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A Harnack Inequality for solutions of
difference elliptic-partial differential equations

MAsAsHI MISAWA (E if, I_E ib,)

Department of Mathematics, Faculty of Science and Technology,
Keio University

Abstract. We establish a Harnack inequality for solutions of difference elliptic-partial differential equa-
tions with bounded and measurable coefficients. To do it, we need to consider local estimates which are
analogue to, but more complicated than those for elliptic and parabolic equations.

1 .Introdyuct ion

In treating the regularity problem for solutions of elliptic and parabolic equations, in particular
of nonlinear ones, we need to consider the corresponding linear equations with only measurable co-
efficients. Holder continuity of bounded weak solutions to equations with bounded and measurable
coefficients was obtained in the paper [8],[9],[10],[11] and [12]. So-called Harnack inequality was
also established for solutions of elliptic and parabolic equations with only measurable coefficients
by J.Moser(refer to [10], [11]).

It is our aim to derive a Harnack inequality uniformly with respect to an approximation
for solutions of difference elliptic-partial differential equations with only bounded and measurable
coefficients. Originally such local estimates for solutions of difference elliptic-partial equations was
studied by N.Kikuchi([4]), who has shown that Holder estimates for bounded weak solutions of
equations of this type hold independently of an approximation number. In order to obtain uniform
estimates with respect to an approximating, we need to distinguish the calculations according to
the relation between the size of a local cube and a mesh h. Namely one has to make an estimation,
analoguely to parabolic equations if a local cube is large in comparison with a mesh h, and otherwise,
to elliptic equations. This treatment seems to be crusial and characteristic in working for difference
elliptic-partial differential equations. We also think that a time-discrete approximation of the
evolution equations will play an essential role in constructing Morse flows for a functional in the
calculus of variations (refer to [1] and [5]) and then such estimates represented in this paper will
be fundamental and useful(see [7]). Let  be a bounded open set in Euclidean space R™,m > 2,
u be a function: @ —» R and Du = (Dyu,Dau,...,Dnu), Dou = duf/dz* (1 < a < m) be the
gradient of u. Let T be a positive number arbitrarily given and set @ = (0,7T) x 2. We use the

usual Lebesgue space L,(f2), Sobolev spaces; W¥(02) = WE(02,R), WF(2) = WE(2,R), V2(Q) =

Le((0,T); L2(2)) 0 L2((0,T); W5 () and V2(Q) = L=((0,T); L*(Q)) N L*((0, T); W3 ().

For a positive integer N, N > 2, we put A = T/N and t, = nh (0 < n < N). Let up
be a function belonging to W1 (). We shall be concerned with a family of linear elliptic partial
differential equations:

Uy — Up—

- L = Do(a®(2)Dpuy). (1< n<N) (1.1)

In the summation convention over repeated indices, the Greek indices run from 1 to m. The coef-
ficients a28(-) (1 € @,8 < m) (1 < n < N) are measurable functions defined in Q satisfying the
relation with positive constants A and p :

plE]? > agf(2)62€? > M¢? for€=(*)e R™,1<n< Nandany z€Q. (1.2)
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We mean a family of weak solutions of (1.1) with an initial datum ug by a family {u,} (1 < n < N)
of functions u, € W3 (§2) which satisfy

- . o
/n EL;—E:lﬁodx + /nagﬂDﬂunDa(pda: =0 for any ¢ = (') € W3 (). (1.3)

For a family {u,}(1 < n < N) satisfying u, € W}(Q), we define a function ux(t,-): t €
[0,T] — un(t,-) € W3(Q) as follows:

ur(0,-) = uo(:),
un(t, ) = un(+) for t,_1 <t<t, (1<n<N).

(1.4)

If {u,}(1 < n < N) is a family of weak solutions of (1.1) with an intial datum wup, then we call
up, defined by (1.4), a weak solution of (1.1). Also a®P(t,-) is defined for ¢ € (0, 7] as follows:

a®P(t,) = a2P(-), for t,_q4 <t<t, (1<n<N). (1.5)

If up, is a weak solution of (1.1), then we deduce from (1.3) and the definitions (1.4) and (1.5) that
up, satisfies the identity

/ )= Z”“ =R oy + / a®A(t,-)Dgun(t, ) Datp(-)dz = 0 (1.6)
Q (73

for any ¢ = (¢') € VI;QI(Q) and all t € (0,T].
Here we recall some standard notations: For a point 2o = (to,z0) € @, we put
By (z) ={z € R™ :|z° —z§| < 7 (1 £ a < m)},
Crr(20)={t € R:|t —to| < 7} X By(z0),
CH(20)={t€eR:tg—1 <t<to} x Br(z0), (1.7)
Cr(zn)={t€R:ty <t<it+ 7} X B(20).

These domains are referred as ”"cubes”. For simplicity we shall use abbreviations:
Cr(2) = Cpra(20), CH(20) = CFa(20), C7 (20) = Ca(20)-

In the above notations, the centre zo and 2y will be abbreviated when no confusion may arise. For
z; = (ti,z;) (¢ = 1,2), we introduce the parabolic metric '

8(21,22) = maz{[t; — t)"/%,]2¢ — 2$|(1 < a < m)} (1.8)

For a measurable set A in R*, we denote the k-dimensional measure of A by |A| and for a measurable
function f, we shall put

= 1
fa= l—;—(l/Af(z)dz. (1.9)

For a positive number ! we denote by [/] the greatest non-negative integer not greater than [ and
by 7; the greatest non-negative integer less than [2/h. The same letter 7 will be used to denote
different constants depending on the same parameters of arguments.
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Now let Ny be a positive integer satisfying

log(1+ %)
0> — 5~
log(1+ %)

and hg be an arbitrarily given positive number sufficiently small. From now on we take N sufficiently

large i.e.,
N > max{Ny,T/ho}.

We also define a cube @7:0 as follows:

Qp, = {z € Q;dist(z,09) > V/Noho} Qn, = (Noho, T) X O,

Now we shall describe our main results:

Theorem 1.1.(Weak Harnack inequality of parabolic version). Let u; be a weak solution
of (1.1). If up, is nonnegative in a cube C} (tny,20) C Q withr? > h, then, foranyp; 0 < p < 1+,
there exists a positive constant vy depending only on A, u and m,p such that,

1
( L / / (uh)dedt)” < yinfu, (1.10)
\D31/J by D} ;

holds where .
D; = (tno_;r, tno—;;r + 'S'ﬁrh) X B%m(wo),

1.
D']:: = (tno — gnrh, tno) X B%ﬁ,—h(mo)

Theorem 1.2 (Weak Harnack inequality of elliptic version). Let u; be a weak solution of

(1.1) satisfying
// (up)?dzdt < 1
Q

with a uniform constant v1. If u, > 0(No < n < N) in Ba,(z9) C Q@ with r? < h, then, for any
p; 0 < p < 25, there exist positive constants yand ;0 < a < 1 depending only on A,u, m and
71, dist(zg,00) such that

1 1/p
p < i o .
<|Bg|/35(mo)(un) dz) - 7[31%)% tr ] (L11)

holds.

Theorem 1.3(Local boundedness of solutions). Let u;, be a weak solution of (1.1) satisfying

//Q(uh)2d:cdt <m
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with a uniform constant v1. Then, for all (f,Z) C Qn, with d = Lmin{|t ~ Noho|?, dist(z,09)} and
any p > 1, there exist positive constants v and o;0 < a < 1 depending only on A, u, v1 and p,d
such that, setting uf = max{tup,0}

1/p

1

sup  uf 57[( — / / (uf)r’dzdt) +r°’] (1.12)
C:‘/Q(tnorxo) ICT | C;'-(t,,o,:to)

holds for any (tn,,0) € C’jﬁ(f,i) and all 0 < r < d/2.

We would like to emphasize that the above theorems hold uniformly with respect to A and
Up .

This paper is arranged in the following: In Section2 we shall derive so-called Caccioppoli
inequality for uf (p # —1). Here we need to use a cut-off function with respect to time-variable ¢,
which was introduced in the paper[4],[7]. Section3 is devoted to an estimate for supuy. It seems
impossible to obtain the boundedness of solution of (1.1) by Moser’s iteration only. In order to
obtain the boundedness of solution of (1.1), we exploit DeGirgi’s iterative technique. In Section4
we estimate loguy, which is most important and difficult estimate in all parts. In Section5 we shall
prove Theoreml.1, 1.2 and 1.3. Here we also obtain Holder estimates for weak solutions of (1.1).

Acknowlegement. The authour would like to thank Professor N.Kikuchi for drawing my at-
tention to this problem and for his encouragement.

2.Estimates for u?

Lemma2.1.(Caccioppoli type inequality analogue to Moser’s ones). Let u;, be a weak

solution of (1.1) and us take C;  (tn,,%0), CJ (tny,%0) C @ arbitrarily. Then there exists a

positive constant y depending only on Ap and m such that, if up is nonnegative in C} (tn,,%o)
and Un,_[r/pj-1 = 0 in By(2o), then

Sup / (un + €)P(t,-)dz + //
tno_T(l"62)$tstno Bp(l—dl)(z‘)) C+ )(t"’O ,1?0)

p(l—0j),r(1—02

<y ((Uuﬂ)”2 + 027')"1> //C+ ( )(Uh + €)Pdzdt
P, T tuo X0
(2.1)

holds for any p < 0, all 01,02 € (0,1) and any € > 0. If u, is nonnegative in C,  (tn,,20) and
Uny, > 0 in B,(z0o),

Sup / (up + €)P(t,-)dz + //
tno Ststno+7(1_02) Bp(l—a'l)(xo) C;&l—al),r(l—ﬂg)(t"o )-'L'O)

S7H:1PT ((crlp)'2 + (027')_1) //C;,(t,.o,zo)(Uh + &)Pdzdt

holds for any p;0 < p < 1, all 01,02 € (0,1) and any € > 0.

2
D(up, + €)P/?| dzdt

2
D(up, + €)??| dzdt

(2.2)

REMARK. For p =0, the above estimates are trivial.

ProofIn the arguments we omit writing a center point or vertex of cubes; B,, C;:T =
C(tno, o) for simplicity.
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We demonstrate only the proof of (2.1). Let n € C§°(B,(z0)) be a cut-off function such that
0 <7 <1,n7=1o0n Byi—q)(20) and |Dy| < 2(01p)!. Also we take some appropriate cut-off
function o(t) defined on [tpo—r,%n,), Of Which the definition is given later. We remark that, since
up(t,-) is nonnegative in CF (tny,%0), (un(t, ) + €)?~1n?(-)o(t) is admissible for p < 0,¢ > 0 as a
test function in the identity (1.6) in C'} (tn,,%0). Taking a function (ux(t,-) + €)P~1n?(-)o(t) for
€ > 0 as a test-function in the identify (1.6) and integrating the resultant inequality with respect
to time variable t in (t,, — 7,%n,], we have

//C+ un(t,-) uh(t h, ')(uh(t, )+ )Pl (o (t)dadt

+ff oy 6 Daun(t,) e [(uh(t, )+ e)P-lvf(-)] o(t)dedt = 0.

