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Singular Sets of Energy Minimizing Maps

Fang Hua Lin

0. Introduction

Let $(M,\gamma)$ be a smooth, compact Riemannian manifold with smooth, possibly emp-

ty, boundary $\partial M$ , and let $(N,g)$ be a smooth, compact Riemannian manifold without

boundary. The energy of a map $u$ : $Uarrow N$ is defined by

(0.1) $\mathcal{E}(u)=\int_{M}e(u)$

Here the energy density in local coordinate system $(x_{1}, \ldots , x_{n})$ of $M$ is given by

(0.2)

As usual, $H^{\underline{1}}(J/t, N)$ denotes all whose maps $v:Marrow N$ such that $\mathcal{E}(v)<\infty$ .

A map $u\in H^{1}(M, N)$ is called almost-minimizing if there is an $R>0$ such that

(0.3) $\int_{B_{r}(a)}e(u)\leq(1+cr^{\beta})\int_{B_{r}(a)}e(v)$

for all $a\in M,$ $r\in(0, R)$ and $v\in H^{1}(B_{f}(a), N)$ with $v=u$ on $\partial B_{r}(a)$ , where $c$ and $\beta$

are positive constants, and, where $B_{r}(a)$ is the geodesic ball of radius $r$ and centered at

$a\in\lambda f$ .

Next we define

(0.4) sing$(u)=$ { $x\in M$ : $u$ is not continuous at $x$}.

Following the theory of Schoen-Uhlenbeck [SU] and Giaquinta-Giusti [G], one has

Theorem A. If $u\in H^{1}(M, N)$ is almos $t$ -minimizing, then sing$(u)$ is of Hausdorff
dimension $\leq n-3$ .
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On the other hand, we remark that there are smooth maps $g_{N}$ : $X^{n-1}arrow ff^{2}$ such

that solutions of

(0.5) $\min$ { $\int_{B^{n}}|\nabla v|^{2}dx:v\in H^{1}(B^{n},$ $X^{2}),$ $v=g_{N}$ on $ff^{n-1}$ }

are not smooth. Moreover, the singular sets have at least $N$ disconnected components of

positive $(n-3)$-dimensional Hausdorff measure, for any $N\in Z^{+}$ given (cf. [HL]).

Here we have the following

Theorem B. Let $u:Marrow ff^{2}$ be an almost-minimizing map. Then sing$(u)$ consists of
a union of a finite set and a finite family of $C^{0,\alpha}$ closed curves with finitely many crossings

provided that either $\partial M=\emptyset$ or $u|_{\partial M}$ is smooth when $\partial M=\emptyset$ .

In fact, the above theorem is valid when the target manifold $N$ is homeomorphic to

$ff^{2}$ and when the metric $g$ on $N$ is sufficiently clsoe to the Euclidean metric on $ff^{2}$ in the
$\mathscr{O}^{1}$ -norm.

Acknowledgment. The main result of the paper is obtained in ajoint effort with Robert

Hardt (see [HL3]). The author wishes to thank Professor N. Kikuchi for the invitation to

this symposium and his warm hospitality.
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1. A list of known facts.

It was first shown by C. B. Morrey that energy minimizing maps from a 2-dimensional

domain are smooth. The same is true when maps are stationary (see [S]). Recently,

F. H\’elein [H] proved that a weak harmonic map (i.e., it is a weak solution of Euler-Lagrange

equations for harmonic maps) from a 2-dimensional domain to spheres is smooth. Using

a similar idea as that of [H] and the blow-up argument, L. C. Evans [E] shows that a

stationary harmonic map from an n-manifold to spheres is smooth away from a relatively

closed subset of Hausdorff $(n-2)$-dimensional measure zero.

Now we consider the special case that $M$ is a ball in $R^{3}$ and $N$ is the standard sphere,

and let $u:B^{3}arrow S^{2}$ be an energy minimizing map. Then

(a) Schoen-Uhlenbeck [SU]:

sing$(u)$ consists of isolated points.

(b) L. Simon [SL] (uniqueness of tangent maps).

