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A SPECIAL FUCHSIAN SYSTEM CONNECTING SOME HILBERT PROBLEMS
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0. INTRODUCTION

This survey draws an ipvestigation line ftom a special Fuchsian
system of differential equations to special diophantine equations.
'E. PICARD. [26) began to study more intensively the following spe-

cial system of differential equations:

(0.1) by Flu,v) = 0 on €™ (=™~ A,

(i,3) = (1,1),(1,2),(2,2) ,

1
) A s st sueze) 2 (oetrv s (s
D44 = 5;; + lS(u—l)u(v—u)] {3(-5u +4uv+3u~2v)8u+3(v 1)vav+(u v)},
? ,
9 19 9
o Par = Du?v';[a(u_V)]g{Dk Bv?f 3
D = =4 [9(v—1)v(u-v)]- {3(u—1)u——+3(—5vl+4uv+39—2u)§¥w4u-v)}‘
1L DV,' S 3(} v

A= (v e of; wlu-l) (v-1)u-v) £ 0,
2%5 := 5ix lines in PL thfough pairs of four points in general

position.

PICARD conjectured that the solutions of (1) should have an arith-
metic meaning comparible with the role of elliptic inteéﬁals for
plane cubic diophantine equations.

Fortunately D. HILBERT observed carefully the work of PICARD.
We want to use some of the Celebratgd 23 problems of HILBERT
(10) as an intuitive guide for a deeper arithmetic study of the
solutions of (1). Via actual woxk of PARSHIN and VOJTA we discover

at the end an interesting connection with FERMAT's equations.
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Notations

0 ' ' e\yebeic
C, R, @V{-z : complex, real, rationgl(gzgggzg,‘integers;

IPN : (complex) projective space of dimension N;

PN(L) : Points of W”

with coordinates in the field L £ C;
V(L) = VnIPN(L), V a subvariety of FNE
Gl:(m)_: elements of 61,(R) with positive determinant;
PGl, : the projective group €], /61, ;
PG : the image of G in P61, , G a subgroup of €l,;
ul((2,1),A) : the unitary group of a hermitean form of signature
| (2,1) with coeffiéients in the ring A € € closed under coﬁplex

conjugation;

OL : ring of integers in the number field L;

—

L= U((2,1),UL) the full PICARD modular group of the imaginary
guadratic number field L;
XK = 0(y=3) = Q(g) : the field of EISENSTEIN numbers, 9 a primitive

third unit root;

1

BY = {(z,,2.) € € (14[ + I11|2' < 1} the standard complex 2-ball;

jlg) = g % + 744 + 196884q + 21493760gY + ... , g = exp(2wiv)
the eiliptic modular function defined on

H={Te C¢; InT > 0} the POINCARE upper half plane;

lH?= {Z ¢ Gl‘}(ﬂi); z =t Z, Im Z > 0} the generalizgd SIEGEL upper
half plane;

Sp(2g,A) : symplectic group acting on ®,, A =R or %;

3!
‘A,. = Sp(Z%,YI)\lH?: the (non-compact) moduli space of g-dimensional

¥

(principally) polarized abelian varieties.

:ﬂ:;*f vadkﬁylﬁ, e Pags 5=9



Thé Central Problem
A central role in HILBERT's program plays the following

12-th HILBERT PFOBLEM (Ex;ension of Kronecker's theorem to arbi-
trafy algebraic domains of rationality): "... to find and discuss

those functions playing for arbitrary algebraic number fields the

same role as the exponential function for the field cof racional

“tic fields".

e . - . . oo .
We remember ‘to the eliiptic modular functior J3: [F —> P . Ch
- 1, e , -t e .~ .
H acts 51;(&), P~ is the corpactirication of W/§1 (Z) = € and j
describes the cguctient map. We call ¢e B a s ingularx
: P s SR , - I
module, 1f it is an isclated fixed point of (a g € ) 31L\@,.