Namely

/C+ un(t,”) + € — (:h(t —h)+ € (un(t, ") + €)P~ 102 (o (t)dzdt

t / / C_’tra"” (,-)Dp(un(t, ") + €)Do [(uh(t, )+ s)P—1n2(-)] o(t)dzdt = 0.

From now on let’s put v(t,-) := ux(t,-) + ¢, so that the above inequality becomes

// ct. ) sk )(”(t )P~ (Vo(t)dzdt

+//C:fa°ﬁ(t,.)Dﬂv(t,.)Da [(v(t,-))P-l,f(,)] o(t)dzdi = 0. (2:3)

Now we make estimates of each term in (2.3). To do it, we shall distinguish our proof into two
cases:

Case 1,097 > 3h and Case 2,027 < 3h
Firstly we consider Casel. Then we take o(t) as follows (see [4] or [7]):

o(t)y=0, for t,—3 <t<t,(1<n<N)

1, for ng—[(1—-o03)r/h]<n < ng,
On = [T/;‘]:’;"_'T([lffisl;}r/h] for ng—[r/h]+1<n<ng—[(1-02)r/h] (2.4)
0, for n < mny-[r/h]

(Quotient term of (2.3))Using Young’s inequality and noting that p < 1, we have

(v(t,") = v(t = b, ))(0(t, )P < (v7(,+) = vP(t = k) /p,

so that

v(t,") —h,-) p—1 vP(t,) —vP(t - h,-)
/ / o (0(t, )71 (Yo (t)ddt < / / " . (Yo (t)dzdt.
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Furthermore, noting the definition of u and o, it follows that

(Quotient term of (2.3))

no

1 n=no—~[(1—02)7/h]
Z / (vﬁ - vﬁ_1>n2da: + - Z / (vﬁ - vﬁ_l)ann:)d:c
n=no~[(1-02)7/h]+17 Be P oo lr/n+2 Y Be

1
P

. . n=no—[(1=03)7 /4]
== v? pPdz — —/ P n’dx + - / (vﬁ —vh_ )annzda:.
> / g, e 4= = | Pre—ta—onyen ? nzno_z[;/h] w2 J B !

(2.5)
Since pny—[r/nj+1 = 0, we have, for the third term of the right hand in (2.5),

(The third term of (2.5))
1 n=no‘-[(1—uz)1'/h]

n=no—[(1—02)7/h}
<- Z / (v,’:an - vﬁ_lan_l)n2da: - - Z (on — an_l)/ v?_ nldzx
4 n=no—[r/h]+2 B, n=ngo—[7/h}+2 B,

1 n=no—[(1—02)7/h]

= / vP ntde — - Z (a -0 _1)/ v?_ ndz.
no—[(1-02)7/H] n = On n—1
PJ B, ° 27 p n=no—[r/h]+2 B,

Here noting the estimations: o, — 0,—1 < 3h/027, we obtain the following calculations:
1

3 n=no—[(1-02)7/h]-1
ol p 2 _Z -1 P2
p/BPvnO_[(l"“72)T/h]n dz p(UzT) th:no—[1‘/h]+l /prnn dz
1

<=[ 0P dz — §(a )71 o vPntdzdt
= p) s, no—[(1—02)7/B)" P 2 —+J B, N ’

tng

(2.6)

Substituting (2.6) into (2.5) gives that

(Quotient term of (2.3)) > l/ vP nlde — §(027')'1/‘/ vPn?dzdt. (2.7)
pJ B, p cr.

Next we shall deal with the term including spatial derivatives.
(the estimation for spatial derivative’s term of (2.3)) Noting that p < 1 and using Young’s
inequality, we have

(Spatial derivative’s term of (2.3))

=4(P;- 1)// aaﬂngp/2Da’lJp/2'l720d$dt + é// aaﬁD'va/?vp/?nDano.dzdt
P ct, pJJ cf.

D=1 //
p ct,

2
4
Podzdt + ;// a“ﬁDﬁv”ﬂv”ﬂnDanadmdt
ct,
< (4(1) -1

2¢ 2u e
A—— )// DvP/?|? 2ad:1:dt———// v2 | Dn|*odzdt.
p2 |p|l‘l’ Cp,,-l | n |P|5 C;,’:,.( ) l 77'

Here,taking ¢ := —&‘%;;]u(> 0), we obtain

DvP/?

(Spatial derivative’s term of (2.3))

A2(p — 1) / / 2 2u? (2.8)
P pi —A DvP/?| p*odzdt + —————// vP| D\ odzdt.
- P ct, 7 AMp-1) ck, D1l
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Combining (2.8) with (2.7) gives that

1 3
= P plde — 2 -1 P2
p/prnon dz p(O’gT) //C;’v n°dzdt

2(p — 1)) / 24 / )
= — v?|Dnl“odzdt > 0.
p? ct, Ap—-1)JJ ¢z, |Dn|

From this inequality, it follows that

2
DvP?| podzdt —

1/ P 2 3 —1// 2 2p? // 2
- vh n°dr > —(o2T vPpfdedt + —— vP|Dn|°odzdt, 2.9
p B, oM p( 2 ) C::r n ,\(p_ 1) CI,_ l 77| ( )
- 2
g_)\(_p_z_l_)// |DvP 2 pPodadt > §(027)‘1// vPn’dzdt + 2 // v?|Dn|?odzdt.
P ct, p ct. Ap-1)JJ cp, (2.10)

Dividing the both sides of (2.9) and(2.10) by %(< 0) and 2_/\5::2_—11(< 0) respectively, we obtain

[ totde <3 [f andedH( 5/, wptedsi (2.11)
B, s -

3P(027)
DvP/?|2n?odzdt < / / v” 2da:dt+( ) / / v?| Dn|odzdt.
//C;,' " 2Mp-1) Alp-1) cr, | Y (2.12)

Noting that p— 1 < p < 0, (2.11)and (2.12) become, respectively

2
/ vE n’dz < max (3, SL) ((agr)"1 + (alp)'2)// vPdzdt, (2.13)
B A ct,

I

2
// | DvP/?|*n?odzdt < max(—:i, 4—”~) ((ag‘r)"l + (alp)""’)// vPdzdt. (2.14)
CJ_, 2A A C:.r

Estimating similarly as (2.13), we obtain, for n;ne — [(1 — 02)7/h] < n < ng

2
/ vPyide < ma.x(3, -8—&—) ((027')“1 + (alp)"z) // vPdzdt, (2.15)
B, A ct, . .
Thus we have

2
Sup / vP(t,)n?(-)dz < max(3, -sﬂ—) ((ag-r)_1 + (alp)_z)// vPdzdt. (2.16)
tng—(1-02)7<t<tn,/ B, A ct,

Next, we shall consider the Case 2. Then we put o(t) as ¢ = 1 on [tp, — T,%p,], so that we have
(2.3) with o = 1. Let’s remark that since uj is nonnegative in C;,'”T(tno,wo) and up,_[;/h)-1 2> 0in
B,(z0), v = up + € also is nonnegative in Cf,(tn,,20) and vpy—[r/hj-1 = Uno—[r/h-1 + € > 0 in
B,(zo). Thus

//C+ ’U(t h )(D(t ))P ln2( )G(t)dzdt

=//CL vP(t,) — vp—l’ft, Jo(t — h, ')n2(‘)dxdt < %//c;,vp(t")nz(')dz’
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so that we obtain from (2.3)
1 Ap-1)
- Pt (. N a,B p/2 p/2,,2
h//C;‘,,v (t,)n*(-)dzdt + 7 //sza Dgv?/* Dov? *n*dadt
4
+—// a“’ﬁDpvz’/zv’”ﬂnDandxdt > 0.
pJJ cf,

Noticing that p < 1 and Young’s inequality, we have

%//c;j,vp(t’ In?(-)dzdt
Pz ey )

{2=1X (5 0) in (2.17) and noting that o, < 3h give that

DvP/?

rf"d:cdt-i-lpl / / (@B ID Pz 2 0

(2.17)

Putting E=— 'p'ﬂ'

021_// 'v”(t It ()dzdt + ———> 21\(p 1 //C+

Namely we have

2/\(17—1)// n? // /T // 2
—_— D drdt < — vP(t dzdt + vP|Dn|*dzdt.
- ot o, ()’ (-) xi-0/) o, | Dl

Dividing the both side of this inequality by M;{;El( > 0), we have

/ / ot n*dedt < maX(;,\ 4,\2 ) ((auo)‘2 + (ozr)“‘) / / Czrv”(t, Jdzdt.  (2.19)

From now on we shall estimate the quantity: [, o )v”(t, Ydz for tpy — (1 — 02)7 <t < tp,. To
p(1—0q
do this, it is sufficient to estimate the quantity: [, a iv,’;(-)da: for ng — [(1 — 02)7/h] < n < ng.
p(l—0y
Since tno_[(1 op)r/aj41 S tn — h < tn <y, for ng — [(1 — 02)7/h] + 1 < n < ng, so that

/ vhdz = h/h/

Bo1-0)

"3(0’27’) / /
to—h Bp(l

For ng — [(1 — 02)7/h] = n, we must consider two cases; If ng — [(1 — o2)7/h] > ng — [r/A] i.e.
no — [(1—a2)7/h] 2 no — [T/h] + 1, then t,,_(1-00)r/h] = tno—[r/n]> SO that

/ By(1-03)

53(02r)"1h/

Dvp/2

ndzdt+ ——— 2" // v?| Dyl dzdt > 0
AM1-p)JJ ¢, 1 -
(2.18)

P! 2

Dv“’/2

vhdr < 3(021')'1h/ vhdx

0(1—01)

/ vPdzdt

9(1—0‘1)

p(l—o'l)

vPdzdt < 3(o27)” /

~0oy1) tng—r

vﬁo—[(l—az)f/hldx = h/h/ ( 1]50‘[(1—5’2*)7'/'1]‘13:

Bp1-o3)

p -1 tang—1—eo2)r/h] »
Vno—((1-a2)r/m 9% = 3(027) / / N vPdzdt

By1-02) tag—I(1~o2)7/h]~1 p(1—02)

