o] dH™! +/ lv— h| dH*! - min.
Br\B, 3B, 3Bg (6.8)

v € BV(BR\EB,).
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Thus we can rewrite (6.7-a) ~ (6.7-¢) as follows:
The minimum for (P§) is uniquely determined as any of the following three type functions:

(a)u=h in Bpg, |
ee={y hham 0P (69)
(c)u=0 in Bp, '

where v is the minmum for (6.8).

We now want to express (6.9-b)-type function by a concrete function. To do that we study the minimum
for (6.8). First the interior regularity of minimal surface (See [7]) tells us that v is a classical solution of the
minimal surface equation in the interior of Bg\B, :

v (—l—-—) =0 in Br\B,.

V1+|Vo)?

From the uniqueness of minimal surface v is radially symmetric function. For simplicity we use the same
notation v to represent 1-dimensional function:

v: 1 — v(x) (] = 7).

Then v satisfies the next ordinary differential equation:

n-1 v'(r) + 2z 1(v'(r) ¥=0 in(p,R).

1"
Y (T) + T T

In particular when n = 2, v can be written by the elementary function:

o(r) = ¢ log('r +1/r2 = cf) +co {e1, 02 : constants).

We next study the relation between h and the boundary regunlarity of v. In [7] it is well-known +'* = A on
OBg, and it is not known v*" = 0 on 0B, generally. However, to study the boundary regularity on 0B, we
assume v(p) = 0. Then we ontain

") log TF 2 —¢?
v(r) = ¢ log —Fr——=
PPt -}

Now we consider function [v(R)] : ¢y +— v(R) (e € [0, p]). It is easy to see that

in (p, R).

[v(R))(c1) >0 for Ye; € [0, p],
and for the range of value, we get
R 2 _ 2
0 < [(R)) < plog TYEZL for¥ey € [0, ) (6.10)
Here the maximum is attained when ¢; = p:

[WR)6) = plog TEVEZL

From these facts it is known that there are following two cases:

R+./R?-p?

(1)0 < h < plog ;
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Minimum v satisfies v = h on dBg and v =0 on 3B,.
(6.11)

R+ \/RT —p? <h:
p

Minimum v satisfies v = h on dBR, but cannot satisfy v = 0 on 8B,.

(2) plog

In the former case (6.11-1) we define function u: as follows:

R+ /R% — p2 PN
—+-———£—, we define u:,‘ as the function satisfying
p

DEFINITION 6.3 When0 < h < plog
(1) =0 in B,,
on 8B,

(2) w { on 9B

(3) div (—Vﬁﬁ—) =0 in Br\B,.

\1+|Vuk|?
Let’s consider the latter case (6.11-2) precisely. The minimum v is radially symmetric, and therefore

W=ce>0 on 9B,.

for some positive constant ¢. But v is regular in the interior of Br\B,, and so from (6.10)

\/ 2_ 2 e
c € [h—plogR+ R-r =

Let u§ be the function satisfying
(Dug=0 in By,
c_Je on 8B,
(2) w5 = {h on 8Bp

. Vug . —_
(3) div [ —==—====) =0 in Br\B,.
\/1+[Vug?
j(uf,(h)) < j(uf,,) forall c € L,

JRZ _ 2
where c(h) = h — plog {i_—_l—__R___p_ Thus for given p, in the latter case (6.11-2) the following function

can minimize Jg in Problem(P§) among (6.9-b)-type functions:

Direct calculation tells us that

: 7 2
DEFINITION 6.4 When h > plog RE—» , we define u’; as the function satisfying

(1) u’; =0 in B,,
2 _ 2
(2) uh = { h — plog —R—t—i——p— on 8B,,
p p '
h on 8Bp

Vuh —_
(3) div (————L—) =0 in Bgr\B,.

1+ [ Vub|?
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In conclusion we need only to comsider uf; defined in Definition 6.3 and Definition 6.4 as (6.9-b)-type
functions. In this way to conmstruct a solution for (P§) it is sufficiently to consider {u’;,O,h}()( <R 88
admissible function space instead of BV.S(Bg).

REMARK 6.5
7,2
(1)uh e C°(Br) when 0 < h < plog _Iii—__R___p_,
£ (6.12)
h 0 R+ +\/R? — p? ’
(2) u, € BV(Br)\C°(Br) when h > plog —

Now we are in a position to state the result, which is obtained by the direct calculation of energy Js in
Problem (P%):

RESULT 6.6 (The solution for (Ps))

Case1 (0 < Q2 <1) When Q? is aconstant with 0 < Q? < 1, the minimum for (Ps) is uniquely determined
as follows:

uz(h) when h < h(Q?)R,
h when h(Q*)R < h,

where
h(Q?) is a solution of the next equation:

1+h24+2(2-Q%log h =0,

p(h) is a larger solution of the next equation:

V2Q? - Q* plog i \/R(QQ_—((;?)Q,;_ Q1)e? = h.

Case 2 (1 < Q? < 2) When Q? is aconstant with 1 < Q% < 2, the minimum for (Ps) is uniquely determined-
as follows:

0o . when h < (Q%-1)R,
u’;(h) when (Q?—1)R < h < A(Q?)R,
h when A(Q?)R < h,

where
h(QQ) is a larger solution of the next equation:

2
1+ ——={logh+(1+Q%) =0
+ o (leha(1+09) =0,
p(h) is a larger solution of the next equation:

lgR—f-\/RQ—p2
P

plo -(1=-Q%p =h.

Case 3 (2 < Q?) When Q? is a constant with Q? > 2, the minimum for (Ps) is uniquely determined as
follows:

{0 when hg—;—QzR,

h when h > %QZR.
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REMARK 6.7 The former case in Case 1 is contained in case (6.12-1), and the second case in
Case 2 is contained in case (6.12-2).
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