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Homoclinic orbits in a first order superquadratic Hamiltonian system
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0. Introduction

In this article we consider the following first order Hamiltonian system:
3(t) = TH.(t, 2(1)),

— 4 — 2N
where ¢ = & 2 = (21, -+, zan) € R?,

_{ On In
=(5% o)

and H(t,z) € C*(R x R*,R). We denote by (-, -) the standard inner product in RV

and throughout this article, we assume H(¢, z) has the following form:
1
H(t, z)= §(Az, z) + W(t, z),

where
(A) Ais a 2N x 2N symmetric matrix such that

o(JANiR=0

and W (t,z) is a 2w-periodic and globally superquadratic function, more precisely W (%, z)

satisfies
(W1) W(t,z) € CY(R x R*,R) is 27-periodic in ¢ and W(t,0) = 0,
(W2) there is an g > 2 such that

pW(t, z) < (W,(t,2),z) forall (t,z) € R xR,
(W3) there are a > p and k; > 0 such that

ki |z |*<W(tz) forall (t,z) € R x R?N,



m

(W4) there are ky, k3 > 1 such that
| W (¢, 2) |< ko(W, (2, 2),2) + k3 for all (¢,2) € R x R*,
(W5) W,(t,z) =o(| z|) at z = 0 uniformly in t € R.

Under the above conditions, we study the existence of (nontrivial) homoclinic orbits

emanating from 0. In other words, we consider the existence of solutions of (HS) such that
z(t) -0 as |t]|— oo. (0.2)

We remark that 0 is an equilibrium point of (HS).
The existence of homoclinic orbits is studied by Coti-Zelati, Ekeland and Sere [2] and
Hofer and Wysocki [6]. More precisely, under. the conditions of (A), (W1), (W2), (W3)

with o = g, and
(W4) there is a ky > 0 such that

| Wo(t,2) |< ko | 2 |#7! forall (¢,2) € R x RZV,

and strict convexity of W (¢, z) with respect to z, [2] used a dual variational formulation
and obtained the existence of homoclinic orbits. On the other hand, [6] studied (HS) under
~conditions (A), (W1), (W2), (W3) with o = u, and (W4’). They used first order elliptic
system and nonlinear Fredholm operator theory and obtained the existence of a homoclinic
orbit. See also [1,5,9,10,11,12] for similar problems for second order Hamiltonian systems.
We remark that (W4) is a weaker condition than (W4’) under the conditions (W2) and
(W3).

We take another approach to this problem. We study the convergence of subharmonic
solutions to a nontrivial homoclinic solution; that is, we consider 2xT-periodic solutions
zr(t) (T € N) of (HS), which possess some minimax characterization, and try to pass to
the limit as T' — oo.

In case where A satisfies

(A°) Ais a 2N x 2N symmetric matrix such that
o(JA)NIR # 0,
the behavior of (z7(t))ren as T — oo is studied by Rabinowitz [7] and Felmer [4]. They
showed
lzr(t)||lLe = 0 as T — oo (0.3)
under suitable conditions on W (¢, z) and eigenvalues of JA.
Under the assumption (A), we remark that 0 € R?" is a hyperbolic point of (HS) and

(0.3) cannot take place in our setting of problem. Our main result is the following theorem,

which is in contrast to the result of [4, 7] and also ensures the ezistence of a homoclinic

orbit of (HS).
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Theorem 0.1([13]). Assume (A) and (W1)-(W5). Then there is a sequence
(2r(t))Ten C CH(R,R2?N) of solutions of (HS) such that

(1) 27(t) is a 2nT-periodic solution of (HS);

(i) there are constants m, M > 0 independent of T € N such that

27T
m < / [5(~7 7, 27) = Bt 2r)]di < M (0.4)

(iii) moreover (27 (t))ren Is compact in the following sense; for any sequence of integers
T, — oo, there is a subsequence (T,,) and a (nontrivial) homoclinic orbit z.(t)

emanating from 0 such that
ZTnk (t) - ZOO(t) in Clloc(R’ RzN)'

Remark 0.1. In case where W(t, z) does not depend on ¢ € R, the conclusion of the
above theorem holds without assumption (W4). That is,

Theorem 0.2 ([13]). Assume (A), (W1)-(W3), (W5) and W(z) is independent of t € R..
Then the conclusion of Theorem 0.1 holds.

