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Singular Sets of Energy Minimizing Maps
Fang Hua Lin

0. Introduction
Let (M,~) be a smooth, compact Riemannian manifold with smooth, possibly emp-
ty, boundary OM, and let (N,g) be a smooth, compact Riemannian manifold without

- boundary. The energy of a map u : U — N is defined by

(0.1) E(u) = /M e(u)

Here the energy density in local coordinate system (zi,...,2,) of M is given by

(0.2) e(v) = 77(z) gre(u) ub,ul, [det(7,5(z)) da .

As usual, H*(M, N) denotes all whose maps v : M — N such that £(v) < co.

A map u € HY(M, N) is called almost-minimizing if there is an R > 0 such that

elu crﬂ elv
©3) /B,m (w) < (14 )/B,m (v)

foralla € M, r € (0,R) and v € H'(B,(a), N) with v = u on 8B,(a), where ¢ and
are positive constants, and, where B,(a) is the geodesic ball of radius r and centered at
a€ M.

Next we define
(0.4) sing(u) = {z € M : u is not continuous at z} .

Following the theory of Schoen-Uhlenbeck [SU] and Giaquinta-Giusti [G], one has
Theorem A. Ifu € H'(M,N) is almost-minimizing, then sing(u) is of Hausdorff

dimension < n — 3.



162

On the other hand, we remark that there are smooth maps gy : $*~1 — $? such

that solutions of
(0.5) min{/ |Vu|*de : ve H'(B",$%), v=gn on $"7'}
Bn

are not smooth. Moreover, the singular sets have at least N disconnected components of
positive (n — 3)-dimensional Hausdorff measure, for any N € Z* given (cf. [HL]).

Here we have the following

Theorem B. Letu : M — $? be an almost-minimizing map. Then sing(u) consists of
a union of a finite set and a finite faﬁily of C% closed curves with finitely many crossings
provided that either OM = { or ulaM is smooth when OM = 0.

In fact, the above theorem is valid when the target manifold N is homeomorphic to
$? and when the metric g on N is sufficiently clsoe to the Euclidean metric on $? in the

C!-norm.

Acknowledgment. The main result of the paper is obtained in a joint effort with Robert
Hardt (see [HL3}). The author wishes to thank Professor N. Kikuchi for the invitation to

this symposium and his warm hospitality.



163

1. A list of known facts.

It was first shown by C. B. Morrey that energy minimizing maps from a 2-dimensional
domain are smooth. The same is true when maps are stationary (see [S]). Recently,
F. Hélein [H] proved that a weak harmonic map (i.e., it is a weak solution of Euler-Lagrange
equations for harmonic maps) from a 2-dimensional domain to spheres is smooth. Using
a similar idea as that of [H] and the blow-up argument, L. C. Evans [E] shows that a
stationary harmonic map from an n-manifold to spheres is smooth away from a relatively
closed subset of Hausdorff (n — 2)-dimensional measure zero.

Now we consider the special case that M is a ball in R* and N is the standard sphere,
and let u: B3 — $? be an energy minimizing map. Then
(a) Schoen-Uhlenbeck [SU]J:

sing(u) ,consists of isolated points.

(b) L. Simon [SL] (uniqueness of tangent maps).

If a € sing(u), there is a unique smooth harmonic map ¢ : $* — $? such that
(1.1) lu(z) — ¢(|—::—-:-—:—Z—')I —0 as z—>a.

(c) L. Simon and Gulliver-White [GW] (asymptotic behavior).

There are positive constants ¢ and «a so that

(12) , [u(e) = (=gl S ele — al¥

I —a
r—a

|
(d) Brezis-Coron-Lieb [BCL] (classification of tangent maps):

If v: B® - %2 is a minimizing tangent map, then v(z) = +R- ]z—l for some rotation
R of R3.
(e) Hardt-Lin [HL2] (stability of singularities):

If g : $2 - %2 is such that ||g — ¢d||¢1 < €, then any energy minimizing map

u: B — $? with ul sps = ¢ has a unique singular point a such that

T —a
(1.3) lu@) = Ra o (=) oo < Cey/* and
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(1.4) la| < Cet’? | |R, —id| < Cell* .