If $a\in sing(u)$ , there is a unique smooth harmonic map $\phi$ : $S^{2}arrow S^{2}$ such that

(1.1) $|u(x)- \phi(\frac{x-a}{|x-a|})|arrow 0$ as $xarrow a$ .

(c) L. Simon and Gulliver-White [GW] (asymptotic behavior).

There are positive constants $c$ and $\alpha$ so that

(1.2) $|u(x)- \phi(\frac{x-a}{|x-a|})|\leq c|x-a|\alpha$

(d) Brezis-Coron-Lieb [BCL] (classification of tangent maps):

$\ddagger fv:B^{3}arrow ff^{2}$ is a minimizing tangent map, then $v(x)=\pm R\cdot f_{1}$ for some rotation

$R$ of $R^{3}$ .
$(\epsilon^{1}.)$ Hardt-Lin [HL2] (stability of singularities):

Ii $g$ : $S^{2}arrow S^{2}$ is such that $\Vert g-id||_{\Phi^{1}}\leq\epsilon_{0}$ , then any energy minimizing map

$u$ : $B^{3}arrow ff^{2}$ with $u|_{\partial B^{3}}=g$ has a unique singular point $a$ such that

(1.3) $\Vert u(x)-R_{a}o(\frac{x-a}{|x-a|})||_{C^{\alpha}(B^{3})}\leq C\epsilon_{0}^{1/4}$ and
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(1.4) $|a|\leq C\epsilon_{0}^{1/2},$ $|R_{a}-id|\leq C\epsilon_{0}^{1/4}$ .

Here $\alpha,$ $\epsilon_{0}\in(0,1)$ and $C$ are constants, and here $R_{a}$ is a rotation of $R^{3}$ .

In general, if $u:B^{3}arrow ff^{2}$ is a minimizing map, then

(1.5) $\#$ of sing$(u)\leq C_{0}(1ipu|_{\partial B^{3}})$ .

(f) Almgren-Lieb (Better bounds on singularities) [AL]:

If $u:B^{3}arrow ff^{2}$ is energy minimizing, then

(1.6) $\#$ of sing$(u)\leq C_{0}$ . energy of $u|_{\partial B^{3}}$

(g) Hardt-Kinderlehrer-Lin [HKL] (Universal energy bound):

There is a positive constant $C_{0}$ so that for any energy minimizing map $u$ : $B^{3}arrow S^{2}$

satisfies

(1.7) $\frac{1}{r}\int_{B_{r}}|\nabla u|^{2}dx\leq C_{0}\cdot\frac{1}{1-r}$ , $0<r<1$ .

In general, if $u$ : $B_{R}(a)\subset Marrow N$ is energy minimizing, and if $N$ is simply connected,

then

(1.8) $\frac{1}{r^{n-2}}\int_{B_{r}(a)}|\nabla u|^{2}dx\leq C_{1}\frac{1}{R-r}$ , $0<r<R$ ,

where $C_{1}=C_{1}(\prime M, N)$ .

It is not hard to see that all the statements above except possibly statement (e) are

valid when $u$ is an almost-minimizing map.
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2. When $N$ is a bumpy sphere.

If the target manifold $N$ is $(ff^{2}g)$ , i.e., a sphere endowed with some Riemannian

metric $g$ , then statements (a), (b), (c) and (g) remain valid. For statement (d) one has

only partial results. In [HL3], it was shown that there is a degree 1 minimizing tangent

map from $B^{3}$ to $N\equiv(ff^{2}g)$ for any metric $g$ on $N$ . It uses the continuity method and

monotonicity of energy ([S]). Recently, a differnt proof of this fact was given by H. Shin

[Sh]. In fact, he proved that there is a unique energy minimizing degree 1 tangent map up

to rotation in $R^{3}$ .
On the other hand, we have the following

Lemma. There is a positive constant $\epsilon_{1}$ such that if

(2.1) $||g-g_{0}||_{C^{1}(S^{2})}\leq\epsilon_{1}$ .

(Here $g_{0}$ is the Euclidian metric on $ff^{2}$ and $||\cdot||$ also indicate norm in this metric). Then

any energy minimizing tangent map from $B^{3}$ to $(ff^{2},g)$ is of degree one.

