Number of Proofs for Implicational Formulas

広川 佐千男 (Sachio Hirokawa)*

An algorithm is shown which determines the number $0, 1, \cdots, \infty$ of normal form proofs for implicational formulas. The number of proofs had not been studied well. Concerning to BCK-logic, it is proved by Komori and Hirokawa [3] that the number is identical to the number of BCK-minimal formulas of α. For general implicational formulas in intuitionistic logic, Ben-Yelles [1] showed an algorithm which enumerates all the normal form proofs for α when α has finitely many proofs. But we cannot use the algorithm to decide whether α has infinitely many proofs or not. We show a limit of proof search to decide whether α has infinitely many proofs.

Given an implicational formula α, we denote by $|\alpha|$ the number of occurrences of propositional variables and the implicational symbol \rightarrow. We consider proof figures in the intuitionistic logic in Natural Deduction System (NJ) [4]. We denote by $\text{proof}(\alpha)$ the set of normal form proofs of α. The cardinality of $\text{proof}(\alpha)$ is denoted by $\#\text{proof}(\alpha)$. The depth of a thread in a proof π is the number of minimum formula occurrences in the thread. The depth of π, denoted by $\text{depth}(\pi)$, is the maximal depth among all the threads in π. According to the formulae-as-types correspondence [2], a normal form proof π can be represented by a closed λ-term M in β-normal form. Then the $\text{depth}(\pi)$ is identical to the depth of Böhm-tree of M.

Theorem 1 Given an implicational formula α,

$$\#\text{proof}(\alpha) = \infty$$

*Department of Computer Science, College of General Education, Kyushu University, Fukuoka 810 JAPAN. (e-mail: hirokawa@ec.kyushu-u.ac.jp) Supported by a Grant-in-Aid for Encouragement of Young Scientists No.02740115 of the Ministry of Education.
iff there is a normal form proof $\pi \in \text{proof}(\alpha)$ such that

(1) $\text{depth}(\pi) \leq |\alpha| \cdot 2^{|\alpha|+1}$ and

(2) π contains a thread in which a formula ξ occurs twice as minimum formula occurrence.

\[
\begin{array}{c}
\pi \\
\vdots \\
\xi \\
\xi \\
\alpha
\end{array}
\begin{array}{c}
\{ \pi_1 \} \\
\{ \pi_2 \}
\end{array}
\]

Outline of proof. If-part is trivial. In fact, we can replace π_1 by π_2. We can apply this rewriting successively. Thus we have $\#\text{proof}(\alpha) = \infty$. To prove only-if-part, assume that $\#\text{proof}(\alpha) = \infty$. Then there is a proof $\pi \in \text{proof}(\alpha)$ which contains a thread with depth $\geq 2d$, where $d = |\alpha| \cdot 2^{|\alpha|}$. Then the thread contains more than $2d$ minimum formula occurrences. Let ξ be an arbitrary minimum formula occurrence in the thread and $\{\delta_1, \cdots, \delta_n\}$ the assumption set for the sub-proof for ξ. By the sub-formula property, all of $\xi, \delta_1, \cdots, \delta_n$ are sub-formulas of α. So we have at most d such pairs $(\xi, \{\delta_1, \cdots, \delta_n\})$. Since the depth of the thread is longer than $2d$, it contains three occurrences of the same minimum formula occurrence ξ with the same assumption set $\{\delta_1, \cdots, \delta_n\}$. Let $\pi_1, \pi_2,$ and π_3 be sub-proof for such occurrences of ξ which π_i appears above $\pi_{i+1}(i = 1, 2)$. Then we can replace π_2 by π_1 obtaining a smaller proof of α. We can apply this transformation until we obtain a proof of α with depth $\leq 2d$.

Theorem 2 There is an algorithm which determines $\#\text{proof}(\alpha)$ for implicational formula α.

Proof. Consider the set of normal form proofs of α with depth $\leq |\alpha| \cdot 2^{|\alpha|+1}$. Note that the set is finite. If this set contains some π which satisfies (2) of Theorem 1, then $\#\text{proof}(\alpha) = \infty$. Otherwise $\#\text{proof}(\alpha)$ is finite.
Theorem 1 without (1) is proved in Ben-Yelles [1]. Proof of Theorem 1 would remind some readers the similarity to the proof of \textit{uvwxy-theorem} and infinity test for context free languages. Further work shall be necessary on this similarity.

\textbf{References}