Here o, ¢ € (0,1) and C are constants, and here R, is a rotation of R®.

In general, if u : B® — $? is a minimizing map, then
(1.5) # of sing(u) < Co(lip ulaas) .

(f) Almgren-Lieb (Better bounds on singularities) [AL]:

If u : B3 — $? is energy minimizing, then
(1.6) # of sing(u) < Cy - energy of u|, 4

(g) Hardt-Kinderlehrer-Lin [HKL] (Universal energy bound):
There is a positive constant Cy so that for any energy minimizing map u : B3 — 3?2

satisfies

1

(1.7) ;/ |Vu|?dz < Cp - O<r<1.
Br

1—7r"

In general, if u : Bg(a) C M — N is energy minimizing, and if N is simply connected,

then

1 \ 1
. <
(1.8) T"_2/13,(a)lVUl da:_C'lR o 0<r<R,

where C; = C1(M, N).
It is not hard to see that all the statements above except possibly statement (e) are

valid when v is an almost-minimizing map.
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2. When N is a bumpy sphere.

If the target manifold N is ($2,¢), i.e., a sphere endowed with some Riemannian
metric g, then statements (a), (b), (c) and (g) remain valid. For statement (d) one has
only partial results. In [HL3], it was shown that there is a degree 1 minimizing tangent
map from B2 to N = (%2, g) for any metric g on N. It uses the continuity method and
monotonicity of energy ([S]). Recently, a differnt proof of this fact was given by H. Shin
[Sh]. In fact, he proved that there is a unique energy minimizing degree 1 tangent map up
to rotation in R3.

On the other hand, we have the following

Lemma. There 13 a positive constant €; such that if

(2.1) llg — gollcr(s? < e -

(Here go is the Euclidian metric on $?% and || - || also indicate norm in this metric). Then
any energy minimizing tangent map from B3 to ($2,9) is of degree one.

Proof: Suppose ¢(z) = ¢(li—|) is an energy minimizing tangent map from B3 to
(82,9). Then by statement (g) of §1 and regularity theory for harmonic maps [SU] one

has
(22) ”¢“C1,a(s2) < Cl(g) s O0<ax<l.

In particular, deg(¢) < Cs.
Next one observes that there is a constant > 0 depending only on C; such taht if ¢

satisfies (2.2) and, if deg ¢ > 2, then
(2.3) min{ [ [Vl u=gon 5 [ VP -n.
B3 ’ B3

The last inequality follows from statement (d) of §1. Now the lemma follows from
(2.3). QED
Corollary. Statements (a) through (g) of 81 are valid provided that N = ($?,g) with

g satisfying (2.1).
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We also recall the following result of [HL3, §6).

Proposition. The family of all energy minimizing tangent maps v : Bt — (%2 g)
such that vlsa is smooth is compact in C* for all k. Here g is a smooth Riemannian metric
on $2.

The above proposition implies, in particular, that the Hopf-invariant of v : $3 — $2
is uniformly bounded. We remark that the homogeneous degree zero extension of the Hopf
map $% — $? is energy minimizing, see [C,G].

Finally, we have the following lemma coﬁcerning the befxavior of minimizing tangent
maps. It was proved in [HL3] for the case N = $? with Euclidian metric. It is easy to see
the same conclusion remains when N = ($2,g) with g satisfying (2.1).

Lemma A. There are positive constants Dg, Ny, do and C, a so that any minimizing

tangent map v : B — ($2,g) with (2.1) satisfies the following:

(2.4) / |Vv||?dz < D, .
B4

2.5 %3 N sing(v) consists of an even number, not ezceeding N,
g g

of points separated by distance at least dy .