We also remark that the convergence of 27T-periodic solutions to a nontrivial homo-
clinic orbit is obtained for a second order Hamiltonian system by Rabinowitz [10] and our
work is largely motivated by it.

In this note, we assume the following growth condition (W4”) on W (%, 2)

(W4”) there are B € [a, @ + 1) and ks > 0 such that

| W,(t,2) [< ks | 2z|P~! forall (¢,2) e RxRV.

instead of (W4) and (W5) (clearly (W4) and (W5) follow from (W4”) under the condition
(W2)) and we prove the following Theorem 0.3 rather than Theorems 0.1 and 0.2 for the

sake of simplicity.

Theorem 0.3. Assume (A), (W1)-(W3) and (W4”). Then the conclusion of Theorem
0.1 holds.

For the proof of Theorems 0.1 and 0.2, we refer to [13]. In Section 1, we deal with 27x7-
periodic solutions of (HS); we introduce a variational formulation and minimax procedure
and we prove the existence of 2rT-periodic solutions zr(t) of (HS). At the same time, we
obtain uniform estimates (from above and from below) of corresponding critical values.

In Section 2, we get uniform estimates of zp(t) and pass to the limit as T — oo and
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complefe the proof of Theorem 0.3. Finally in Section 3, we give a proof to Proposition
1.1; we study properties of the operator J Edt' + A, especially, the L?-boundedness of some
projection operators related to J ;f? + A. These properties are used in Sections 1 and 2

without proof.

1. 2xT-periodic solutions of (HS)

In this section we study the following problem:

z=JH,(t,z), in R

z(t+27T)=z(t), In R (B5-T)

where T € N.
There is a one-to-one correspondence between solutions of (HS:T) and critical points

of the functional:

1 2aT . 27T
Ir(z) = —-—/ (J z,z)dt — H(t, 2(t))dt
2 0 0 (1 1)
L a0 |
- 2/0 ( J ’ ) o 3 .

So we will seek for a nontrivial critical points of Ir(z).
In what follows, for p € [1,00) we denote by L} ;. the space of 2aT-periodic functions
R — R whose p-th powers are integrable on (0, 277"). We use the notations

27T 1/p
nan;,T=(/0 | 2(t) P i)V, (1.2)

and

2T
(2, 0)gar = /O (2(8), w(t))dt (1.3)

for z € L} 1 and w € L] _, with %-}- ;11- =1.
Let ®orr = —(J £ + A) 1 D(®2x1) C L2,7 — L%.1 be a self-adjoint operator under

periodic boundary conditions. In Section 3 we will see
(—=a,a) No(Parr) =0 for some a > 0. (1.4)
We consider the absolute value | ®9,7 | of @2, and let

E27rT = D(I ¢21rT |1/2)
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and

“z”E21rT = ” l Porr l1/2 z”[,gﬂ, for z € Eqrr.

By (1.4), Eax1 has an orthogonal decomposition:
E2”T = E;‘A’T b E2_1rT (15)

where the quadratic form: z +— (®axr2, 2)2.7 Is positive (resp. negative) definite on E .
(resp. E,.7). We denote by
Piir: Eoxr — Egg (1.6)

the corresponding orthogonal projections. Then we have

(R2r72, 2)2xr = || Pohrzlll,r — | Poarzlls,,, for all z € Ener. (1.7)

We can see

1 2xT
Ir(z) = “(‘I’szZ, z)axT — A W(t, z)dt

2xT

| .
1Pl = 5P llbn = [ WE )

The following properties of Fqrr and P;;T will be proved in Section 3.

Proposition 1.1.
i) Let HY2 be a completion of span{ae’’t/T + @e="tT; j € N, a € C*" } under the
2=T
norm

|J
el = 207 Y0+ L oy p

JEZ

where

(t)—Za T (a; € C?N, a_j =7;).
j€Z

Then Ezrr = H;,{; and there are constants co, ¢y > 0 independent of T € N such
that

collzll girz < llzllEzer < collzllgara (1.8)

for all z € Eorr.
(i) For any p € [2,00), there is a constant ¢, > 0 independent of T € N such that

lzllzz . < cpllzllpanr  for all z € Epgr. (1.9)
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Moreover, the embedding Eyrp — LY 1 is compact for all T € N and p € [2,0).
(iii) There is a constant ¢ > 0 independent of T € N such that

lzllzee < cl|@2rrzllzz , for all z € D(| Porr |). (1.10)
(iv) For any p € (1,00), there is a constant ¢, > 0 independent of T' € N such that
|Pyrallce . <Tllzlize for all z € Eaer. (1.11)

By (1.7) and (ii) of Proposition 1.1, we have Ir(z) € C*(Ezr,R). Moreover we
have the Palais-Smale compactness condition. This condition is required when we apply

minimax methods to Ir(z).