Proof: Suppose $\phi(x)=\phi(\frac{x}{|x|})$ is an energy minimizing tangent map from $B^{3}$ to

$(ff^{2}g)$ . Then by statement (g) of \S 1 and regularity theory for harmonic maps [SU] one

has

(2.2) $\Vert\phi\Vert_{C^{1,a}(E^{2})}\leq C_{1}(g)$ , $0<\alpha<1$ .

In particular, $\deg(\phi)\leq C_{2}$ .

Next one observes that there is a constant $\eta>0$ depending only on $C_{1}$ such taht if $\phi$

satisfies (2.2) and, if $\deg\phi\geq 2$ , then

(2.3) $\min$ { $\int_{B^{S}}|\nabla u|^{2}$ : $u=\phi$ on $ff^{2}$ } $\leq\int_{B^{S}}|\nabla\phi|^{2}arrow\eta$ .

The last inequality follows from statement (d) of \S 1. Now the lemma follows from

(2.3). QED

Corollary. Statements (a) through (g) of \S 1 are valid provided that $N=(ff^{2}g)$ with

$g$ satisfying (2.1).
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XVe also recall the following result of [HL3, \S 6].

Proposition. The family of all energy minimizing tangent maps $v$ : $B^{4}arrow(X^{2},g)$

such that $v|_{S^{\theta}}$ is smooth is compact in $C^{k}$ for all $k$ . Here $g$ is a smooth Riemannian metric

on $ff^{2}$ .

The above proposition implies, in particular, that the Hopf-invariant of $v$ : $ff^{3}arrow ff^{2}$

is uniformly bounded. We remark that the homogeneous degree zero extension of the Hopf

map $ff^{3}arrow ff^{2}$ is energy minimizing, see [C,G].

Finally, we have the following lemma concerning the behavior of minimizing tangent

maps. It was proved in [HL3] for the case $N\equiv ff^{2}$ with Euclidian metric. It is easy to see

the same conclusion remains when $N\equiv(X^{2},g)$ with $g$ satisfying (2.1).

Lemma A. There are positive constants $D_{0},$ $N_{0},$ $d_{0}$ and $C,$ $\alpha$ so that any minimizing

tangent map $v:B^{4}arrow(ff^{2}g)$ with (2.1) satisfies the following:

(2.4) $\int_{B^{4}}\Vert\nabla v\Vert^{2}dx\leq D_{0}$ .

(2.5) $S^{3}\cap sing(v)$ consists of an even number, not exceeding $N_{0}$ ,

of points separated by distance at least $d_{0}$ .

(2.6) for each $a\in ff^{3}\cap sing(v)$ , there is the asymptotic estimate

$|v(x)-R_{a} o\frac{P_{a}(x-a)}{|P_{a}(x-a)|}|\leq C|x-a|^{\alpha}$ ,

for some orthogonal projection $P_{a}$ : $R^{4}arrow R^{3}$

and a rotation $R_{a}$ of $R^{3}$ .

Here $||\nabla v||$ denote length of $\nabla v$ in the $g$ metric, and here $R_{a} o\frac{P_{a}(x-}{|P_{a}(x-}\frac{a)}{a)|}$ should be

replaced by $\phi(R_{a}o\frac{P_{a}(x-a)}{p_{a}(x-a)}f$ when $g\not\equiv g_{0},$ $\phi$ is a degree minimizing tangent map from

$B^{3}$ to $N$ .
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3. Proof of Theorem $B$ (sketch).

To study the structure of sing$(u)$ , we introduce the following definitions:

$sing_{0}(u)\equiv$ { $a\in sing(u);ff^{3}\cap sing(v)=\phi$ for some tangent map $v$ of $u$ at $a$},

$sing_{1}(u)\equiv sing(u)\sim sing_{0}(u)$ .

By the statement (b) of \S 1, one may change “some“ to “every” in the definition of

$sing_{0}(u)$ . Also from (b) of \S 1, each point of $sing_{0}(u)$ is an isolated point of sing$(u)$ .

A technical lemma proved in [HL3] says that, under the hypothesis of Theorem $B$ ,

$sing_{0}(u)$ is finite. So our task reduces to studying nonisolated singularities $sing_{1}(u)$ .