<3(o27)” / / vPdzdt
tng— B,1-

o)
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If no — [(1 — 02)7/h] = no — [7/h], from that

tno—[‘r/h] - (tno - T) = tno—[(l—az)‘r/h.] - (tno - T)
=tp, — [(L = 02)T/Blh —tn, + 7= =[(1 — 02)7/hlh + T
>—(1-02)T+ T =02,

we have the following calculations:

—[(1— —(tn — T)
p dr = no [(1 02)7'/’1] ( no vp dz
/ Bpimey no“[(l—oz)T/h] 'no [(1=o2)/h] — (tno - ) Bo(1—oy) no—[(1—02)7/h]
<( ) /"o—[(l—dz)r/h]/ d ( ) /"o-[f/h]/ Pdrds
a7 o T = (027 vPdzx
tag—T By1-43) "0 (- 2)T/h] tng=T ﬁ(l o2)

tn
S(agr)"I/ ° /B vPdzdt
ty—T -

r(1-02)

As a result we have, for n; ng — [(1—-02)7/h]<n<n

/ vhdz < 3(027)'1// vPdzdt. (2.20)
Bp(1-0y) o

Lemma2.2. Let uy be a weak solution of (1.1). If up, > 0 in C,,O r0(tnos o) C Q and Upy_[ro/nj-1 =
0 in B,,(zo), then, for p < 0, there exists a positive constant 7y depending only on A,pu,m and p
such that,

' 1
—— uP(t,z)dtdz ) < (24 pgin) P G+E) inf un(t, )
(IC;;),Toi C:O,,,o(t,,o,z‘o) h 0 (t’z)GC:olﬁ,folﬁ(t"O ,Z0)
(2.39)

Ifup > 0in Cy; , (tnis,2'0) C Q and un, > 0 in Byy(z0), then, for any p,¢;0 < ¢ < p < 14 2/m,
there exists a positive constant vy depending only on A,p,m and p such that,

(ezmml]

1
ub(t, z)dtdw)

LN :
7(1 ) ( = // uZ(t,a:)dtdm)
- 1Ch0,701 IS €3, (g o) (2.40)

Proof.The proof is proceeded similarly as in [9]. Here we remark only the following. Making
a changing of variables:

90/2 'ro/2(t"'o 'L 0)

{ T — To = poy, (2.41)

t—1p, = P(2)3
and putting
n(s,y) = un(tn, + P3s, To + poy),

o
we find that u satisfies the identity: For any s; —p37o < s < 0 and for all ¢ = (¢') € W1 (B1)

~ N _ 2 .
/ un(s,-) uh(i h/pg )cpdy+/ E“ﬂ(s,-)Dﬁﬁh(s,-)Dalpdy =0. (2.42)
By h//’o B;
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Thus, from noticing that %_, /51 > 0 in By and calculating similarly as (2.1) it follows that

swp | (an+ ety + [[ |D(an + ) Pdyds
OZtZ’r(l—az) B‘;(l_,l)(O) 05(1_61),,(1_”2) 0 (2.43)

<1(@pr? +@n) [f FPRCEL T

holdsfor0< p<1,0<7< 8 =p[,'2'ro, 01,02 € (0.1), all p < 0 and for any € > 0.

Lemma2.3. Let up be a weak solution of (1.1). For any p;1 < p < m + 2, then there exists a
constant v depending only on A, p,m and p such that, setting v, = max {xu,0},

Sup / WP (t, )z + / /
tng=7(1=02)<t<tng) Bpy(1-0;)(%0) Co

9(1—01),7(1—02)(t"° o)

Y4 p -2 -1 p
< 1+ ){(0 + (o921 )// vdadt 2.44
7p_1( T (@t rem)[f (2.44)

+(o7)"! / / lunl?(t — b, -)dmdt}.
C:,r(tno »1'0)

holds for any C} (tn,,20) C Qhy» all 01,07 € (0,1).

Proof.Let 7 € C§°(B,(x0)) satisfying 7 = 1 on B,1_0,)(20), |D7n| < 2/01p and o(-) be some
function defined on [t,, — 7,15,], of which the definition is given later. At first we consider a case

o
of 1 < p < 2. Then we remark that (uF(t,-) +e)P~1n?(-)a(t), € > 0 is belonging to Wy (B,) for
t € [tno — Tytno)- Testing the identity (1.6) by a function (u(t,-) + £)P~19?(-)o(t), and integrating
the resultant equality with respect to time variable ¢ in (t,, — 7,%n,], we have

/ / + tun(t,") - :"h(t “R ) (1, ) + e (ot dade
C r(tag,zo)

+ / / c;c,(t,.o,xo)aaﬁ(t’ -)Dg(£un(t,+))Da [(u,f(t, Y+ )P 12 ()| o(t)dzdt = 0.

2

DvP?| dodt

(2.45)

Now we put

-

and omit a center or vertex of a cube for simplicity. We shall estimate each term of (2.45) in the
following manner:

(Quotient term of (2.45))
=/ / mlt) - 2: =) (2, + €PN (Yo (t)dadt
¢t .n{v>0}
tun(t,-) — tun(t —h,-) i — .
+//C§',,n{vgo} h (v(t,:) + )P~ p*()o(t)dzdt

:i:'ll,h(t, ) +e- (:}Iuh(t - h, ) + 6) P=1.2( g T
2.//c+,n{u>o} h (ot )+ &) (Jolt)dads

tup(t,)) — un(t —h,?), 1 5 N
+//c;,n{v50} i ()P n7()a(t)dzdt.

(2.46)
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Here we use the fact that, in a set {£u;, > 0}
tup(t,-) — (unl(t,-)) 2 v(t,-) —v(t = h,-) =v(t,) + e — (v(t = h,-) +¢).
For the spatial derivative term, we have
(Spatial derivative term of (2.45))

=(p-1) / / o a®PDg(v(t,-) + )P *(v(t,-) + €)P 2 Do (v(t, ) + €)P*n* o dzdt

+2// aaﬁDﬁ(’U(t, -) + g)p/z(v(t’ .) + E)p—lnDandd{l)dt (2'47)
ct n{v>0}

+2/] a®P Dp(v(t,-))P/2eP 1 Donodadt.
ct.n{v<0}
Combining the above estimates (2.46) and (2.47) gives that

// o >0}v(t,-) +ée—- (Z(t —h, )+ 6)(v(t’ )4 ¢€)P 1 2( Yo (t)dadt

4(,,_1)// a® Dp(o(t,") + £)"/* Da(u(t, ) + e Prf ozt

+2// a""Dp(v(t, Y+ €)' (v(t,-) + )P 'nDanodzdt (2.48)
ct . n{v>0}
+Ep—1// :i:’ll,h(t, ) — :}:uh(t — h’ ) nz(-)d(t)d:tdt

CF . n{v<0} h

+25”'1// a*? Dg(v(t,-))?/*nDanodzdt < 0.
¥ .n{v<0}
Adding (2.48) by
// v(t, ) +¢e—- ('v(t —h, ) + E)(v(t, ) + E)p-—l nz(-)o(t)dzdt
¥ . n{v<o} h

=// Msp—lnza(t)dxdt <0
ct.nfucoy b

and noting that

/_/ aaﬁDﬁ(v(t7 ) + 6)p/2 (v(t’ ) + €)p-177Da770d$dt

ct.n{v>0} (2.49)

= / / P Dy(u(t, )+ €P2(o(t, ) + )P~ nDanodadt,
Cor

we obtain

J],, B Gt e )y epmrap oo

+22 ] o A Da( ) + P Dau(t,) + )l odsd
p,T noyzO

+é/ / a*? Dg(v(t,-) + €)*/*(v(t, ") + €)?/*nDanodzdt
p P r(tﬂovzo)

p- o(t,) = v(t=hy) 5 o 1
v 1//C:rn{v<0}[ h 7 (-)o(t) + 2a*"Dp(v(t,-))n Do ]d dt < 0.
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If o9 > 3h, then we are able to proceed the the calculations similarly as a case of p < 0 in the proof
of Lemma2.1. Now we take o(t) as a cut-off function defined in (2.4) in the proof of Lemma2.1, so
that we conclude that, for n;ng — [(1 — 02)7/h] < n < ng

/B., (o + ) mde + ep_l//c;‘,rn{u@} [”(t’ = Z(t _ .)’K‘)U (1)

2
+2a°‘ﬁDﬁv(t,-)nDana] dzdt < max(3, 8%) ((027')_1 + (Ulp)_2> // . (v + e)Pdzdt
ct,

(2.50)

and that
// . |D(v + &)?/ 22t odzdt
ct,

-1 v t, . h, 2 o
+eP // n{y@}[ () - h( ) n°(-)o(t) + 2a ﬂDﬁ(v(t ))nDana] dzdt (2.51)

<max (3, 8—‘;1) ((027)_1 + (alp)-z) / / (e

If o7 < 3h, let’s take o = 1 on [t,, — T,1p,], so that we have the inequality which is obtained
from putting o = 1 in (2.45). For the quotient term, using Young’s inequality and noting that
(027)7! < 3h71, we have

// ( )i"h(""-)ﬂ:—(iu(t-”")Jr Dt (2,) + )10 ( Yot

h

. P _ — . p
L] (ot )+ e = [ ult =) el?
p pr(tnoyzo) h

> - §(azr)'1 / / lo(t — k) + €|Pp?(-)dzdt.
p C:,r(tno 71'0)

Making calculations similarly as (2.51), we have

// |D(v + €)?/**n*odzdt
C;,t.,.(t,.o.‘b‘o)

P’ p—1 v(t,)) —v(t—h,-) , o a®B v oldz
+2/\(P— 1)6 .//c+ n{:i:uh<0}|: h m°(Jo(t) + 20" Dp(v(t, -))nDen ]d dt

317(027') / / 2
v P|Dy)*dzdt — h,- P .
ey | NG L R ey | BN G R Ly
(2.52)
Also we remark that the calculation of getting (2.20) is justified in this case since v+¢ = ui n+e>0.
Finally tending ¢ to 0 in (2.50),(2.51) and (2.52) and noting Fatou’s lemma, we obtain (2.44)
forl<p<a.
Next we deal with a case of p > 2. Then we remark that [(uf(t, )M )P~ 1n?(Ya(t), M > 0 is
admissible as a test function in the identity(1.1) for any t € [tn, — T,tn,], where v(™) is defined as
follows:

'U(M)z{ M, 'UZM
v, v< M,
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7n(-) is the same function as in a case of 1 < p < 2 and o(t) is some function on [t,, — 7,,] given
later. Taking a function ¢ = [(uf(t.)))M)]P=1 52(.)o(t) in the identity (1.6) and integrating the
resultant inequality with respect to ¢ in (¢, — 7,1,,), we have