1.1 Th2orer. Lec ¥ be a poini of WIT). Then

s e
[

trarscerdent nurper 1fz ig not a singuisr wodule:

'J -
(n
o

—
-
S

jlz)

(ii) If ¥ is a singular redtie

o]

trer 3(7) is a class

it is the EILBTRT class Tieid (raviwmal unrarified albe.ian et
sion of Qic:. if % + v i1z a fraccional ideal of D)

The transcendence prool is.due to SITGEL | 3%]. This iz an ex-
tensicr ©f tre S-tr FILEEFT Fe0ALEW asking for wre trarsocnderce
of efol = e¥; Wiot fox ey scived oy Gelfond
[ 81 ard Scrreidsr ' 28 . Fer s Qroof of il we reler o SHINISR
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138]. It is. a part pf_‘KRONE'CKER's JUGENDTRAUM claiming the explicit
construction‘of all abglian éxteh5i0n5~of imaginary quad:étic num-
ber‘fiéldssby'méaﬁsiof‘specialivalues'transcendendent fuhqtiohs.
The JUGENDTRAUM appears as KRONECKER'S problem in the first part
~of the 12-th HILBERT PROBLEM..TIt has been solved by. TAKlAG'_.[‘ [38] in
1921. Nowadays its.solution is known as Main Theorem of Comﬁlek

Multipl'i‘batiovn, see [21].
2. .~ .Ball Uniformization of Surfaces

Let X be an algebraic surface dvef C, compact for a momént,‘with
at ‘most dudbient or ball ‘q usp s i nvg‘u l‘a f it ifé s . For
‘a preciSe definition and classificétioﬁ of -these singularitigs we
refer tor[16]. In this paper é special class of algebraic cycles
 is defined‘cgnéisping 6f~weigted irreducibie curves'énd~points\on
X. The weight$ are néturﬁi numbers §r ¢f; Finitely weighted béints
are guotient point.s, Infiﬁitely'ﬁeighted curves or
pointsbaré c u s p  curves or cu 3 P b oints, re-
"spectiveiy. For.a'precise definition/cla§3ification we refer to
1161 again. We .call'theSé ‘speci-al cycles /o.r bital "c y c-
les (on X). A’pair X = (X,p);AQ an orbital cycle on X,lis c&l—
léd:ap b rbital surfa é'e .
"y

2.1 Example; let X = P, g:JA,l;J",Q",!,J‘1 four points oan‘L in general

_ > .
position, L;S'='L]: the line through 0:,0;. By abuse of notations

we define an,orbital cycle by D = Z: 3L.. +. Zo-0 , where the
' ' ' O N I S o



weights appear az coefricientz. The pair (P°, Dj is an orbical

surface.

2.2 Remark. If X iz a multi-blowing up of P and D is supported by

lines, then HIRZERRU CH calied o a {linear) arrangement, zee | 3).

1f we omit on X and D all ianfinitely weighted curvez and pointz.

then we get an open orbi tal surface PF = (X?,Ei)

2. 3 Main esxample. The group Wi{!z,i,.T; actz2 an the Z-ball & ¢ Pt

via projective

ct

ranzrormationz. Let [ be an arithmetic subgroup
of U(2,1),T). Then the quotient~x$v: B/ is a {generally oper)
algebraic zurface. Thé irreduciblz ~urvez of zhe hranch looue cof
the coverinq B —— B/ and ta2 images of
are endowed with the correzponging ramification indices as welignts

(for a point after biowing up its preiwages!. Tercie the correspor-

ding (oper) orbital ovele oy ;%. Then X{ = (X ,D ) is an cpan or-

H.

bital surface. .We add the infialtely weighted corpactification
points of the Raiiy-Sorel compactifs Lion 67? to the “"clozure”
A N N