(2.6) for each a € $° N sing(v), there is the asymptotic estimate
. P,(z —a)

v(z) — R, 0
) = B0 e ]

for some orthogonal projection P, : R* — R®

|<C|:v—a|“,

and a rotation R,of R® .

Pz —a) 40 dbe

Here ||Vv]| denote length of Vv in the g metric, and here R, 0 ———
174 g e

P,(z —a)

replaced by ¢(Ra (Pa(z —a)

B3 to N.

') when g # go, ¢ is a degree minimizing tangent map from



167

3. Proof of Theorem B (sketch).

To study the structure of sing(u), we introduce the following definitions:
singg(u) = {a € sing(u) : $ N sing(v) = ¢ for some tangent map v of u at a} ,

sing, (u) = sing(u) ~ sing,(u) .

By the statement (b) of §1, one may change “some” to “every” in the definition of
singo(u). Also from (b) of §1, each point of singe(u) is an isolated point of sing(u).

A technical lemma proved in [HL3| says that, under the hypothesis of Theorem B,
singg(u) s finite. So our task reduces to studying nonisolated singularities sing; (u).

We introduce the following

Definition. a € sing(u) is called “crossing” of

O(u,a) = lim }2— [Vul>dz > 4n% + & .
rl0 T B.(a)

Here 4y is a positive constant which is chosen properly according to Reifenberg’s topological
disk theorem. We note that 42 is the energy density of the map: (z,y) € R® x R ~
R* - % € $%. When $? isreplacedby (4, 9) . 4T? should  be WPlauA \n}
7 - Area of N in metric g. In this case, m Area of N is the energy density of the map:
(z,y) — 45('—::—') Here ¢ : B3 — N = ($2%,g) is a degree one energy minimizing tangent
map. Such an energy minimizing tangent map is unique up to rotation of R? (see [Sh]).

Lemma B. Under the assumption of Theorem B, the number of crossings of sing(u) is
finite. The same statement is valid when $? is replaced by N = (82, g) provided g satisfies
(2.1).

The proof of Lemma B uses Lemma A and DeGiorgi’s arguments concerning “tangent
maps of a tangent map”.

Finally we shall prove that sing;(u) away from whose finitely many “crossings” and

isolated singg(u) is C%®. To do this, one verifies that the locally compact set sing(u)\

“crossings” satisfying Reifenberg’s (&, Ro) condition (see [M, Chapter 10]).
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A locally compact set S of B* is said to satisfy the (£, R) condition if for alla € B*NS ,
0 < r < R, there is a line L? in R* such that the Hausdorff distance between L? and
SN B.(a) < E&r.

Reifenberg’s Theorem(see [M, Chapter 10]). A locally compact set S satisfying
(e, R) condition consists of CO® Jordan curves provided that e < €. Here a = a(ep) > 0.

It is shown in [HL3] that sing;(u)\ “crossings” satisfies Riefenberg’s (€, Ro) condition.

As a result we have Theorem B.
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4. Open problems.

We learned from L. Simon that the set sing; (u)\ “crossings” actually consists of C1:*
curves. As a consequence of his main result, one also deduces that the one dimensional
Hausdorff measure of sing(u) is finite.

One natural question is that: whether or not sing(u) is smooth or analytic?

On the other hand, one would also like to know whether one may prescribe curve
singularities for harmonic maps from a 4-dimensional domain.

Here we studied only a special case that N is either standard $2 or $?2 with Rieman-
nian metrics which is close to the standard one. We do not know if one may eliminate the
condition (2.1) so that the statement (d) of §1 remains valid. The validity of statement (d)
of §1, in this case, will imply Theorem B. It is certainly of interest to study the structure
of sing(u) for evergy minimizing maps u between Riemannian manifolds. But one expects
that it will be very difficult.

Another interesting problem is to study sing(u) when u is energy minimizing harmonic

map from an n-dimensional domain to $2. Is H"~3(sing(u)) < co?
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