Proposition 1.2. Ir(z) satisfies the following Palais-Smale compactness condition:
(P.S.) Whenever a sequence (z;)$2, in Eq.r satisfies for some M > 0,

| It(z) IK M for all j,
If;'(zJ)'—)O in E;’R’T B.Sj-")OO,
there is a subsequence of (z;)2,; which converges in Ezr.

Proof. Asin [8, Chapter 6]. |
To find a nontrivial critical point of I7(z), we use the following proposition which is
a special case of a theorem of Rabinowitz [8, Theorem 5.29].
In what follows, B,(E) denotes the open ball of radius r in a Hilbert space E and
0B, (E) denotes its boundary.

Proposition 1.3. Let E be a real Hilbert space with an inner product (-,-) . Suppose
E admits an orthogonal decomposition E = E* @ E~ and I(u) € C'(E,R) satisfies the
Palais-Smale compactness condition and the following conditions:
1° I(v) = ¥(P*u— P~ u,u) + b(u), where P* : E — E* are the orthogonal projectors,
b'(u) Is compact,
2° there are constants m, p > 0 such that I |aB,,(E+)Z m, and
3° there is an e € 3By (EY) and R > p such that

I|an<0

where N = {u+re;u € Bp(E™), 0 <r < R}.

Then I(u) possesses a critical value b > m which can be characterized as

b= ;g{,jg}gf(h(l,u)) > m,
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where

I = {h € C([0,1] x E, F); hsatisfies (I';)~(T3) }.

Here
(T'1) h(0,u) =u for allu € N,
(Ts) h(t,u) =u foru € ON and t € [0,1], and
(T3) h(t,u) = PGP =P )y 4 K(t u), where § € C([0,1] x E,R) and K is compact.

We will apply the above proposition to I = I, E* = E;rT and e = ey = Pz‘trTcp, where
¢ € C((0,27), R?Y) is a function such that

/%(( Ji—A) o)t > 0.

(We extend ¢ to (0,27T) — RN by setting ¢ = 0 on [27,27T) and we regard it as a

27 T-periodic function on R.)

Lemma 1.4. (i) There are constants ay, a; > 0 independent of T € N such that
a1 < |ler||lgyor < a2 forall TEN. (1.12)
(i) For any p € (1, 00), there are constants ag ,, a4, > 0 independent of T € N such that
azp < |lerllrr < a4, forall TEN. (1.13)
Proof. (i) For any T € N, we have

ler &, e = 1PserellEsr 2 IPsrr@llEs.r — IPsrr@llEs,,

= (PoxT ) P)2rT

27 d
= / ((=J = — A)p, p)dt = a? > 0.
0 dt
This shows the left hand side inequality of (1.12). Using (1.8), we have

lerliE, .. = 1 Porr@llEsr < llelE, .

< Co”SO”Hl/z < Co||80”H1

2%
= cf i (o> + |9 )dt =a} < 0.

Thus we get the right hand side inequality of (1.12).
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(i1) By (1.12) and (1.9), we have the right hand side inequality of (1.13). To get the left

hand side inequality, we observe for ;7 % =

27 d 1/(1 d
+
1Pl ([ 1G5+ Dl dt) > (P, = + A)ehaer

zwruE+Ame=L”wJ%—Aw&wt

Hence we have

d 2% d “1/‘1
WﬂgTZ(o((J——AWMMQ(L G+ Dplidt) =, >0

We remark that er # 0 follows from Lemma 1.4.

Next we verify the assumptions 2° and 3° of Proposition 1.3.