D; of D,. The pairz (X,.D,) or {N,,2 ) are zaliz}l o p =2 nr or
=% =t § t=1 L £
compactified orbital ball guotient

sur faces , respectively. sometimes they are dJderoted by B (

A fundamental gue stion iz: Wnich orhital suriaces are

ty
»
L
ffw)
-
]
1

tients ? A precize anzwer can pz corzidered az a zpecial but impor-
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tant partial answer to the 22-nd HILBERT PROBLEM entitled "Unifor-.
mization of analytic relations by means of automorphic functions”.
In ordef to find a constructive answer we introduced in [16]
successively some invariants called (1 oc al) and gl obal)
orbi t‘a 1 heights (respectively):
h, et {orbital.cﬁrves}_ —_— 0,

He'Hf:

{orbital surfaces} —> § .

Orbital curves are defined to be irreducible 1-
dimensional components C of (embedded !) orbital cycles D (with all
weight informations of Q.along C). We give an implicit definition:

If everything is smooth, compact and has trivial weight 1, then

he(g) = he(C) = —(Euler number of C),

hr(C) = h_(C) = -(selfintersection index of € ¢ X),
- v

He(z) = He(x) = Euler number of X,

signature of X.

il

H (X) = HT(X)
If £f: X —> X', C —> C' are finite coverings, then the
following degree formulas hold:
H(X) = deg(£)H(X') , h(C) = deg(f|C)h(C'), H = H,,B. , h=h, h..
Roughly spoken, a finite coverin é f is a usual fi-
nite covering f: X —> X' compatible with weights in the sense of
Galois theory. The definition restricts to. orbital curves. Proofs

of existence via explicit definitions can be found in [13] and

the related literature.

. AN .
2.4 Theorem ([16]}). If X = (X,D) =B/[ is an orbital ball quo-

tient, then it holds that
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(2.5) B (X) = 3H_(X) >0 , hy(C) = 2n(0) >0, Ce D.
The discrete subgroup fF\of PU((2,1),€) is uniquely determined up
to conjugation by the orbital surface X.

So we found effective necessary conditions for an orbital sur-
face to be a ball quotient. R.KOBAYASHI [20] gave sufficient con-
ditions in anﬁther ianguage.'Until now there is no proof of the
equivalence of Kobayashi's and our conditions. The following con-

Vsiderations indicate that they cannot be far away from each other.

Thé relations (2.5) can be understood as a system DIOPH(X,D) of
diophantine equations and inequalities, if we write it down ex-
plicitly with all weights as variables. The coefficients depend
only‘on geometric data of the supporting surface X and the suppor-

ting cycle D. It turns out that

2.6 Theorem ([16]). For any (admissible) pair (X,D) the system
"DIOPH(X,D) has at most finitely many solutions. These solutions

can be calculated in an effective manner.

So a ball uniformization of a surface X with given branch locus
D can only happen, if we find a solution of DIOPH(X,D) and there

are, up to isomorphy, at most finitely many possibilities.

2.7 Corollary. If we fix infinite weights at the four triple points
1 . .

of A%s.c P~ defined in (0.1), then,DIOPH(PL,é%§I has exactly one

solution. The corresponding orbital surface (PY,AX) coincides with

that of Example 2.1.
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one vériable, "...to show that in any case there exists a linear
differential equation of the FUCHSian class with given singular
locus and prescribed monodromy group”. The final solutibn of this
HILBERT PROBLEM has been given by H. ROEHRL ([27]. We change over

and restrict ourselves to the second dimension.

3.1 Theorem (M.YOSHIDA [38]). Let X = (X,D) be an orbital surface
uniformizable by the ball with quotient map p: B ———> X. Then the
inverse p”’l of p is a (multivalued) developing map of a FUCHSian

system of linear partial differential equations.