//C+ fun(t,) - :uh(t - h,-)[(uf(t,.))(M)]p—1n2(.)o,(t)dzdt

+f] ., @t DsCue D (56N P O fotoydeat =0

(2.53)

Similarly as in a case of 1 < p < 2, let’s put v = uf. We shall estimate each term of (2.53). Firstly
we consider Casel : g7 > 3h. Then we put o(t) the same function as in (2.4). Noting the definition

of o, we have
(Quotient term of (2.53))

:// . tu(t,:) - ’:ltu(t - h")[v(M)(t, P 1 2( Yo(t)dzdt
Cor

7 tu, —f£u,
=h ¢ / = = nelr(M))p-1 2 Yondz

n=no—{7/h]+2

=y _ Myp-1,2,.
__Zn:no—[rlh]+2/B0(zo)(iun :tun—l)[v ] n ()Und:c

Here, noting that
(Fun F un-)[(wd)MP < (0 — ui_)(va) M
=0[(va) P — v [(00-1) P = 0 ([(00) PP = [(00-0) 0P
<Val ()M = v [(0n-) MO = (00 )M ([(0) M = [(00-) P,
we obtain

(Quotient term of (2.53))

S\ W [(0) P (0, (M) p—l) ntd
“Zn=no—[7/h]+2/3p(xo) (” [(vn)"™] Vn=1[(va—-1)"PP77 Joun da (254)
A (M) (M)jp-1 _ (M)p-1y,. 2

S oo o @r P = (s P de

We deal with the first term of (2.54).
(First term of (2.54))

=\ (M)yp=1 _ (M)yp—1) 2

2"2"0“[(1—0’2)7/h]+1/39 (U'n(vn ) v -—1( ) >7] d:I:
n=no~[(1—02)7/h] _ M

+3 IR GGt e P

n=no~[7/h]+2

- M - 2.55
:/ no (v )" dz - / Dno=1(1-02)r/M (Vg 1 nyr )" (259
o(Z0) By(xo)

=no~[(1-0c2)7/h
+Zn no—[(1—02)7/h] (Un(vSLM))p—-lo_n —vn—l(szA_l%)p_lan—l)nzdx

n=no~[7r/h]+2 B,
n=ng~[(1—02)7/h]

- — (M) p-1 2d
Zn:ﬂo—[’l‘/h]-{-2 (Gn Un—l)/prn_l(v ) T
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Noting the definition of o, and that o, — 0,—1 < 3h/o7, we obtain, from (2.55)
(First term of (2.54))

(M)yp=1,27 —1p N =re=l(i=o2)T/h) (M)yp-1p2
Z\/ p(z‘o)vn‘)(’vno ) g de 3(02T) th:no--[T/hH-'2 B, n_l(v ) & (2.56)

tno
>[ oo ttde =3 [T [ o= b 0P by P dad.
B,(x0) tag—7J B,
Next we make a estimate for the second term of (2.54). By Young’s inequality, we have

(Second term of (2.54)) > ——En_no [T/th/B ( )((ng))P (v(M))p> onn’de
o\ Zo

— 1o
= - (M)\p_(,(M)yp | 12
B p "=no-[(1—az)7/h]+1/BD ((v" ) =(vn21) )77 dz

o IgreEneslmen)r/A M)yp _ (Mo 2
- P n=no—[7/h]+2 Bp((v" ) —(vn—l) TnT) dz.

Here, noting the identity:
(an - an—l)bn = anby, —an_1by—1 — an—l(bn - bn—-l)y

we have calculations:

(Second term of (2.54))

P—l/ (M)\p,2 1’—1/ (M) P2
= — — v, ndr — —— Uy (10 n°dz
P RN 2 ) yany Uro—t1=any /)

p—1 n=no—[(1—02)7/h} M
T p Len=no—[r/h+2 ((”gM))pUn - (vi_b”on-l)n"’dr
P — 1 =n=no—{(1-02)7/k]

=l (0n = uct) / (o™))Pride.

P n=no—[7/h]+2
Moreover we recall that o,,,_[;/pj+1 = 0 and that o, — 01 < 3(o27)71, so that we have

(Second term of (2.54))

_ =no—-[(1— h
2 - —/ (VD) de — 2—13(02T)'lzn Tl an)r/ ]h/ (w$M))Pn*da
p(xo) p Bp

n=no—|[r/h]+2 (2.57)
_ _ tnn—7T
>-2= [ e - s [T [ @00, st
p B,(zo) . trng B,
Substituting (2.56) and (2.57) into (2.54) gives that
(Quotient term of (2.53))
2/ vno(ng))p “In?dz — 3(o97)” / / vn_l(vg\_q)p—lnmxdt
o(z0) tng—7J B, (258)

P2l (Myerds - 3(0pr)? / [ @Myprided
¥4 By(zo) tng—74 B,
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From now on we treat the spatial derivatives term:

(Spatial derivatives term of (2.53))

=0-1) [, a6, )DaCku(t, )OI u(t, DOOPDor™ 1,y (o) dsdt

+2//c;§,aaﬁ(t’ )Dgo(t, .)(v(M))p—l(t, nDan(-)o(t)dzdt

(2.59)
=4(p—§1)// a®P(t,-)Dp(v™))% Do (v M) rP odadt
p ct,
+2// N a®?(t,-)Dpv(vM)P~1p D, nodzdt.
ct,
Combining (2.58) with (2.59), we have
28
[, om0 s 3oy [ [ ot )@ 01, e
B,,(:z:o) t”O—T Bp
- - tn
_p_{/ (v,(lﬁ”))”fda:— _3(1”_1)(02,-)—1/ ° / (oMY (8, YnPdzdt
P B,(z0) p tng—7J B, (2.60)

4p-1
+ - (Pp2 )//C+ aaﬁ(t,')Dﬁ(’U(M))p/zDa(v(M))”ﬂnz(-)a(t)dzdt
+2 a®? t,-)Dgv (M) p"lnDan o (t)dzdt < 0
ct #

Here we remark that the above estimates getting (2.60) is valid if changing ng by n;ng — [(a-
02)7/h] < n < ng, so that we have, for ¢; t,, — (1 - 02)T <t <ty

[, o0 de 4 222D ([ asop @0y, 00 prspodsa
B, (zo p cr, .

tn
+2// . a®P(t, )\ Dpo(vMYP~19D nodzdt < 3(021')“1/ ’ / v(vMP-1p2 g dy
Cor tag—7J B,

— — tn
+L1/ (v(M))”(t,-)172dw + 3(p 1)(027)'1/ ° / (v(M))”(t,-)nz(-)dxdt
p B, (o) p tao—7J B,

Case2. Now we shall deal with a case of g7 < 3h. Let’s put o(t) as 0 = 1 on [tn, — 7, %p,], so that
we obtain (2.45) with setting o = 1. For the quotient term we make estimate as follows:

h

/] P, — (Rt = b PPIPI( )

(Quotient term) Z//C+ ’U(M)(t, ) — (Fup)(t — h, -)[v(M)]P—l(t, -)n2(-)d$dt

(-)dzdt.

Then Young’s inequality yields that

(Quotient term)

oMIP (.Y — |lus|P(t — b - .
Zi%’-//cpf,[ i hI SdGaLE )nz(')dz‘dt > —pih//czrluhlp(t— h,.),f(.)dzdt. (2.61)




/1

For the spatial derivatives term we have (2.59). We also recall that (2.20) holds for »(™) in this
case. Thus we deduce from (2.20), (2.59) and (2.61) that, for t;¢,, — 7(1 — 02) <t < tp,

/ B (v(M’)”(t In*dz — 3(o27)” / / (v M)Pdzdt
4(P 1)// “ﬁ(t,-)D,@(v(M))ﬂDa(v(M))znz(-)a(t)dmdt

+2//C+raaﬂ(t, )Dpv(vMP=1nD (Yo (t)dzdt — %(027—)—1//0+ lun|P(t — by )p?()dzdt < 0

(2.62)
As a result we obtain that (2.60), (2.62) is valid in a case of o27 > 3h and 027 < 3h respectively.
Now, noticing that, by Young’s inequality

—u// Dol stz + ,u// (v(M))P~1|Dn| dodt,

(2.63)
we are able to pass M to the limit in (2.60) and (2.62) if p = 2. From it, we obtain that, for any
titng — (L—02)T <t <ty '

I// a®? Dgo(vMYP~1y D, ndzdt| <

l/ v (t,)pPdz + é// |Dv|*n?(-)o(t)dzdt
2 B, 2 c:"‘r

2
<3(oyr)! PP dedt + > (03r) ! lunl?(t = b, )n(-)dzdt + 2= o?| Dy dadt.
ct. P ct, A ct,

(2.64)
Then Sobolev’s type inequality(see [9],p76) implies that

2(14 1)
loc

veL

Notmg (2.63) again, we find it justified to pass M to the limit in (2.60) and (2.62) for p;2 < p <
2(1+ ) respectively. Repeating the above procedure inductively(see the proof of Lemma2.2), we
deduce that, for any #;tn, — (1 —02)7 <t <tp, and allp; 2<p<m+2

l/ vP(t, )pidz — 3(02'r)‘1// vPntdedt + 4—(‘?—;—2// a"‘ﬁ(t,-)Dﬁv%Dav%nzadxdt
pJ B, ct. p ct.
+2// a®P(t,)DgvvP 19D, nodrdt — §(027')'1// lun|P(t = h, )n(-)dzdt < 0.

ct, p cr,

(2.65)
As a result we conclude from (2.65) that, for any p; 2<p<m+2

1—1]/ vP(t,)n’dz + .2__’\__(1’2;1_)// leglzﬂz(-)U(t)d;vdt

P2 P 2
021'/_/c+v da:dt+/\(p 1)// vP| D]

for any CF,(tn,,%0) C ’Q:)

., lunl?(t = h,)n()dadt
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3.Bounds for weak solutions.

Now we describe the boundedness of weak solutions of (1.1). Firstly we shall note Caccioppoli
inequality to DeGiorgie’s ones, but omit the proof(refer to [4]).

Lemma3.1.(Caccioppoli type inequality analogue to DeGiorgie’s ones). Let uy be a weak
solution of (1.1). Then, there exists a positive constant vy independent of h and u, such that, setting
vy = Lup,

2
Sup / (vn — k)*P(2,)dz + // D(vy — k)t 3| dedt
tno"'r(l“a2)st$tvso .Bp(l—al)(zo) C:(l—al),r(l—a-z)(t"o’IO)
2
<y ((alp)_z + (o T)—l)// (vp, — k)tPdzdt + -1-(0 7)1 (// |v |qudt) '
< 2 h 2 h
Cp-,r p C:,r(tno yxo) .
X |CF 1 (tng, %) N {wp > k}*%
with some ¢ > (m+ 2)p/2
(3.1)

holds for any k > 0, 01,02 € (0.1), Ct,(tno,%0) C Q and all p;1 < p < 2.

