goooboooogn
g 7700 19910 129-139

129

A levelsurface approach to motion of hypersurfaces

AT #% it — (Shun’ichi Goto)

We consider the motion of a hypersurface whose speed locally depends
on the normal vector field and its derivatives. Let I); be a open set in
RN (N 2 2) and I'; = 0D, (generally a closed set in RN \ D; containing
D). Let n denote the unit exterior normal vector field to I'y. It is
convenient to extend 7 to a vector field (still denote by =) on a tubular
neighburhood of T'; such that n is constant in the normal direction of T;.
Let V = V(t,z) denote the speed of I'; at x € I'y in the exterior normal
direction. The family {(I'y, D¢)}+»0 satisfies the initial value problem:

(1a) V= f(?i,vﬁ’) on I'y,

(1b) (rt,Di)|i=0 — (Fo,D()).

Here f is a given function and V stands for spatial derivatives. More gen-

erally, the equation is

V = f(t,z,7,Vn) onT;.
A typical example is the mean curvature flow equation
(2) V =—divn.

A fundamental analytic question to (1a,b) is to construct a global-in-

time unique solution family {(T';, Dy)}i50 for a given initial data (T'g, Dy).
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In material science I'; is an interface bounding two phases of materials. It

is also important to consider anisotropic properties of materials. A typical

model (see [Gul, 2]) is

N
0 O0H -
o axz(yp;(n))-lhca

B(n)V = -

where 3 is a positive function on a unit sphere in R™, H is convex and
positively homogeneous of degree one and c¢ is a constant. This equation

includes (2) as a particular example with § =1, H(p) = |p| and ¢ = 0.

For the mean curvature flow equation (2) Huisken [H] constructed a
unique smooth solution which shrinks to a point in a finite time provided
that N > 3 and I'g is uniformly convex, C? and compact. A similar result
was proved by Gage and Hamilton [GH] when N = 2. Moreover, Grayson
[Grl] proved that any embedded closed curve moved by (2) never becomes
singular unless it shrinks to a point. However, for N > 3 even embedded
surface may develop singularities before it shrinks to a point. For example,
a barbell with a long and thin handle actually becomes singular in the

middle in short time (see [Gr2]).

Therefore, Chen, Giga and the author [CGG] introduced a weak notion
to construct a unique evolution family even after the time when there appear
singularities (see also [GG] and for the special case (2) [ES]). When the
initial data (I'g, Do) are bounded, the problem has been studied in [CGG].

In this note, we discuss the evolution for unbounded initial data.

Our approach is to describe a surface I'; as a level set of a function u
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satisfying an initial value problem

(3a) du + F(Vu,Viu)=0 in RY,

(3b) u(t, z)|i=o = a(z).

Here F' is determined by f and a is a function denoted I'y as a level set.
We use the viscosity solution to construct a solution of (3a,b). The method
of viscosity solutions was introduced for weak solutions of Hamilton-Jacobi
equations and extended to fully nonlinear degenarate elliptic equations (for

example, see [I]).

Let u be a real valued function on (0,00) x RY such that u > 0 in D,
and u = 0 on I';. We call u a definition function of (T';, D;). If u is C? and

Vu # 0 near I'y, we see

Qﬁ(vzu)

V'U, —
n=—-————->= onl}.

4 n=-
) "= V) V]

Here p = Vu/|Vu| and Q5(X) = R XR; with R =1 —p® p, and X is an
N x N real symmetric matrix and I denotes the identity matrix. It follows
from (4) and V = 0yu/|Vu| that (1a) is formally equivalent to (3a) on T’
with

QX))

G) F(p, X) = —|plf(-p, - 7] =

lpl’
where p is.a nonzero vector in RY. We note that the equation (3a) is

singular at Vu = 0. A direct caluculation shows that F' has the scaling
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invariance
6) FOp,AX+pQy+y®p)=AF(p,X) for A\>0, ye RV,

We say F' is strongly geometric if F' satisfies (6). Recently, Giga and the
author shown f is (essentially) uniquely determined by F' (see [GG]).
We define a € By if a € C(RY) and there are a constant Ky > 0 and

a modulus function mg such that
la(z) —a(y)| < Ko(lz—y|+1), la(z)—a(y)| < mo(lz—y|) forz,ye RY.