Lemma 1.5. There are constants p, m > 0 independent of T' € N such that
Ir(z) >m for all z € Ef ;. with ||z||g,.» = p- (1.14)

Proof. For z € Ef 1, we have form (W4”)

1 . 2=T
1) = el - [ W

1
> lellt,r = kallolly
~

y (1.9), .
Ir(2) 2 5lzllE,,, — 2% [E1
Choosing p = (Bkacs) /=2 and m = (% — %)(,Bkzcg)-ﬂ(ﬁ'?), we get (1.14). |
Lemma 1.6. There is a constant R > 0 which is independent of T € N such that

I|on <0,

where

Nt r={u+rer € Eyyr;u € Br(E;;), 0 <r < R}

Moreover there is a constant M > 0 which is independent of T' € N such that

sup It(2) <M forall TEN. (1.15)
2€NT,R
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Proof. For z =u+rer (u € E;, 1, r > 0), we have from (W3) that

r2 1 22T
IT(“ + reT) = ?“eT”%mrT - 5“““272,@ - o W(t’ u+ reT)dt

r 2 1 2
< ‘2—”€T“E2,,T - 5”“”132,7 — ko ||u + TeT”%gﬂ,'

By (1.11), we have

rller|lzs . = [[Pshp(u+rer)llrs . < Collu+rer|lra .

Thus we have

r? 1 - \-
Ir(utrer) < Fllerllgae = Glullear — ki)™ rllerllis

We can easily deduce the desired result from Lemma 1.4. |

Now we can apply Proposition 1.3 to Ir(z) and we get

Proposition 1.7. For any T € N, there is a nontrivial critical point zr(t) € Eor7 (L€, a

solution of (HS:T) ) and its critical value br = Ir(zr) is characterized as

br = inf sup Ir(h(1,2)) > m >0, (1.16)
h€T'r ze N7 r
where I'r is defined in a similar way to I'. Moreover there are constants m, M > 0
independent of T € N such that

m<br=Ir(z2r) <M forall TEN. (1.17)

Proof. We need only to prove the right hand side inequality of (1.17). Since id € I'7, we
have from (1.16) that

br < sup Ir(z).
z2€NT R

By (1.15), we obtain (1.17). |
Remark 1.1. A regularity argument shows zr(t) € C}(R, R?*"). (c.f. Chapter 6 of [8].)

Thus by Proposition 1.7 we obtain 27 T-periodic solutions z7(t) of (HS) with properties
(1), (ii) of Theorem 0.1. In the following section, we verify the compactness property (iii)
of Theorem 0.1 for (z7(f))ren-
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2. Uniform estimates and limit process for zr(t)

In this section, we consider the behavior of 27 (¢) as T' — oo. Firstly we establish some
uniform estimates for zr(t) and secondly we pass to the limit as T' — oo and complete the
proof of Theorem 0.3.

In what follows, we denote by C, Cy, C1, - - - various constants which are independent
of T € N.

2.1. Uniform estimates for zr(t)
Let zr(t) be a solution of (HS) obtained in Proposition 1.7; especially zr(t) satisfies

Ir(27) =0, (2.1)
Ir(zr) € [m,M] forall TeN. (2.2)

The following lemma provides uniform estimates of zr(¢) from above.

Lemma 2.1. There is a constant C' > O‘independent of T € N such that
lzr||Esr < C forall TEN. ' (2.3)

Proof. We write 27 = 2% + 27 € E} . @ E; .. We have by (2.1), (2.2) and (W2)

1
M 2 IT(ZT) - 5[}(2]1)2’1“

2«T
1
= / ((§Wz(t,ZT),ZT) - W(t, ZT))dt
0
p 27T
>(5-1) W(t, zr)dt.
2 0
Thus we get
27T
W(t) ZT)dt < Cl;
0
le.,

lzrlizg,, < Co. (2.4)

2xT —

On the other hand, we have

22T
0 =Ip(2r)(zf — 27) = l|2rllg,.. — /0 (W, (t, 21), 2F — z7)dt,

1.e.,

. 27T
lerlly,.. = [ (W, (4, 20), 2F — 77)dt.
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Remarking 325 € (1,2), we have from (1.9)

lzrll%,.r Wt 20)ll are-vll2F — 27 || jara-s+n)
2xT ‘ 2xT
< C'aHWz(i,ZT)IIngg,ﬂ-1>||Z$ — 27 || Eznr
= G||W. (8, 21 )| posp-v ot || E2er

lLe.,

”zT“szT < CSHWZ (t, zT)”L;:;ﬂ—l).