It means that there is locally a fundamental system of solu-
tions I.I,.I, extending analytically to X~ D, such that the mul-
tivalued map

(I,:I,: I,): XND ——> B ¢ et
P = (I, (P):I (P):I,(P)), coincides with p_ on X~D. The
FUCHSian system is called the uni formizing egqgua-
tion of the orbital surface and the uniformizing group U is

the monodromy group of the system. Via solutions

one gets a unitary representation of the fundamental group

TT,‘(X \ D) > PT ¢ PCL, (€).
YOSHIDA [38] found an effective method in order to determine

a corresponding Fuchsian system. Together with 2.8 one gets

3.2 Theorem. The system (0.1) is a uniformizing equation of the
orbital surface (Tl,éﬁég. Its monodromy group is the PICARD modu-

lar group M (Y=3).



Now one can check KOBAYASHI's conditions to see that the ball

uniformization of GPi,égi) really exists. In [11] we proved more:
. —

), X = 0({-3), be the con- .
/3
e

2.8 Proposition. Let [ ({=3) ¢ UK(Z,l),Uk

gruence subgroup corresponding to the ideal (1—3), g = , of

Uk. Then the orbital surfaces B/ (J-3) and GPL,A%EJ coincide.

For a proof it is convenient to use the following

2.9 Theorem ([16]). For the c, ~volume cl(f) of a fundamental do-
main of a ball lattice [ it holds that

(2.10) cl(\f) = H, (B8/7) , Cx(r)/3 = H_(B/).

In [15] we presented an effective formula for CL(TQ), M an
imaginary quadratic number field, in terms of?gpecial value of L-
series using arithmetic-geometric methods in the proof. Then one
gets HG(B/F(J:E)), H_(B/r( =3)), the Chern numbers c, (B/r(J=3)) = 3,

el AN B c (2L =

/\
CLOB/T(Q—3)) = 9 after classification of elliptic points and cusps,
n .

and finally B/T({=3) = El’by the theory of surface classification.
3. Ball Uniformization and Differential Equations

In [38] M.YOSHIDA succeeded to solve a higher-dimensional ver-
sion of the RIEMANN-HILBERT problem. The background is HILBERT's
21-st PROBLEM "Proof of the existence of linear differential equa-

tions with prescribed monodromy groups” set up for functions of

37
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4. 'GAUSS-MANIN Connection

YOSHIDA's general approach lifting the Gauss-Schwarz of
FUCHSian equations to higher dimensions has a classical origin
in the work of'PICARD and APPELL. Especially for linear arrange-
ments of low-dimensional projective spaces a more immediate result
known és PTDM-Theorem (due to PICARD, TERADA, MOSTOW, DELIGNE)
would be sﬁfficient for our purposes. We refer to [38], [ 3] and
further literature given there. But we prefer to change over from
the analytic viewpoint to an algebraic-geometric approach in order
to find "algebraic solutions" of special FUCHSian equations repre-
sented by integrals on algebraic curves along cycles depending on
on parameters u,v. The general framework of the corresponding al-
gebraic theory is known as Gauss-Manin connec -~
tion of algebtaic families of algebraic manifolds. For more
details we refer to [11] in order to understand the rather expli-
cit theory of algebraic families of curves involving diffgrential
equations.

Let ¢ /T be a smooth algebraic family of smooth algebraic va-
rieties all defined over the complex numbers, say. The relative
DE RHAM complex is a sequence