Here we say a function m a modulus function if m : R — R, m(0) = 0 and
m is nondecreasing. Similary, we also define u € B if u € C([0,00) x RY)
and for any T' > 0 there are a constant K7 > 0 and a modulus function

mr such that

|u(t, z) — u(t,y)| < Kr(lz —y| +1)
for0<t< T, z,ye RY.
|u(t, z) — u(t,y)| < mr(le - yl)

DEFINITION:  Let Dy C RY be a open set and I'g ¢ RY \ Do a closed set
containing dDy. Let a € By be a definition function of (I'g, Dy). A family
of closed sets and open sets {(I'y, Dy)}450 is a “weak solution” of (1a,b) if

there is a definition function u € B of (I'y, D;) and u is a viscosity solution

of (3a,b).

First, we discuss the initial value problem (3a,b). We assume the fol-

lowing conditions (F1)-(F6).

(F1) F: RN\ {0} x Sy — R is continuous,
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where Sy denotes the space of real N X N symmetric matrices.

(F2) F is degenerate elliptic, i.e., F(p,X) < F(p,Y) for X > Y.

(F3) —o§ < F4(0,0) = F*(0,0) < oo,

where F, and F™* are the lower and upper semi-continuous relaxation of F,

respectively, i.e.,

F.(2) =1iﬂr)1 | infI F(w), z€ RN xSy
€ w—2|<¢e
weRN\ {0} xSy

and F* = —(—F}).
(F4) sup{|F(p, X)|;0 < |p| € R,|X| < R} < o0 for every R > 0.
(F5)

F is geometric, i.e., F(Ap, AX + op® p) = AF(p,X) for A >0, 0 € R.
(F6) Fu(p,—I) < wlp|, F*(p,I)> —w|p| for some 1 > 0.

Then we have the following

THEOREM 1.  Suppose that (F1)-(F6) hold. Let a € By. Then there is a

unique viscosity solution u € B of (3a,b).

Assumptions (F1)-(F4) needs to prove the following comparison prin-

ciple, which is an important tool in the notion of viscosity solutions.
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LEMMA 2([GGIS]). Suppose that F satisfies (F1)-(F4). Let u and v be,
respectively, viscosity sub- and supersolutions of (3a) in Q = (0,T] x RN
(T > 0). Assume that

(A1) u(t,z) < K(|z|+1), v(t,z)> —K(|z|+1) onQ for some K > 0;

(A2) u*(0,z) — v.(0,y) < K(Jx —y| +1) on RN x RY for some K > 0;
there is a modulus function mr such that

(A3) w*(0,z) — v.(0,y) < mr(|lz —y|) on RN x RV.

Then there is a modulus function m such that

w*(t,z) —ve(t,y) < m(|z —y|) for0<t< T, z,y € RY.

In particular u* < v. on Q.

We recall one of equivalent definitions of viscosity sub- and supersolu-
tions of (3a). A function u : @ — R is called a viscosity sub- (resp. super-)
solution of (3a) in @ if u* < oo (resp. us > —o0) on Q and

T+ Fu(p,X) < 0 for all (r,p,X) € PgTu*(t,z), (t,) € Q

(resp. 74+ F*(p,X)> 0 forall (1,p,X) € ’Pé’_u*(t,x), (t,z) € Q).
Here ’Pé’“Lu*(t,a:) is the set of (7,p, X) € R x RN x Sy such that

w*(5,9) <u*(6,2) + 7(5s = 1) + (py = 2) + 5(X(y — 2),y — 2)

o(ls —t| + |y — 2*) as(s,y) — (t,2)inQ,



135

where (,) denotes the Euclidean innerproduct; similarly, 'Pé’_u*(t,x) =

—Pgyt (—u(t, z)).

We construct viscosity sub- and supersolutions of (3a,b), Which‘leads
to existence of a viscosity solution of (3a,b) by Perron’s method. Using
assumptions (F5)-(F6) and some properties of viscosity solutions we show
an outline of construction of sub- and supersolutions (in detail, see §6 in
[CGG)).

We set

Edl

uwE(t,z) = £(t + o0 ).

A direct caluculation shows that u~ (resp. u™t) is a C? viscosity sub- (resp.

super-) solution of (3a) in R x RN. For u* we set
UA(t9) = hut (s, — ), €€ RY,

where h is a continuous nondecreasing function in R. Then Ug, (resp. U g;z)
is a sub- (resp. super-) solution of (3a) in R x RN.