We introduce the following

Definition. $a\in sing(u)$ is called ”crossing” of

$\Theta(u, a)=\lim_{r\downarrow 0}\frac{1}{r^{2}}\int_{B_{r}(a)}|\nabla u|^{2}dx\geq 4\pi^{2}+\delta_{0}$ .

Here $\delta_{0}$ is a positive constant which is chosen properly according to Reifenberg’s topological

disk theorem. We note that $4\pi^{2}$ is the energy density of the map: $(x, y)\in R^{3}\cross R\simeq$

$R^{4} arrow\frac{x}{|x|}\in ff^{2}$ . When $ff^{2}$ is replaced by $(b^{1}, t)$ , 4 $\tau_{(^{l}}$ $\check{s}\{10\lambda|J$ be $ve_{P^{\mathfrak{i}_{\ell 1t}d}}b\sqrt{}$

$\pi$ . Area of $N$ in metric $g$ . In this case, $\pi$ Area of $N$ is the energy density of the map:

$(x, y) arrow\phi(\frac{x}{|\dot{x}|})$ . Here $\phi$ : $B^{3}arrow N\equiv(X^{2}, g)$ is a degree one energy minimizing tangent

map. Such an energy minimizing tangent map is unique up to rotation of $R^{3}$ (see [Sh]).

Lemma B. Under the assumption of Theorem $B$ , the number of crossings of sing$(u)$ is

finite. The same statement is valid when $ff^{2}$ is replaced by $N=(ff^{2}g)$ provided $g$ satisfies
(2.1).

The proof of Lemma $B$ uses Lemma A and DeGiorgi’s arguments concerning “tangent

maps of a tangent map”.

Finally we shall prove that $sing_{1}(u)$ away from whose finitely many “crossings” and

isolated $sing_{0}(u)$ is $C^{0,\alpha}$ . To do this, one verifies that the locally compact set $sing_{1}(u)\backslash$

“crossings” satisfying Reifenberg’s $(\mathcal{E}_{0}, R_{0})$ condition (see $[M$ , Chapter 10]).
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A locally compact set $S$ of $B^{4}$ is said to satisfy the $(\mathcal{E}, R)$ condition if for all $a\in B^{4}\cap S$ ,

$0<r<R$ , there is a line $L_{r}^{a}$ in $R^{4}$ such that the Hausdorff distance between $L_{f}^{a}$ and

$S\cap B_{r}(a)\leq \mathcal{E}r$ .

Reifenberg’s Theorem(see $[M$ , Chapter 10]). A locally compact set $S$ satisfying

$(\epsilon, R)$ condition consists of $C^{0,\alpha}$ Jordan curves provided that $\epsilon\leq\epsilon_{0}$ . Here $\alpha=\alpha(\epsilon_{0})>0$ .

It is shown in [HL3] that $sing_{1}(u)\backslash$ crossings’ satisfies Riefenberg’s $(\epsilon_{0}, R_{0})$ condition.

As a result we have Theorem B.
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4. Open problems.

We learned from L. Simon that the set $sing_{1}(u)\backslash$ crossings’ actually consists of $C^{1,\alpha}$

curves. As a consequence of his main result, one also deduces that the one dimensional

Hausdorff measure of sing$(u)$ is finite.

One natural question is that: whether or not sing$(u)$ is smooth or analytic?

On the other hand, one would also like to know whether one may prescribe curve

singularities for harmonic maps from a 4-dimensional domain.

Here we studied only a special case that $N$ is either standard $ff^{2}$ or $ff^{2}$ with Rieman-

nian metrics which is close to the standard one. We do not know if one may eliminate the

condition (2.1) so that the statement (d) of \S 1 remains valid. The validity of statement (d)

of \S 1, in this case, will imply Theorem B. It is certainly of interest to study the structure

of sing$(u)$ for evergy minimizing maps $u$ between Riemannian manifolds. But one expects

that it will be very difficult.

Another interesting problem is to study sing$(u)$ when $u$ is energv minimizing harmonic

map from an n-dimensional domain to $ff^{2}$ . Is $H^{n-3}(sing(u))<\infty$?
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