- d 1 d : d
Lpp: 0 >0 gyt — = ey —

Using open (affine, say) coverings one defines the CECH complexes

J d

QY T Oy) =2 e Q) =5 ok _O.‘:C/

) IR
T
in the usual manner. Taking the limit along refihements of open

coverings one gets the CECH — DE RHAM bicomplex C"(‘JQ_el The

T).
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DE RHAM COh.omology.‘grt‘)ups \H_gz( ﬂ/T)"of the family e /T are the,
'hypefcoﬁomology g;oups of C’ (.quenJ'definéd as cohomology' groups
of the,cbrresponding total-ééch4—=de Rham complex Cfat(.llffr).
_The construction applies to ail restricted families 'fa/U, U'an_
open part of T. On this way one gets ﬁhe -:D E RH A M coho -
h o mology s h‘e.a ve s ieguf‘e/T) on T
" We restfict ourselves now to curve families ¥ /T. For our pur-—
" poses it suffices to‘aésume that T is an affine part of a projec¥
tive space PN. Let bT be the sheaf of diffefential ope;ators.oh T.
Then the de Rham cohomology sheaf Begﬁ(ﬁ /T) is not only aﬁ Qf—
module’but also a BT—module sheaf. Lodking for a family with a
section © in ngk(e/T)‘satisfying the differential equations
(0.1) with & instead of F-6ne can take the PICARD cur -
v e .f amily
| C/B N A Y2 = X(X-1) (X-u) (X-v)

Vand o fepresented by‘the differenéial form ¢ = dx/y depending
on u,v; Tékiﬁg integfals along-cyclés one gets. an "algebraic” fun-
damental system af'solﬁtions 7
(4.1j

Ik(t) = f wlt), k=1,2,3, t - (u,v) € le'ﬁl , w = dx/y

)

Altogether we found the.developing map of the FUCHSian system (0.1)
in an explicit and algébraic manner. Looking back to the geometric .

s{‘q«hug (’oiv\lf avg .
. to the results of the earlier sec-

tions we receive



4.2 Theorem. The quotient.map<p:lB _ P with covering group
> 18 onP- \ A

with .cycloelliptic integrals Ik(t) described in (4.1) along line-

T(J=-3). is inverted by (Iozlqzlt):\P%T\ é%§
‘afly independent cycle families uo(t),-«A(t),'xb(t).'

4.3 Remark. Historically'p"‘l was first known [26]. The monodr&my
group was known to be a sublattice of (({=3) generated by five
elements, see [ 1].

5. ’ , Moduli Space of PICARD Curves.

5.1 Definition. A PI CARD curve is an algebraic (com-

plex compact) curve isomorphic to one of the following plane'cur—

ves of equation type

(5.2)
3 h '} L : o
'Y = W(X-e.) =X +6X +6G6,X+6 (affine),
i=a A L 5 4
z :
wy?® = TN (X - eiw)'= x4 GLWLXL + G!W3X + G“w“ (projective),

i=a -

Y
Notice that Z e. = 0.

[

One proves that the normal form (5.2) of a PICARD curve

C is well-defined up to a common factor of the e;'s, if C is

smooth, that means e, # e; for 1 # j, see [14]. In other words:

5.3 Proposition-Definition. The moduwl i space of
' N ] L . X
smoo-th PICARD curvesis (P~ \ Akh)/sq. The moduli

Sspace of PICARD curves is PL/Sq.,



6. . ~ The Relative SCHOTTKY Problem

Smooth PICARD curves C have genus 3. The Jacobian -(variety) of
C is denoted by J(C) and Jac(C) denotes' the canonically polarized
Jaccbian of C. The correspondencé C ¥—> Jac(C) induces_a biratio-
. N R L . - ’ - . B . .
nal map jac: P /SH . «9.A3, where Jﬂ.ls the moduli space of prin-

2

cipally polarized abelian threefolds. Its restriction to R \ é%;
is anAopen.embedding by TORELLI's Theorem and 5.3. We want to uni-

formize the map jac in an effective manner, that means we look for

a commutative diagram

B Q._.i\{.__)m;
. th
(6.1) r re 9 SPCB‘Z)
Sy
SV 4
jaec

The vertical arrows denéte gquotient maps by the arithmetic groups
= UK(Z,l),CQ or Sp(S,Z), respectively. The r e lative
SCHOTTKY 'p,i oblem for PICARD curves asks for the
explicit knowledge of * in terms of period matrices.
The new ball B,C et qorreSponds to the hermitean (2,1)-metric

0 0%
on ¢3 defined by 0 1 0]; <, > denotes the hermitean product.
| g 0 0

Now we define successively the maps

41



(6.2)

3

¥*: C —-+-9c3

: (A_,B,é) — (A,B,-72,C,§B,9C) ,
3 M
P: COxC xC—> Maty  (€) , (@b ) —>| xb |,
| %7

TC : the restriction of P to triples with the conditions:

Lo, 0> <0, Elo, rla, | ‘é,’b’ lineérly independent;

*: B ———-—> Hy , Po—> Gl.,)(C)\'W(.zm, k, 'V)b

The imagés of Tl (or %) are called typical period,
‘matrices (p oint s). The orthogonality conditions .

come from the RIEMANN period relations.