By (W4”),

“ZT ”sz'r < C‘i”zT ”f,;;:q, .

From (2.4), we get

-1
27|l £s0r < Cacy ™
Therefore we get the desired result. |

Corollary 2.2. There is a constant M > 0 independent of T € N such that
lzrllcymrevy < M forall T€N. (2.5)
Proof. By (iii) of Proposition 1.1, we have from ®or12r(t) = —JW, (¢, zr(t)) that

lerllze < cll®errerliz,,
= c||W.(t, zr)llzz_,
< ckallzr |1} 26—y
2xT

B-1

-1
< chachigyyllor g e

Thus we can get ||zr||re < C from (2.3). Since zr(t) satisfies (HS), we get (2.5). i

Next we obtain uniform estimate of ||zr||Le from below.

Lemma 2.3. There is a constant 6 > 0, which is independent of T € N such that
lz7|lLe > 6 forall TE€N. (2.6)
Proof. By the assumption (W4”), for any ¢ > 0 we can find a §. > 0 such that

| W.(t,2) |<e|lz]| for |z]|<6.. (2.7)
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Suppose that ||zr||zgs . < 8. Then, using (2.7), we have as in the proof of Lemma 2.1

27T
lzrlly,., = / (Wa(t, 1), 2F — 25 )dt

2zT
Se/ | 2| 2 — 27 | dt
4]
2
<elarllzs

< ecsllzrl|E,,.

Choosing € € (0,1/c2), we have zr = 0. But this contradicts with Ir(zr) > m > 0.
Therefore we have (2.6). |

2.2. Limit process for zr(t) — Proof of Theorem 0.3
We can find a sequence ({1)ren of integers such that

terfg%r] [ zT(? + 27lr) |= max | zr(t) |€ [6, M]). (2.8)

We remark that z7(t) = 27 (¢ +2n¢r) is a solution of (HS) satisfying (i), (ii) of Theorem 0.1
and IT(27) = IT(zr). In what follows, we show that (27(t))ren possesses the compactness
property (iil) of Theorem 0.1.

By Corollary 2.2, we can extract a subsequence from any given sequence of integers

T, — oo — we still denote it by T,, — such that
71, = 71, (1 + 27lr,) — z0(t) in Cj,(R, R*Y), (2.9)
where 2z, (t) € C*(R, R2?") is a solution of (HS). The following Lemma 2.4 completes the

proof of Theorem 0.3.

Lemma 2.4. z(t) satisfies the following

(1) zoo(t) # 0.
(i) 2oo(t) € LP(R, R2N) for all p € [2, ).
(ii1) | 2o (2) |, | Zoo(f) |— 0 as | £ |— oo.

Proof. (i) By (2.8) and (2.9), we have

o | zoo () |=f§§| Z0(t) | € [6, M]. (2.10)

Therefore we have (i).
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(i1) For any R > 0 and p € [2, 00), we have from (1.9)

R R
/ | 200(t) JP dt = lim / | oz (¢ + 2mtp ) P dt
R nmJ-R

: p
< limsup llzrlize

< Climsup “zT”II’Ssz
T—oo
< Cy.
Since C, > 0 is independent of R > 0, we get (ii) for p € [2,00). For p = oo, (ii) follows
from (2.10).

(iii) Let F, (resp. F,) be a stable (resp. unstable) subspace of the flow defined by z = J Az,
ie, RN =F,® F,, F, and F, are invariant under JA and

| etz |< Ce™® for t>0and z € Fi,

(2.11)
| e—t(JA)y |< Ce™® for t >0and y € F,

where C' > 0 and a > 0 are constants independent of # and y. Since z(¢) is a solution of
(HS) on R, we have

t
Zoo(t) = Gt(JA)ZO +/ e(t_r)JAPsJWz(T’ ZOO(T))dT :
oo (2.12)
_ / E=TIAP, TW, (7, 200 (7)) dT
, .

for some z € R2Y. Here, 13, : R?Y — F, and ﬁu © RN —'F, are projections. By (i1)
and (W4”), we have z,(t) € L*(R, R*") and W, (¢, 2 (t)) € L*(R, R?>"). Hence we see
by (2.11) that

t ,

/ et=TIAD JW, (7, 200 (7))dr € L*(R, R*Y),

/ e(t_T)JAIBuJWz(T, 2eo(7))d7 € LE(R, R¥Y).
t

On the other hand, we have e!(/4)z ¢ L2(R, R?M) for z # 0. Thus z, = 0 follows from
(2.12). Therefore we can easily deduce from (2.12) that z,,(¢f) — 0 as | ¢ |— oco. Since
Zoo(t) satisfies (HS) we have

Zoo(t) = JTH, (1, 200(t)) = 0 as |t ]|— oo.