By exploiting Lemma3.1 and carrying out the iterative procedure similarily as in [8],p105
(and remark the proof of Lemma2.2), we obtain the boundedness of weak solutions of (1.1).

Lemma3.2 (A LOCAL BOUNDEDNESS OF uy,). Let uj be a weak solution of (1.1). Then there exists
a positive constant vy independent of h and u, such that, setting vy, = tu,

1

1
1 i i
SRR S T
P0,To Cpo,ro(tno ,1'0)

C:ol2,fo/2(t"° )
1
1 q
+ <___ / / (vh)"dxdt) } (3.15)
IC;;),Tol C:;),ro(tnavxo)

with some ¢ > p(m + 2)/2

holds for C;, ;. (tn,,%0) C Qn, and any p; 1 < p < 2.

4. Estimates for logup

We shall need the following lemmata. For the proof we can refer to [6],[11].

Lemmad.1. (John-Nirenberg estimate of elliptic version) Let u be integrable in a cube By and
assume that there is a constant k such that, for every parallel subcube B C By, we have

1
I—E‘i/Blu—"U.,Bldx S K

Then, setting
Sy :={z € By : |u—Tup,| > o},

there exist positive constants a,a depending only on m such that

1S5 < e**e~°%"|By|. (4.1)
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holds for ¢ > 0.

Lemma4.2.(John-Nirenberg estimate of parabolic version) Let u be a integrable function in
Cr for which

il el -t
—_— u(t',z') — u(t,z))dtdzdt' de’ <
IC;’—”Cr—l (t',z’)ec;’ (t,z)eC'_ 60( ( ) ( )) 7

, 8> 0, . o
holds for all pairs C} and C; in Cg, where ¢(s) := { 0\/5 i 0 Then there exist positive
' - , $<0.

constants £ and v independent of u such that

1 // // ! ! ! !
—_— W(u(t',z') — u(t,z))dtdzedt'dz’ < 1, (4.2)
IDRIDRIJJ (#.2neps ) (tareny

where ¥(s) := v~ 1efe.
Now we shall give the fundamental estimate for —logu, (1 < n < N).

Lemma4.3. Let u; be a weak solution of (1.1) and us take a cube B ,(zo) C Q arbitrarily. Then
there exists a constant y independent of h and uy, such that, if u,,u,_1(2 < n < N) is nonnegative
in Byp(z9) and setting v, = —logu,(1 < n < N),

1 1642 2p2\?
L p) (4.3)

n — Un <YMVt
lBrl/B,(y)|v UnB,(y)ldz _7( 2 + h

holds for any r < p and y € B,(zo).

Proof.We take a domain B,(z) C B2,(zo) arbitrarily and fix it. Now, testing the identity
(1.3) by a function: (u,)~'9? for n € C§°(Bs,), n =1 on B, and |Dn|? < 4r~2, we have

1/ ( “n—l(‘”)) 2 / 2
- 1- ———=|n°dz - a®® Dglogu, Dologu,n*dz
h B, un(m) Ba. n 3108 EUnT]

(4.4)
+2/ a,‘:ﬁDplogunnDandz = 0.
B2r
Noting the nonnegativity of + [ Ba, Eﬁ—:—(’ﬁ)ﬂnzd:x, we have the following calculations:
/\/ | Dloguy, |*n?dz < / a2P D glogu, D logu, n*dz + —1—/ n’dz
Ba» Bar hJ B,
" (4.5)

Ssu/ | Dlogu,|?n?dz + H_/ |Dyl*dz + %/ ndz.
Bzr € B2r B2r

From using that [Dn| < 2r~! and taking ¢ = ﬁ in (4.5), it follows that

1 2o, 2(8u2 1 ,
— <224 2. .
|B2r|/32,|Dlogun| n°dz < /\( S + - (4.6)
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Adopting Holder and Poincére inequality for (4.6) gives that

1
; i/ ki< (/e g, ves)
—_ Vp — —— v |?de < | — Vp — —— vy, |dz
|Br|/ 5 |Br|/ 5 \m) L
1

1
- 8u? 1 1\2)° 8u? 12\ 2)°?
SlBrl 3 {77‘2|Bzr| X (_t\i_ﬁ + E)—}-‘-} :7{(__/;__}_ —h—)_X}

Therefore we have shown Lemmad4.3.

(4.7)

Remark. u;! is not admissible as a test function in the identity (1.3). However, by testing
the identity by (un + €)*7?, calculating similarly as above and tending ¢ to 0 in the resultant
inequality, we have (4.3).

Lemmad4.4. Let up be a weak solution of (1.1) and us take a cube By,(z9) C Q arbitrarily.

Then there exist positive constants a,a independent of h and uj (depending only on m) such

that, if un,un—1(2 < n < N) is nonnegative in B,,(zo) and setting v, = —logun(1 < n < N),
1

1642 AN
w= (o) =v(BE+ )

[{z € B,(20) : [va(z) — Tmp,| > 0}] < e**e™*7* | B, (4.8)

holds.

Proof.Since un,un—3 > 0 in Bj,(z¢), from Lemmad.3, it follows that (4.3) holds for any
B, C By(zo). Thus, by applying Lemmad4.1 for u, in B,(zo), we immediately obtain (4.8).

Lemmad4.5. Let u, be a weak solution of (1.1). Then there exists a constant v independent of h

and up, such that, if uy is nonnegative in C}(1,2) C Q and uyi-r2)/n > 0 in Br(Z) then, setting
v = —loguy,

1 // // ) 1
_— v(t,z") — o(t,z))dtdzdt'da’ < C 4.9
ICHICT 1SS (v eyect (t,x)ec:(p( (2 = ol =) (49)

Vs, s>0,

holds for all pairs C;f and C; in CK(%,%) where ¢(s) := { 0 <0
, 8<0.

Lemma4.6. Suppose that the same assumption as Lemmad.5 is satisfied. Then there exist positive
constants £ and v independent of h and uy, such that

/] oy tie g [ e
—— uCdtdr —— uédt'dz’ < 7. 4.10
|DEIJJ bt |DrIJJ pj (410)

Proof of Lemma4.6. Now suppose that the assertion of Lemma4.5 is valid. Then, by adopting
Lemmad4.2 for —loguy, in C;'%(t—,:i), we immediately obtain the assertion.

From now on we shall prove Lemma4.5.

Proof of Lemma4.5. Now let’s take cubes Cf_(to,20) and C;,(to,%0) in C#(%,%) arbitrarily
and fix them. In the following arguments we use some notations. Here we gather them.
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On Bgr(mo),
vp = —logu,, v(t,")=v.(’), (n—1h<t<nh(1<n<N)

For any o > 0 and any n; [(f — R?)/h] < n < [t/h] + 1, on B2.(z0)

%Z——-vn—/ vo?fdy// n*dy, Vn=/ 5;7726131// n*dy
. Ba, B2, By, Bz,

wn =5 = 7a(n —[to/B - DA/1%, 72 = 452\ Bal/ LB,

w(t,) = wp(-), (n—1)h<t<nh,

Wa = Vo = ma(n — [to/B] = Dh/r?,

W(t)=W,, (n-1)h<t<nh,

By = {z € Bar(20) : wa(z) > 0},

B,(t) = {z € Bar(z0) : w(t,z) > 0} for tE-Rr2y/n <t < tisn)4r-

(4.11)

First we prove the following;:

Claim. There exists a positive constant y1 depending only on m, A such that
t(to+m)/h1+1
/ B, (Dldt < 712|Brlo~
o/ h]+1
holds for any o > 0.
Proof of ”Claim”. We remark that, since up > 0 in C';;(t_,fz) and uyz-g2y/p > 0 in Bgr(Z),
u, 20 in Bgr(z) (n; [(f—-R?)/h] <n < [f/h]+1).

Testing the identity (1.3) by ¢ = u;1n?, n € C§*(Bar(z0)), |Dn| < 2/r, we have

/ g"—:.——u—":—l—u,:l772dav +/ azﬁDgunDa{u;1n2}dm = 0. (4.12)
Bz, (x0) h B, (z0)
Now we make a estimate of each term of (4.12).

(Quotient term of (4.12)) Let’s remark that

= _logtn_1 — 1ogu;1 = logu, — logu,_1,

(un — un._l)u;1 =1- un_lu;1 < -logun—-1u,
which implies that

(Quotient term of (4.12))
</ logu, — logu,—1 nldz = —fBQT(—logunn?)dx + fBQr(—logunq 7% )dz ' (4.13)
B2r

h h

Next we treat the term including spatial derivatives of (4.12).
(Spatial derivative’s term of (4.12)) Noting that

Da{u;%ﬁ} = —uy?Daunn’® + uy, ' 2nDon,
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we have
(Spatial derivative’s term of (4.12))

-_:/ a2P Dgu, Dou; ndz
B2r

4.14
=- / aZP Dptun(un) 2 Dounn’de + 2/ a2’ Dpunu; nDondz (4.14)

Bzr B2r

=- / a2P D glogu, D logu,ndz + 2/ a%P D glogun,nDyndz.
B2r B?r

Combining (4.13) with (4.14), we obtain

—[ g, (“logupn?dz) + [ (—logu,-_17’dz)
h

- / a3” Dglogun, Dlogunn’dz + 2 / a%P Dglogu,nDandz > 0,

Bg,- Bzr

namely,

J By, (-logunn’dz) — [ 5, (~logun-17dz)
" (4.15)
+/ agﬂDﬁ(—-logun)Da(—logun)n2dz + 2/ azﬂDﬁ(—logun)nDa"]dﬂf S 0.
BQr

B2r

Here noting v, := —logun, the inequality (4.15) is rewritten in the form:

fBzrvnn2dm - fB%vn_ln?dz
h (4.16)

+/ agﬁDﬁvnDavnnzdx + 2/ af{ﬁD,@vnnDandm <0.
Ba, By,

Using the ellipticity condition (1.2) and Young’s inequality gives that

/ a2P D vy Dyvanide > /\/ | Dv,|*ndz
BQ,- N B2r

and
\2/ dﬁﬁDﬁvnDandm
B2r

< eu/ | Do, |*ndz + E/ | Dn|*de.