6.3 Theorem ([14]). A princdipally polarized abelian threefold is
the Jacobian of a PICARD curve if and only if it corresponds to a

typical period.point in E;.

.The proof needs the construction of ty p ical symplectic
. , 1
bases of H, (C,7Z) and the use of GALOIS-invariant bases of H°(C,_O.C)

on smooth PICARD curves C due to PICARD [26].
7. Effective TORELLI Theorem

We would like to make TORELLI's Theorem for PICARD curves ef-
fective by means of transcendent functions in analogy to the el-
liptic modular function j. Our problem is to find for given ©Te B

(or *T & *B'C\HZJ the normal equationv(see (5.2)) of a PICARD cur-
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ve C. corresponding to the moduli point p(r) e Pt In other words
we look for an explicit analytic description of the quotient maps

in diagram (6.1).

7.1 Definition. a holomorphic function f: BB —> is called a
PICARD modular form (('"-form of wedight
m, if there is a sublattice ' of a PICARD modular group such that

(7.2) FHE) = j:-f for all yei" ,

where jxf{ﬂ is the JACOBI determinant of Y at Te B.

7.3 Theorem ([11]). There is a basis t4,tL,t3 of the space of
ST(F3)-forms of weight 1 such that
v > (g, @)t () itfe) 1t ((e))

with t + bt b4 by = 0 is the quotient map p: B — ®”.
A R . .

The proof goes through the fine surface classification of

. ) . . ] ele —~
X = B/ST({-3) and identification of the modular forms with see-

;Mcv‘l-s g q
tiens of H°(§10(mKY + mT), X the minimal smooth compactification

and T the compactifying curve. The surface X is described by the
weighted homogeneous equation
3

L L., L L 3 I3
(7.4) s = (Sl,_ Sn)(Sz - So)(84 - S

D)’ wt(S-) = 1, wt(S) = 2.
(8

This is a nice example fitting in the 22-nd HILBERT PROBLEM again,
see section 2. Namely, the ring of $T({-3)-forms is C[50'54'SL’S]
with generators satisfying the same relations as described in

(7.4) The compactificétion theory of BAILY-BOREL [ 2] is the ge-

neral framework of solution of HILBERT's 22-nd PROBLEM, by means



of.automorphic‘fbrms, but the explicit solution remains to be a
case-by-case problem.

We change over from the left to the right quotient map in dia-
qram (6.1) and ‘guess that the theory of theta.functiong is help-
fui tdldescribe the modular forms tI in 7.3 more explicitly in
“terms of Fourier series as it is kn&wn for the elliptic-moduiar
function j(¢), see e;g.,[21].

Theta functions {b[gi] with characteristics é!b e gt are holo_
morphic functions on c%3<m%. Ekpliéitly the theta functiﬁns

7 [ﬁ] et g, ——> ¢
aré'defined by
Jﬂt](z,ﬂ) = Z? exp{ri ¥(n+a) Din+a) + 25i ‘(n+a) (z+b))

wel

The restrictions qt)’IO—X.lH?

Lol =2,

are called ttheta constants (with characteristics).

7.5 Theorem (Feustel [ 6] , Shiga (3¢]).

Let et(ﬂJ = JE (0,L), 1 = 0,1,2, be the theta constants on m3

restricting the theta functions

o 1 O 5
‘{)lk ='O,LV3 ’I/‘ k/g](z,_a—) ,k=0,1,2, zZ € C°.