Therefore the proof is completed. |
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3. Proof of Proposition 1.1

This section is devoted to prove Proposition 1.1. Using Fourier series, we have the following

representation of ®4,7

(Prer2)(t) = Y (=] — A)ajelit/T (3.1)
JEZ
where
z(t) = Zaje‘jt/T (a; € C*N with a_; = @7). (3.2)
i€z
We also have’ ,
Itz =22T ) la; I*. (3.3)
JEZ

We remark that span{ae‘jt/ T 4 Ge'it/ T.q e cWV } is invariant under @y, for all j € N
and Eyrr = D(| ®2x1 |1/?) can be written '
ij _ i
Bory = {2z = Zajeu/T; l2ll%,., = QWTZH =7 +A]aj,05) <oo}. (3.4)
JEZ JEZ ’
where (:c,y) = ZZZI mk?/_k for z = (mla R II}2N), y = (yl’ Tty yZN) € CzN' Note th‘a’t
—i8J — A (8 € R) is a 2N x 2N Hermitian matrix and we can define | iJ + A |: C?V —
C2N.
By the assumption (A), we have _
0go(—i0J—A) forall deR. (3.5)

We can see that —ifJ — A has N positive eigenvalues and N negative eigenvalues (counting

multiplicities). In fact, eigenvalues are solutions of

det(A + (i6J + A)) = 0.
By (3.5), we can see the number of positive (or negative) eigenvalues is independent of
¢ € R. Dividing by § > 0, it equals to the number of positive (or negative) solutions of

det(A+ (i + 34)) = 0.

Passing to the limit as § — oo, we see it equals to N. We denote the eigenvalues of
—i8J — A by Aj(f) < --- < A7(0) < 0 < AH () < -+ < X}(9) and the corresponding
eigenvectors by £y (0),- -+, &7 (8),&F(8), - - -, €5 (8). We remark

A5 (=6) = X5 (6), (3.6)

and

& (=0) =0 (3.7)
forallé e Rand k=1,---,N.
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Lemma 3.1. Under the assumption (A), there are constants ¢, ¢’ > 0 independent of
# € R such that
c(1+16) I AF () IS (1+181]) (3.8)

foralld e R andk=1,--- N.
Remark 3.1. (1.4) follows from (3.8).

Proof. Since A¥(0) is a solution of
A
det(5 + (i + %A)) =0,

it is clear that

|
On the other hand, by (3.5) we have

+
a\%l—el as | 8 |— oo. (3.9)

0 <inf{| Ag(8); |6]|< L, 1<k< N}

A (3.10)
<oup{| XE(8) | 10]< L 1< k< N} <oo
for any L > 0. Combining (3.9) and (3.10), we get (3.8). |
Now we can prove (i), (ii), (iii) of Proposition 1.1.
Proof of (i) of Proposition 1.1. By (3.8), we have
1l i ¥
e+ g Pe S0 Lo+ atea) <o T+ L o .
J€Z J€EZ JEZ
Thus by the definition of Hz||H1/z and (3.4), we get (1.8) and Eq,r = Hzlﬁw |
Proof of (ii) of Pr0p081tlon T.1. Tt is suffices to prove
1/2
lzllzs,, < eollzllgis for = € HylT. (3.11)

For z(t) of form (3.2), we have from Hausdorff-Young’s inequality and Holder’s inequality,

lzllzs ., < @aD)VP(Y | a5 |0

J€Z
J =g/ (2—q)\ (2—0)/2 ]
s(sz)””(Z(HIT') o/ (2-a)y (2=} "(Z(H%na,- 2)H?
JEZ JEZ

2(1_{_‘,}') q/ (2- q)<1+/(1+ I) 1(2=Dds =1 4 ,T,
Jj€EZ
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we get (3.11). v |
Proof of (iii) of Proposition 1.1. In a similar way to the proof of (i) of Proposition

1.1, we can see for some constants c, ¢’ > 0,

cllzllery, . < I@2rrzllzz , < 2l for all z € D(®axr). (3.12)

22T —

Here

2xT
lelfy,, = [ (ul?+ 1 P
* 0

|j]
= 27(‘sz€;(1 + —T—)2 | a; !2 .