B2r € B2r
Taking ¢ = 5};7 in the above inequality and substituting the resultant inequality into (4.16), we
have, for n;[(f — R?)/h]+ 1< n < [t/h]+1

vpntdx — Vn_1m?dz )\ 2u?
fB2r n th?r 17 + é'/B len|2772dl‘ < %/B |D’I’]|2d.’17 (417)
2r 2r

Here, let’s recall the inequality of Poincdre type. For the proof, we refer to J. Moser’s paper [10].
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Lemmad4.6. There exists an uniform constant 7y such that

v— =2——— ) de = min v—k)?npdz < y(4m 27"2/ Dv|*n*dx 4.18
/Bzr ( fBz,- 772dy k B2r( ) ( ) Bzrl I ( )

for v € W}(Bar).

Now, adopting (4.18) for (4.17), we have, for n;[(t — R?)/h]+ 1 < n < [t/h]+1

fBzrv"nzdx — fBzr vn..1772d37 + A 7-‘2/ (v _f.B2rv"n__.2dy>2d
h 2+(4m)? n 2d
v(4m) Bs, [, mdy (4.19)

2 2 4 2
<[ IDafde < Hor?Bl,
A J B, A

Dividing the both side of (4.19) by r“2f32rn2dy, taking 7 as 7 = 1 in B,(z9) and noting that
[ B, n*dz < |By,|3™, we have, for n;[(f — R?*)/h]+ 1 < n < [t/A] +1

fBzr(l'o)vnn2dm - fBg,(xo)vn‘1n2dy

bt (4.20)
LA 1 (v ] BZ,(zo)vnngde o < 202 1Ber] '
2’)’(4’”‘&)2 3mlBr| Ba,(z0) " fB2r(1-0)772dy A IBrl '
Now we notice that, from the definition Vy; (4.11)
1’7[10/[,,]4.1 =0. (421)

Taking
71 = 29(4m)*8™ /X,

v2 = 4p?|B2|/A|B1| = 4p*| By, |/ A| B,

in (4.20) and noting that (4.20) remains unchanged if v; is replaced by v;+ const, (4.20) are rewritten
as follows:

Ve Vo 4 1 [ (s )2 o ]
—_— 4y = U — Vp) dz < n; (t—R*)/h]+1<n<[t/h]+1
Hr? U B sanien 12 (s [( )/h] [t/h]+ 1)
Vitosn141 =0 (22)
Then (4.22) is exchanged by

Wn - Wn—l
h/r?

Wito/nj+1 =0

17 g/, o (n = Wa)de <0 (s (G~ B)/R + 1< m < E/H) )

(4.23)
Here we notice that, for 0 > 0 and n = [to/h] + 1,--- ,[(to + 7)/h] + 1,

wp,—=Wyp20-W,>0>0 in Bj.
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Because from difference inequalities (4.23), it follows that

Wn - Wn—l
AL RRAL b P
{ h/r? =0

Witosn4+1 =0
so that we obtain, for n;[to/h]+ 1< n <[(to + 7)/h] + 1
Wn < Wnoy < -+ < Wo = 0. (4.24)

Thus, again by difference inequalities (4.23) we have, for any ¢ > 0 and all n; [to/h] +1 < n <
[(to +7)/h] +1

—_— -Wo)' < ————4+71 = wy, — Wy)de <0,
A BT S T g, T

so that 1

(o = w2 = -,;/(:2_ W) 5 71":—]}%]-
Here noticing that for a¢,b > 0

~(@ =) 2 a"*a~b),

we have, for n;[to/h]+1 < n <[(to + 7)/h]+ 1

- ((0 - Wn)_l - (0' - Wn—l)_l) .IB! I

hr? 2N °1|—§:—|- (4.25)

Multiplying (4.25) by h/r?* and summing the resultant inequality from ng := [to/h] + 2 to n; :=
[(to + 7)/h] + 1, we obtain

r? Zn—no l_ IB I - _Z:l—no+l{(a - Wn)_l - (U - Wn—l)_l}

—(U_Wm)_ — (0 =Wp,-1)” 4 "{'(‘7“I/Vno)_l"(""‘VVno—l)_1
_(U_Wnl) -1 _(U— ’no-'l)—

namely,

_ _ h —m _11B2|
_(U - Wnl) ! + (0 - Wno—l) ! 2 ﬁZn:no‘Yl ! IIBrI . (4'26)

Noting (4.24), from (4.26) it follows that, for any o > 0

t
-1 |B [('o+f)/h1|
> = B, (t)|dt
72 Zn—no B,| 7n2|B | N o(1)
Namely we have
Hio/h+7)/B1+1 )
/ [Bo(0)ldt < 17%|Brlo. (427)

teg/hl+1
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Just now we are in a position to prove (4.9). Since

ol et
— e(v(t,z) — v(t',2"))dtdzdt da
ICHNCT1 S ctttoe0)d ) 07 (t0,20)

< p(v(t,z) — ) n n°)dtdz 4.28
IC":{FI C,‘."(to,.’co) ( ( ) Ba, [tO/h]+1 / B2r ) ( )
1
- // (P(_v(t’,m’) +/ ’U[to/h]+1’l72// 7’]2)dtld.’l:'.
ICT I C; (to,zo) B, Ba,

To show (4.9) we need to estimate each term of (4.28). From now on we put

1
= // plolt, @ ‘/ Ulto/h 772// n?)dtdz,
! IC;!’I C:(to,zo) ( ( ) Bs. [to/R]+1 B
1
2 =ier // p(-v(ts =) + / Ueo/mj417dy/ / n2dy)dt'da’
ICT I Cr (to,20) Bz (o) Bz, (x0)

To estimate I; and I respectively, we shall classify the proof into two cases:
Case 1.(parabolic case) 2r? > h,
Case 2.(elliptic case) 2r? < h.
Now we consider the case of Casel : 2r? > h. Noting a definition of functions;s,w, ¢(-) and

setting, for n = [to/h]+ 1,--- ,[(to + 7)/R] + 1

+

g(t,-) = y2(n — ([to/h] + 1))7}:-, for (n—1h<t<nh in B,

we have the calculations:

L= / / o((t, 2))dtde = / / o(w(t, o) + g(t, o))dids
C; (to,zo) Cr (to,ro)
<[ swapdad+ [f olg(t, 2))dtda
Cr (to,zo) Cr (to,xo)
h
<f[ ettt et +icri(1+ %)
C; (to,0) r

where we have used that

gty + t2,°) < g(t1,+) + g(t2,-) for ty,t2: [to/hlh < t1, t2 < ([(to + 7)/k]) + 1)h,
o)< (145) for telto/ih, ([to-+7)/i]+ 1A

Moreover, noticing that h < 2r2, I, is estimated above by

/ / o(w(t, z))dtds + 375)C . (4.29)
Cy (to.x0)

Thus we need to make a estimate for ff o= (to Jm)<p(w(t, z))dtdz. To do it, we distinguish the calcu-
lation into two ones:

i BRI C O // oy Pl ¢ i o PR (430)
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where we define

C7 (to,%0) = (Uto/mi+1> L(tot+r2)/m+1) X Br(zo), Cr T (to,0) = (to, tjzo/m+1) X Br(wo).

Il = // o(w(t,z))dtdz, I} = // p(w(t,z))dtdz.
C,; " (to,xo0) Cr_+(t0y1'0)

(Estimate for I}) Frist we notice that

I = // e(w(t, z))dtdz + // p(w(t,z))dtdz
C,—-(to,l‘o)ﬂ{w>l} C:—(to,xo)ﬂ{0<’w$1}

Let’s put

(4.31)
</f p(w(t,z))dtdz + |C7|.
Cy " (to,xo)N{w>1} ]
For the first term we obtain, from (4.31)
/ / o(w(t, o))dtdz
7 (to,z0){w>1}
* * X 12 (4.32)
=[ +o(—dm(o)) = m(o)dy/o < y10”'r?| B, |dV/o
1 1 1
=717%| B, |. :
where m(co) = f:{("’/:]’:i"‘“ | B5(t)|dt. Substuting (4.32) into (4.31), we have
to
L <mr?|B |+ 1077 < (n + DICT ) (4.33)
(Estimation for I?) Next we shall deal with IZ. Let’s notice that
) o /h]+1
z= [ plot,odedz = [ [ plu g dtds
c7 ¥ (to,zo)N{w>1} to B, (x0) (4'34)

=|tto/h]+1 — tol/ e(wieo/n)+1)dz.
B,.(.’L‘o)

Thus we have to make a estimate the quantity: | B,(zo)‘P(w[to /h+1)dz. Recalling the difinition of
wy,, we have

Vito/hj+17° A/ / 5 n’dz,

2¢(Z0)

Wto/h+1 = Vjto/h]+1 = V[to/h]+1 -/

2r «770)

so that

/ o(Weo/n141)dT = / O(Vto/m)4+1 = / Vito/j+17°dY/ / n’dy)dz
B,(z0) B, (z0) Bz, (zo) B, (x0) i

</ \/
B2, (z0)
1
+|B,| 72 \/ /
BQr
<aluit(
BZr(IO)

dz

1
Vito /h]+1(T) — ——|B20|/B Vto/h+17M°AY
2r

dz |B,|

1
Vto/n+1(T) — m/B ( )v[to/h]+1772dy
r 2r(Zo

1

d:z:) " (4.35)

1
Vto/m+1(T) = |—1—32—_|/B ( )"-’[to/h]+1772dy
r 2r(Zo
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Applying (4.3) in Lemmad4.3 to (4.35) gives that

16p?  2r2\*
[ etwmomnis <2238 (55 + 57) (4.36)

r

Substituting (4.36) into (4.34) and noting that r* > h/2 and that |t[t°/h]+1 — t9| < h, we have

\ 322 2\1
I = |t1so/n41 — o] X <,0(w[to/h1+1)df'J < 293 By | = VR
B,(z0)
1
, 32u? 21
32‘)’%iB2r|h%r%( /\l; + 'X) (4.37)
1 1
, 1f16u2 1\1, 2 a6  1\Y
<2 ’)’2(74-)\ T |B2r|s2’)/2 22 +/\ 2 'C,. I

Combining the estimates {4.33) and (4.37) for I} and I with (4.29) gives that

L= // ( )go(z'))dtd:c <(m+ DICT|+9ICT ]+ 372IC1 ). (4.38)
C=(to,x0

2 i
— om+2,3 16p l
y=2 72( 22 +,\)

Thus we have obtained the estmations for I.

where

(The estimation of I;) Now we shall estimate the term

I = // o(—v(t,x) +/ Vlto/h]+17 dy// n*dy)dtdz.
G (to,m0) Bar(zo) Bar(z0)

By a transformation
{ t—-to:—(tl—-to)

z=2a,

I, is becoming

to4T
L= / / o(—v(=t' + 2tg, ') +/ Vito/h]+17 dy// n*dy)dt'dz’.
B (zo) Ba,(z0) B (z0)