Set ’ .
AP 3 3 3 3
(7.6) ™, = 8 +6, + 6 ,m =-39+0, + 0,
- 0 31, pn3 _ 3 1 a3
Th = B - 30, + b . ™ = 6, + b, - 38},
,354—'F\em
(7.7) th.(¥) = Th-(*T), i.= 1,2,3,4, <€ B,



is aspecial éh_oice‘ of §1( J-—:{)—forms inverting PICARD's integral

~map ,I:"':tP" AN &——-—) B as dss:ce’fbcd"in 7.3.

gx.()‘lat.\d e

7.8 Remark. The $r({-3)-forms th; are normalized tobe

compatible with the action.of f./$r(f:§) g qu(z/32), Sq symmetric
group, %n the following sense (see [12] or [ 6]): :
Up to a character the group S“x(z/3z).act5 on {th,, ..I, th?

via permutations of indices.

7.9 Coroliafy.\Each PICARD curve C has a normal form

| 4 - :
] ] 3_ _ _ oY - 1
(7:10) Gz ¥ = TT (X = th, (7)) =X+ Gy (©)X + Gy (T)X + G (T)

for a suitable Te B.

FEUSTEL's proof of Theorem.7;7 needs preperatory work of RIE-
MANN (RIEMANN constadts), PICARD [26], ALEZAIS | 1}, MUMFORD [24],
SHIGA's preperatory work for [3Q] and HOLZAPFEL [11]. The idea is
to show that some theta candidates coming out directly from ?ICARD
curves satisfy all the. functional equatiens defining | -forms of

Nebentypus described in (7.2) and 7.8. Since generators

of { are explicitly known, this is an effective finite problem.
. 8. Special Values of the PICARD Modular Theta Function

- 8.1 Definition. A singular module onB is an isola-
‘ted fixed point of (an element) of M((2,1),K). If the Jacobian

J. = J(Cf), T ¢ B 'can be decomposed up to isogeny into simple abe-

45



lian varieties with complex multiplication, then ¢ is called a

CM —'module[_‘bewwqocto( Compler  Hulkiplicatiow) -

8.2 Proposition (FEUSTEL, ‘unpublished; m'aybe to read' off from [ 9]
with some effort). The point <véIB is singular module iff it is a

“DCM-module.

We denote the preimage of ﬁ%s along p: B —> P% by & . ‘It con-

sists of infinitely many discs in B (see [11]1)7

8.3 Theorem |
(A) ([14)). If é’c— B is a singular module, then
(8.4)  th(e) = (th, (¢):th (¢):th,(of:th (@)
is an algebraic point of et
(T) ([30],(34]). If T €& B(D) \ 4, then th(g) is a transcendenﬁ

point of iPL, this means that th(g) & lPZ(@).

The first part is an appliqation of the Theorem of SHIMURA-TA-
NIYAMA stating the algebraicity of moduli points of (polarized)
abelian CM-varieties. The second part comes out from WUESTHOLZ '
transcendence theory, see [38], as announced in [14]. Conjectural-
ly the exclusion of & in (T) can be omitted by the method of jum—
ping to elliptic curves used in [14] for the complete proof of (A).

USing more.carefully the SHIMURA-TANIYAMA theory of complex mul-
‘tiplication of abelian varieties one discovers a strong quality

of special values th(¢) in the case (A) fitting in HILBERT's 12~th
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8.5 Theorem (Explicit construction of SHIMURA class fields of cubic
extensions of EISENSTEIN numbers by special values of Theta con-
stants (see . [18]). Let & be a singular

&M_"@j{-‘v& Was Cow‘?lcx woltigheetion
With—stmpte J Y LAt

Then we have, with.the notatlons below a

module
tower of‘algebraic number fields
4 ' Sﬁk) 1 .
F (th(¢)) / FM(th(e))'7 FL / K,
where the middle extension is abelian (SHIMURA class field), which

is unramified, if the additional ideal condition (I) is satisfed.