As in the proof of (ii) of Proposition 1.1, we get

llzlle < &"llzllmy, (3.13)

where ¢ > 0 is independent of T € N and z € D(®,7). Combining (3.12) and (3.13), we
get (iii) of Proposition 1.1. |

Next we give a proof to (iv) of Proposition 1.1. We write PE, : Earr — Ei,
by means of Fourier series; let Q;t be a matrix associated to the projection C*V —
span{¢;(8); 1 < k < N}. Then we can see form (3.1)

(Prar2)t) =) _(QFpa;)etIT (3.14)
JEZ

for z(t) of form (3.2). By (3.6) and (3.7), we remark
Q:_tj/Ta__j = Q;E/Taj forall j€Z.
We can easily see that from (3.14) that

+
”P21T2”L§'T S ”z”Lg”TJ (3 15)
+ ' .
”P21(TZ||E2,|-T S ”Z”EZTT

for all z € Forr.

To prove the continuity of P,iT : L% .+ — LY. 1, we introduce the following operator
P
Py : L3, — L,

defined by . :
(Porr 2)(1) = D _(Q 7 a;)e™" (3.16)

JEZ
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for
z(t) = Zajeijt (a; € C?N with a_; = ;).
Jj€Z
Since N
sup{llPErzllze. ;2 € Do lollzz., <1}
—— (3.17)
=sup{||Porr 2|1z ; 2 € L}, |l2llzz <1},
we estimate the right hand side instead of the left hand side. We relay on the following
Ste¢kin’s theorem (Theorem 3.5 of [3]).

Proposition 3.2. Let (¢(j))jez be a function of bounded variation on Z. Then for each
p € (1,00) the operator

(Ty2)(t) = _ ¢(j)aje’’t for 2(t) =) a;e*

JEZ JEZ

is continuous as L}, — L% . Moreover there is a constant C, > 0 independent of ¢ such
that
| IIsup I Tszllrz < Cp max{| $(0) |, Var ¢} (3.18)
z ngzl

Proof of (iv) of Proposition 1.1. We apply Theorem 3.2 to (3.16). By (3.17) and
(3.18), we need only to prove the existence of Cy > 0 such that

Va,r(Q;k/T) <Cp forall TEN. (3.19)
We have N . .
Var(Qjir) = X 1 QG e ~ Qe |
ez 10t (3.20)
< —£ | df.
<[ 1%
In what follows, we see the right hand side is finite (clearly it is independent of T' € N).
+
We deal with only “+” case. The case “—” is treated similarly. First we prove floo | d—?(;ﬂ- |
df < .

Since Q'J is a projection operator corresponding to —ifJ — A, it is also corresponding
to —iJ — %A. By Lemma 3.1, we can find constants @, b > 0 independent of 6 € [1, c0)

such that N
o< 4O

<b forall #€[l,00)and k=1,--- N.
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Since A{ (8)/6 are eigenvalues of —iJ — > A, we have

QF = 2; (C+zJ+§A) ldc.

Here, v is a cycle in the right half plane {z € C; Rez > 0} which surrounds the interval
[a,b]. Thus

dQ;. _ 1 -2 B 1 -1 . 1 -1
"Zz’o“é}'{/f (C+il + AV A +iT + 3A)7dC.

Hence we have

Loy e i< 067,

d
g [l i

where C' > 0 is independent of # > 1. Therefore we have

/ | =t dQ" | df < oo. | (3.21)

1

Using representation

1 . _
Q= %A,(C+20J+A) Ld¢,

where v is a cycle in {z € C; Rez > 0} surrounding the set {£f(0); k=1,---,N, |0 |<

1}, we obtain
1 d ;—
/_1 7] : (3.22)

Similarly to (3.21), we obtain

-1 +
/ | -(%— | df < 0. (3.23)

Combining (3.21)-(3.23), we obtain

[m|w‘“<”

Thus we obtain (3.19). |
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