Since u~ (resp. —u7T) is decreasing in |z| and t, for all £ € RY the
continuity of a -guarantees that there is a continuous nondecreasing -function
h = he : R — R with h(0) = a(¢) such that Ug, < a(z) (resp. Ug;L(t,:c) >
a(z)) for t > 0. Since Ug, (resp. Uth) is a sub- (resp. supér—) solution of

(3a), we see the function

v (t,z) =sup{Ug(t,z); h = he, € € RN} < a(2)
(resp. v (t,2) = nf{UL (1, 2);h = he,€ € RV} > ()
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is again a sub- (resp. super-) solution of (3a) in [0, c0) x RY, which is lower

(resp. upper) semi-continuous and satisfies

v <a<vt fort>0 and vt=a att=0.
To apply Lemma 2 we introduce “barrier functions”
pE(t,z) = £K(|z| + 1 + wot).
We see ¢~ (resp. ¢*) is a sub- (resp. super-) solution of (3a). We set
f=max(v™,¢7), g¢=min(vT,¢").

Then f (resp. g) is a sub- (resp. super-) solution of (3a,b). By Perron’s
method there is a viscosity solution u, of (3a,b) with f < u, < ¢. Since
u, satisfies (A1)-(A3), we apply Lemma 2 and see that u, uniquely solves
(3a,b) and u, € B. This completes the proof of Theorem 1.

We set
Iy ={z € RN;u,(t,z) =0}, D;={z € R";u,(t,z) > 0}.

Then {(T'y, Dy) }+»0 is a weak solution of (1a,b). Our goal is to show that
{(T'y, D¢) }4>0 is uniquely determined by (I'g, Dg). To do this we need the
comparison lemma (Theorem 5.2 in [CGGJ; if u is a viscosity sub- (super-)
solution then @(u) is so, provided that 6 is continuous and nondecreasing)

and the following



137

LEMMA 3. Let a,b € By be definition functions of (Dy,g). If b satisfies

7 liminf b(z) >0 forevery o> 0,
( ) |z| —o0,x€Do,z¢l'g ( ) 4

where I'§ = {z € R";dist(z,I'0) < o}. Then there is a continuous (strictly)

increasing function 6 : R — R such that

a(z) < 0(b(z)) in Dy with 6(0) = 0.

This lemma is proved similar to one of Lemma 7.2 in [CGG]. We set,

forr > 0,
ai(r) = sup{a(z);z € Dy, dist(z,y) < 7},
bi(r) = inf{b(x); z € Dy, dist(z, o) > r}
or
a(ry=ai(r)+r, b(r)= bl(r)r _T_ T

which are increasing and satisfy

a(0) =b(0)=0, - a(r),b(r)>0 forr >0,
a(z) < a(r), b(z)= b(r) for z € Dy,dist(z,I) = 7.

The property b(r) > 0 for r > 0 follows from (7). The function § = @ o b~
is increasing on [0, 00), then we proved Lemma 3.
We note that our definition function a of (I'g, Do) satisfies (7) if a is
the signed distance function, 1.e.,
dist(z,Tg) for xz € Dy
a(z) =
—dist(z,To) for z € RN \ Do.
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Finally, we state the existence theorem for the initial value problem
(la,b). We rewrite our conditions in terms of f where F is of the form (5)

(see [GG]). The condition (F1) is equivalent to
(f1) f : E — R is continuous,

where E = {(p,Q3(X));p € S¥~1,X € Sy}. The condition (F2) is clearly
equivalent to ‘

(f2)  f(=p,—-Qs(X)) = f(—p,—Qp(Y)) for X > Y,pe SN

This condition means that —f is degenerate elliptic. The conditions (F3),
(F4) and (F6) follow from

P
— inf pinf f(—p, —22P) < oo,
) 0<p<1 |p|=1
_I+5®p
— sup psup f(—p, — =Ly > —oo

0<p<1 |p|=1
This condition is fulfilled if f(p,AZ) = Af(p,Z) for A > 0,(p, Z) € E. The
condition (F5) holds automatically. Then we have the following

THEOREM 4.  Suppose that (f1)-(f3)-hold. Let Dy C RN be a open set
and Ty C RN \ Dy a closed set containing 8Dg. Then there is a unique
weak solution {(I'y, Dy)}4>0 of (1a,b).
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