8.6 Notations (see [38] or [227).-The endomorphism algebra F, =
End(Jc)@ 0 is the cubic extension K(g) of X. Its reflex field is
 is denoted by Fl. We set

Filth(e)) = FL(... th (e)/th; (e),...) , 1< 1,5 < 4
in the Qarantheses. The symmetric gfoup acts on the generators
phz(¢7/th3(¢) via permutation of indices. All such permutation,
which are extendable to an automorphism of F’(th("))/F' form the
the group Sﬂ(wd. Let (F., @c), @ :Z Q. with field embeddlngs
g F —=> C, be‘Ege type of Jac(C_). Thgﬁggi%% C /’¢ (IR ) for
a suitable Z—lattic;f%% F. . The ideal condition in 8.5 is:

(1) [ﬂf is a (fractional) ideal of F_.
g. Connection With FERMAT Equations

FREY [ 7] discovered a deep connection between FERMAT's Last
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Theorem and the arithmetic of elliptic curves. PARSHIN [25] joint

it with the BOGDMOLOV-MIYAOKA-YAU inequaliiy transfered to arith-
méﬁic_surfaces;‘rhe copresponding inequality for invariants of
arithmetic surfaces is not proved until now. We will ﬁall it the
PARSHIN problem (?AR), see below. PARSHIN.p;oved the folléwing re-

markable

9.1 Theorem. ({'9]). If the PARSHIN probl~m has an affirmative
ansver, then the statement of FERMAT'S last Theorem is true for .

almost all FERMAT equations xf + ¥ = zf.

"Almost all" means: all up to a finite number. The conclusing
statement of 9.1 is also known' as "Asymptotic FERMAT Theorem”.
Since the proof goes tﬁrough eilipﬁic curves, ﬁe asked for‘a-simi—
lar connéction‘with Ficard curves. Surprisingly we found a figorous
reduction of PARSHIN's Thegrem 3.1, which could be useful for a

mare effective apnrcacih. %e snnounca

ouly .
answerYfor arithmetic sutfaces of KODZI®A<FIJARD tygpe, then the

asymptotic ¥Eeual Thecrew %;165.
We finish with the preseniation of sawme wecessary detinitions
and hings for the proof. The hest reterence is LANG's book [23].

let X/S be an aritwwetic surface. B = Spec O, U= 0, . La
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number field. We say that X/B is o £ KODAIRA - PICARD type ,
v'if the general fibre X, is a PICARD curve or a smooth‘biquadratic
covering of a smooth PICARD curvé branched over exactiy one point.

PARSHIN'S problem is to prove

(PAR) There ate universal constants a,,a,,a, (ap, depending on the
genus g of general fibre) such that for all semistable arithmetic
surfaces X/B it holds that

(Ar.BMY) (w7 ) & a, 4+ a, (29-2)10g|D | + 2,

X3 Vth : LﬂQ

' A _ Di/g. the discriwomant
' (
(o 8 ) is the selfintersection of the relative canonical sheaf,

X/

M is the set of all (finite and infinite) places of L. For J; we
refer to .[{5]. The most complicated contributions Jv' vV e My, are
described in terms of special values of Theta constanté in the
framework of FALTINGS' basic theoiy‘of arithmetic surfaces [ 5].

For the proof of 9.2 we followed the'line of VOJTA's reduction
in [3%] of PARSHIN's Theorem 9.1 to KODAIRAfPARSHIN:covers of the
FERMAT curve of genus 3.

Untilvnow an explicit calculation of (globalvand local) inva- .
riants of arithmetic surfaces needed in (Ar.BMY) seems to be only
possible.for the elliptic case (| 5]) and genus 2 ([ 4]) because
of a good knowlédge of thg cpnnections with modular forms. A rush
to ihe KODAIRA—fICARD-types would aécomplish one side of the deep
mathematical thinking and feeling of the 0ld masters -PICARD and

HILBERT.
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