Thus, estimating —v(—t' + 2to, ') in C; " (to,2o) similarly as (4.33) and (4.37), we have
L < mlCH + 3%|CH . (4.39)

As a result, substituting (4.38) and (4.39) into (4.28) gives that

1 / // ' 't
——— v(t,z) —v(t',z"))dtdzdt dz
IC;‘F”C;I/ C}(to,zo) Cr—(io,l‘o)(la( ( ) ( ))
1 1 (4.40)

<—nL+ —1I
Sles1 7t ek
<2m1 4+ 9+ 672



82

Next we shall deal with Case2, 2r> < h. We need to distinguish our calculations into subcases:
Case2-1, C:'(to,mo) UC; (te,z0) C (t[to/h], t[to/h]+2) X Br(zo),
Case2-2, C}(to,20) UC; (t0,%0) C (Ytosni-15 Lfto/nl+1) X Br(zo).
Firstly we consider Case2-1. By using (4.27) with 7 = h, we have, for 0 > 0
g /nl+2
[ Bl < Bl
Hig/hl+1

Namely
< mir?|Bylo7L (4.41)

l{(t,x) € Crn(tito /41, %0) t w(t,z) > 0}
Estimating similarly as (4.27) we also have

< mr¥|B,lo” L. 4.42
”

l{(t,x) € Chaltpaymenr20)  —w(t,z) > o)
Noticing that

o(v(t,2) — v(t', 2")) <p(o(t,z) - / oo 1417y / o =B/
2r\T0

Bar(zo

Vito/m+17dY/ / 5 n°dy + 12h/r?),

2r($0)

+so(—v(t',a:'.) + /

B2r Zo

we obtain from (4.41) and (4.42) that

1 1 // // ! ! ! [}
— e(v(t,z) — v(t',2"))dt'dz' dtdz
IC:hl ‘Cr,hl Cl(tieony41,%0) C . h(fup/n)41,%0)
1
Siem / / e(v(t,z) - / Vito/m+17T dY/ / n°dy — y2h/r?)dtdz
l r,hl Co n(tg/n1+1,%0) Bar(x0) Bzs(z0)
1
+—C+—// e(—v(t',z") +/ 'U[to/h]+1772dy// n?*dy + y2h/r?)dt'dz’
I r,hl Cl . (feo/n141,%0) Bzr(xo) Bar(zo0)

1 1 r2
[C+ l")/]T'ZIB,.I = 2‘)’17‘2|BT.IW = 271—};- <m (4.43)
r,h T

1 2
= — 11T lBrl +
Icr,hl
where we used the fact
' IC;hI = |C:h| = h|B,|
and that 2r? < h. Noticing that

v(,2) = vgon+2(2) in Cly (e /h1415 %0)s
o(t',2') = Vo n1(z’) 0 CFy(tse/mr41, 20),

we deduce from (4.43) that

1 1
I_B_“—B_I/B( )/B (= )‘P(vxto/h1+z(w) = Vto/n41(2"))da’dz
o T r(Zo riZo

11 (4.44)
=—C—,:;—‘C‘t—// // o(v(t,z) — v(t',z"))dt' dz' dtdz < ;.
| Tyhl l T,hl Cl,(tgsn141,%0) C w(tig/n)41,%0)
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Now let’s remark the following calculations;

1 1 // // TN,
—_ o(v(t,z) — o(t', 2))dt'dz' dtdz
ICFNCTI ) cttoz)d ) C7(to20) |
Al st/ -
= - e(v(t,z) — v(t',2"))dtdz
IC;"—l C,?(to,.’l:o) ICT l (tOvt[tolh]+1)xB"(zo)

+// e(v(t,z) — v(t',:c'))dtda:}dt'da:'
(f1eg/n141:t0+72) X Br(z0)

1 / ( 1 / , ) d
= — X |t — | X (v z)—v z'))dz |dz
1) 5.0 \ICF] [t{20/h1+1 — ol Bten (Vto/m+1(2) = Vto/n+1(2"))

1 1

+___/ (——_—-xt+r2—t x/ V) z)—v z’ d:z:)da:'
1) map\icr] <107 T el [ #orea)= tapa)
1 1 :

< — v z)—v z'))dzdz’

<B] |BT!/B'(ZO)/BT(%)<P( (to/n1+1(2) = Vto /) +1(2"))
1 1 ‘

+——————/ / e(v z)—v z'))dzdz’'. 4.45
B 181 5,00y 5oy (Vto sn1+2(2) = Vjtosny+1(2")) (4.45)

In the last inequality we used
[tito/m+1 — tols o + 77 — tigo 1] < 72

For the second term, we have (4.44). For first term, by noting the fact that
e(t1 +t2) < p(t1) + o(t2) for t1,t2 € R

and exploiting (4.3) in Lemma 4.3, we obtain

(First term of (4.45))

) )
< @(v z)— —— v dy)dz
|Brl B,(z0) ( [tO/h]+1( ) IBrl B, (z0) [to/hl+1 )

1 1
+——/ — )+ —/ Vito dy)dz
|Br' B,(a:o)(p( [tO/hl+1( ) |Brl B, (z0) [to/hl+1 y)
16u2 22\ ¢ 162 1\1%
527%( o +§5) gzﬁ( o +x) . (4.46)

In the last inequality we used that 27> < h. Therefore, substituting (4.44) and (4.46) into (4.45),
we have

L1 : 16u2 1\%
T r r \10,Z0 r (L0:T0

Next we deal with Case2-2. Then we obtain from (4.27) with 7 = h that

g /R1+1 .
/ |B,(t)dt < y17?|B,Jo~ .
Yo /hl

Namely we have
{(t,3) € Coptieos> 20)iw(t,2) > 0} <11 Bylo~L.

Estimating similarly as (4.42)-(4.45), we have (4.47).

As a result we obtain from (4.40)and (4.47) the assertion of Lemmad.5.
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5. Proof of Theorems

In this section we present the proof of our theorems. Firstly we consider Theorem1.1.

Proof of Theorem1.1. Since uy, is nonnegative in C;}(t,,,20), we find that
up 20 in \/~—(tn -0 %0)

and that
Upo— e /4]-1 >0 in Bm(zo).

Thus, we can apply Lemmad4.5 to uy in Ci”/;—;(tn;,,xo), so that

(I—;—_I-//D_(uh)gdxdt)% <t (mlrl//w(uh)—&dxdt) o (5.1)

1.
t = (tno — anh, tno) X B\/;—h((to),

where we put

N (5.2)
D™ = (tno—;r’ tno—;, + Z’nrh) X B fv_nrh(zo)

and v,& are positive constants determined in Lemmad4.5. Also we can adopt (2.40) in Lemma2.3
for up in Dt. Namely we obtain that

1

(lfl;—l//D+(uh)”dxdt) < 71i)r+1f up for P>1 (5.3)

1/2

h-J

where

1.
.Dilp/2 ( - gnTh, t— no) X B%m(ivo)

Investigating similarly as above, we find it justified to exproit (2.41) in Lemma2.3 for u; in D™, so
that ‘

1 ~1
1 // t 1 ' ‘i d d 2
— (uh)édzdt) < 7(———// (uh)qudt) for ¢,§;0<q,§<1+— (54)
(]D1/2| D]',2 ID+| D- m

where

;/2 = (tno i ’tno g + n,.h) X B\/:‘Z((L‘o)
Combining (5.3), in which p = £, and (5.4), in which § = £, ¢ € (0,1 + ) with (5.1), and recalling
the definition of Dt D1/2’D and Dl—/2’ we conclude the assertion (1.10) of Theorem1.1.

Now, by using Theorem1.1, we can have Holder estimate for a weak solution uj of (1.1), which
was derived in the paper [4], but the proof is entirely different from theirs.
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Lemma5.1. Let uj, be a weak solution of (1.1) and (f,Z) be taken arbitrarily in é;; with
1 . (- 1.
d= 7 nin |t — Noho|?,dist(Z,00) ).
Then there exist positive constants v and o;0 < a < 1 depending only on A, u, m and d, such that

un(tn, ') — un(tn, z)

<2l = 1% e 1a]3) (5.5)

for any (tn,z"),(tn,z) € C}(f,Z) with §((tn,2"), (tn,2)) > Vh.

Proof.First of all we need to notice the uniform boundedness of a weak solution uj, in C; (t,2).
From adopting lemma3.2 with p = 2, for up in C’;(t-,i'), it follows that there exists a positive
constant U depending only on A, ,d and a bounds of

// uldzdt,
Q

lunl KU in CJ(3,%). (5.6)

such that

Let’s take (tn,2'), (tn,2) € CJ (1,%) satisfying 6((tns,2"), (tn,2)) > Vh, arbitrarily. Now, let’s set
notations:
M = sup wup,

C+(t,.,:c)

m=inf u (5.7)
C (ta,x)

Mg = the greatest number satisfying n < d?/h.

Since M — up,up — m are weak solution of (1.1) and nonnegative in C’j’(tn,a:), we can apply
Theorem1.1 for M — up,up — m in Df(tn,w), DI (tp—n,,2) C C;L(tn,x). Namely, we obtain

- / / O —wdade 7 int (M ) (5.8)
| 1/2' l/Q(t -~ 1 1/2 tn,T

(up —m)dzdt <y inf (up—m) 5.9)
|D1/2|~//D1/2(f ~,.’L’ D;"/Q( nvx) (

neng
where
D™ = (tno—;r’ tno—;; + nh) X BJ1 o h(z‘o),
1.
+ (tno — g’nrh, tno) X B%m(wo)
Adding (5.8) by (5.9) and replacing max(v,1) by v, we have

osc up<(l-—7u 1) osc u 5.10
C;“(t,,,x) i ( )C+(t,,,:c) » ( )

Repeating the above arguments which give (5.6), we have, for any positive integer v

wy, < Pwq,_,, ' (5.11)
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where

d v b1k
9=1—~"1, wy =osc d ——————E e R A
T d, C;u, v k=1

T o ok

If
max{|t, — tn:|1/2,|w -z'|} + Vh < g,

then there exists positive integer v such that

d d
sorr < max{[tn — tw['/%, o — 2’|} + VR < 7.

Now, adopting (5.11) successively gives that

lun(z) — uni| < wq, Owa, _,

1 (274
<0%wy = (§> Wy

:(%max{]tn — | %z - 2|} + %\/ﬁ) wy

g(%é((tn:,zl),(tn,m)) + 3\/5) wq.
where 1oge
(1 T Tog2 _ -1 _ logl
0-_(2) , 0=1—-~9"", a= log2"
Since max{|t, — tw|'/?, |z — 2’|} > Vh, from (5.12), it follows that

|un(2) = u ()] < wa,

< (%) ) (6((tn, @), (tns :c)) wa.

If
max{lin — b, |z — o'} 4 VE 2 3,
from the boundedness of uj in CJ(%,Z), we obtain

lun(z) — un'(‘cl)| < wd,
<2U

< 2U<§<maxlfn —t V2|2 — 2'| + \/f—l))

= oU (3) ) (6((tn: 2, (b :1:))) N

(5.12)

(5.13)

(5.14)

Proof of Theorem1.2. Now let’s take By, = Ba.(zo) C Q with 7 < h and fix it. Suppose that
u,(1 < n < N) is nonegative in B;,. By a scaling transformation: z = z¢ + ry and setting on B;

aP(y) = ai’(zo+ 19),  Un(y) = un(zo + 1Y), Un-1(y) = ta-1(z0 + r9)
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from (1.3), it follows that
:E‘:n — ﬂ'n——l
B, h/r?

Applying Harnack theorem on elliptic equations (see [3],Th.8.18., p194) to %, in By, it follows from
(5.15) that, for any p; 1 < p < m/(m — 2), and ¢ > m, there exists a constant 7 depending only
on m,q,p and A, p such that

/ %P Dgtin Do ipdy + =0 for any ¢ = (¢') € Wi (B1). (5.15)
B

1 1

1 s 1 3
— P < A4 — q )
(lBll Bl(un) dy) - 7{%11%" * (IBII/Blg dy) }’ (5.16)

~

Up — Un-1

9= "5

Now, by adopting Holder estimate Lemma5.1 for u, in CJ (o) with d = min{Vv/h, dist(zo,09)},
we have that

where we put

lg] < yho/271? (5.17)

with positive constants v, a; 0 < @ < 1, independent of h, v,,, which were determined in Lemma5.1.

Thus, noting that from 72 < h
ha/2—1,’.2 < poe—2+2 r*,

we obtain from (5.16) and (5.17) the assertion in Theorem1.2.

Proof of Theorem1.3. we take a cube C} | (7,%) C Q withd = }6{(?,Z),0Q} and fix it. We use

P00
the notation: u = up, v = uh . Now we shall improve Caccioppoli type inequality LemmaZ2.3. Firstly
we consider the case p; 1 < p < 2. If 637 > 3h, we have (2.50) and (2.51). If 0,7 < 3h, we remark
that, adopting Holder estimate Lemma5.1 for uy, in CJ (£,%) yields the followmg calculations: For

all Cf(tno,%0) C CF (%, %) and for any ¢ > 0

(Quotient term)
L[ e GahIt )
or(tngTo)

h

- h“/23(027‘)'1// Iv(t,-) + e ()dzdt (5-18)
p r(tno 11'0

— (o97)” // lv(2,-) + €|Pdyds — 2php°’/2| ]
p 'r(tno 1-1"0)

In the last inequality we used Young’s inequality. Thus, calculating similarly as (2.52), we have,
for all C} (tne20) C CF (£,%),

// |D(v + €)% n*odzdt
C:.r(tnoz'o)
2
4 -1 8
+—e? // a®P Dg(v(t,-))nDondzdt
Ap-1) CF +(tng zo)N{v<0} p(v(t, Do
2P~1

2,2
(5.19)
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We also remark that (2.20) holds for v + ¢ = u¥ + ¢ > 0 in this case. Therefore we have, for all
C} +(tny,0) C C§(1,%) and any p;1 < p < 2

2
Sup / (v +e)P(t,-)dz + // D(v + €)P/?| dzdt
tno—=T(1=02)<t<tny/ Bya- 01)(1'0) p(l o1) .,.(1_,2)(tn01$0)
2
p -1 af
+————¢f // a®?’ Dg(v(t,-))nDyndzdt
AMp-1) C} +(tng»70)N{v<0} o(e(t, ))1Da
p(2p-1) {( 2 ) / /
<7 o1p)”“ +HloaT v+ ¢e)Pdzdt
(p 1)2 ( ) ( ) p r(tno 11"0)( )
2r=13p
+ Mo )((727') 15 |CP,T}
(5.20)

Since each term of the right hand of (5.20) is finite for p; 1 < p < 2, we are able to pass € to 0 in
(5.20), so that we have

. 2
Sup / P(t, )dz-}-// DvP/?| dedt
tno""(l—02)$t$tno p(l cl)(xo) (1_,1) .,.(1_,2)(tn0 1To)
) { (oo )]
< 1+ o + (o921 vPdzdt (5.21)
7( _1)2 p—1 ( IP) ( 2 ) C:,,-(tnoyl‘o) ’
p— l
+ (o) R FICE .

Next we consider a case of p > 2. If 697 > 3h, then we have (2.60). If o027 < 3h, using Holder
estimate Lemma5.1 and calculating similarly as (5.18) yields that, for any C},(tn,,%0) C CF (2, %)

(Quotient term of (2.53))
2// i ):E’U,(t, ) - ;ll:u(t —h, ')(v(M))P—l(t’ -)nz(-)dxdt

>~ (oa7)" // (WMYP(t, Ydyds — 2PRPL|CE .
pr(tﬂorxo)

By calculating similarly as (2.62), we have, for all C}_(tn,,20) C C}(f,z) and for any t € [tn, —
T(l - 02)7 tno]

0> / oM(t, Yntdz — 4(oy7)” / / (MNP dzdt — 2”h”°‘/2|Cj',,|
By(zo) tng =7 Bo(za) ’
4(p—1
+ (pp2 )// ao‘ﬁ(t, ')Dﬁ(U(M))p/ZDa(v(M))p/znz(-)a(t)dxdt (522)
P, T tnoyxo)

w2ff a8 (t,-)Do(e™)P - D (Yo 1)z
C: -r(tno yxﬁ)

Noting the boundedness of v in C(f,%) from Lemma3.2, it’s justified to pass M to the limit in
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(5.22) for p > 2. Namely we have, for all Cf, C C$(%,%) and any t € [tn, — T, tn,]
0> / v(t,-)2dz — 4(op7)” // vPnldzdt — 2ph”°‘/2|C o
4 1
(p )// "‘B(t )Dpv2 Dav217 (o(t)dzdt (5.23)

+2// a“ﬁ(t,-)ngvp'lnDan(-)cr(t)da:dt.
ct,

By Young’s inequality, we have (5.21) for all C}, C CJ(%,%) and for any p > 2. As a result we
have obtained (5.21) for all C}, C CF(7,%) and for any p > 1.

From now on by Moser’s iterative procedure we shall estimate a bounds of a weak solution up, of
(1.1). Now we take (t,,,Zo) € C;'/z(t_,:i) arbitrarily and fix it. Also we take pg,70; 0 < po,70 < d/2
arbitrarily. We proceed our inductive calculation similarly as the proof of Lemma2.2. By a scaling
transform (2.41) and noting (2.42), from (5.18) we obtain that

Sup / (’02) (t )dy+// I_D’U%deds
0>t27(1-02)J Bj1-0,(0)

5(1 1), #(1— 02)( )

< 75—%( ) { ((mp) + (027) )//c+,(0) (v®)2dyds + 2PhP*/2(027) 7} |CF }
(5.24)

for0<p<1,0<7< p{,'zro, 01,02 € (0.1) and any p > 1.
Let’s take sequences p,, p, and 7, as follows: For v = 0,1, -,
— 2w (1 lun _ of1,33.)
pu-~p(1+m) ,Pu-'—p(2+(2) ) and Tu-—P(4+4(4)) .
Noticing that, since a/(a — 1) > b/(b— 1) for 1 < a < b,
Dv 4
p,—1 < -1
and exploiting Sobolev’s type inequality(see [9],p76) and (5.24) successively we have that

// .\ (v%‘)z(l‘*%)dyds
C :

Pu41Tr41l

2
<( P 1) 221+2) [,z<1+%>{7 [23<u+a> ’ 0—12u+z]

1+2
<[], @ st otz ,f,i+2"“// (”%)2‘”"3}

Pv Tv

1+ %
<pra+ ) (maX(v, 1)) 22<V+4><1+%>{ [1 ¥ ,,-1] /. (v"‘z‘)?dyds
Pyv Ty

1+ 2
+6~1ppa/? / / 1dyds + / / (v%‘)zdyds}
C:u»"y C:u:‘ru
1+2 1+2
Sﬂz(l"' -?n-) (max(7, 1)) 22(”+4)(1+;2n_) (1 + 0—1) (//

1+2
( (v2 )2 + h"pﬂ)dyds)
(5.25)

Pv v
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Since h?*/? is constant, we obtain from (5.25) that, for any v = 0,1,-,

/..

Pu4+1rTu+1
1+ % 1+2
S,B2(1+-"2‘_) (max(‘y, 1)) 92(v+4)(1+ %) (1 + 9—1) (//
C

Divinding the both side of(5.26) by p], 17,41, and taking the power of order 1/p, 41 in the resultant
inequality, we have, for any v = 0,1,-- -,

ey
(ot f] . (oo ewen) )
ct

Pr41:Ty41

< [ﬂz{max(% 1)}28(4)P”v(1+%)'"(1 +oypiardH)

L
x (97 )P A+ )™ (p;mr,,‘l//c+ (v + h‘m/?)dyds) "

By iterating infinitely with starting p we have

((v”f )2(1+£t) + hmﬂ) dyds

1+ 2%
(v”" + h”“/z) dyds) .
(5.26)

Pu41:Tu 41

P-1(1+1.‘!,L) _lzoo '(1+_2_)—j -1 m
sup v < [ﬁz{max('y, 1)}28] 4P Zei=o?tT ) (1 4 gy (1R gP
ci"/z,o/z ' . (5.27)

(p;'m ;1// (v? + h”o‘/2)dyds) ’
c+

Py, Ty

Now we are in a position to show (1.12). Let’s classify our proof into two cases: Casel : 72 > h and
Case2:7r2 < h.

Firstly we consider Casel : 2 > h. Then, by taking pp? = 7o = r? and using r? > h in (5.27),
we have the assertion of Theorem1.3.

Case2. r? < h.Then we deduce from applying Harnack theorem on elliptic equations(see [3],
Th.8.17.,p 194) for @, in B; that, for any p > 1 and ¢ > m, there exists a positive constant ¥
depending only on m, ¢, pand A, u such that, setting

:511. = max{:tin,o} (n = 1,2,'.. ,N)’

<o (52, 0) + (5, ) ) 629

holds for n; 1 < n < N where

Up — Up-1

9= h/r?

Thus, noting (5.17) and that 7 < h, the assertion of Theorem1.3 is obtained.
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