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1. Introduction

High Reynolds number fluid turbulence has long been a
subject of extensive 1investigations. In 1941, Kolmogorov
proposed a celebrated power-law of energy spectrum of turbulence.
Since then, an enormous amount of studies have been performed to
elucidate an underlying mechanism for the universal Kolmogorov
spectrum. It is now widely accepted that the energy cascade
process from lower to higher wavenumber is the most important
dynamical process, through which a memory of the energy injection
scale is lost and the wuniversality of flow structure results at
higher wavenumbers. However, this cascade process itself,
sometimes called Richardson cascade, has been only a matter of
theoretical consideration, and its hierarchical structure has
not been clearly captured in experiments nor in numerical
simulations.

Recently Argoul et al. applied to an experimental data of
high Reynolds number turbulence a novel method of data analylsis,
called wavelet analysis, which yeilds a time-frequency (space-
wavenumber) diagram showing a pitchfork hierarchy of active
regions (Argoul, Arneodo, Grasseau, Gange, Hopfinger and Frisch
198; Arnoedo, Grasseau and Holschneider 1989a,b; Arneodo, Argoul,
Elezgaray and Grasseau 1989; Argoul, Arneodo, Elezgaray and
Grasseau 1989; Everson et al. 1990; Farge and Rabreau 1988; Farge
et al. 1989; Freysz et al. 1990; Ghez and Valenti 1989;
Holschneider 1988; Chhabra et al. 1989; Vergassola and Frisch

1990). This diagram was taken to be the first experimental
evidence of the Richardson cascade process. But later the
application of the wavelet analysis to an artificial random

noise was found to give a similar pitchfork hierarchy (Bacry, et
al. 1989; Everson and Sirovich 1989; Ohtaguro 1990 (private
communication)), which indicated that the pitchfork pattern in
the wavelet analysis cannot be simply taken as an evidence of the
Richardson cascade process and care should be taken of the
interpretation the pitchfork pattern.

In this paper, we make use of the wavelet analysis to
identify a trace of energy cascade process from an experimental
data of atmospheric turbulence. In contrast to the case of
Argoul et al., who used a continuous wavelet transform method
with Mexican and French top hats, we here employ a discrete
wavelet analysis (orthonormal wavelet expansion method) with an
analyzing wavelet of Meyer type (Meyer 1989; Morimoto 1988) for a
time-frequency analysis of the turbulence data. Our adoption of
the orthonormal wavelet is based on the fact that the continous
wavelets form an over-complete basis which necessarily brings
about a formal relation between expansion coefficients (Grossmann
and Morlet 1985; Grossmann Morlet and Paul 1985; Daubechies et
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al. 1986; Liandrat and Moret-Bailly 1990), while the orthonormal
wavelets form a complete orthonormal basis free from such kind

of constraint on the expansion coefficients. Here we also apply
the orthonormal wavelet analysis to an artificial random noise
for comparison. First we comfirm several differences between

turbulence data and random noise by making use of a relation
between the orthonormal wavelet analysis and conventional scale
analysis (Yamada and Ohkitani 1990). = Then, we introduce a
local wavelet spectrum constructed by the wavelet coefficients.
For turbulence, it shows a similarity-pattern - considered to
correspond to the energy cascade process, while not for the
random noise. '

In Section 2 we describe the turbulence data to be analyzed
in the following. In Section 3, conventional comparisons are made
between the turbulence data and an artificial random noise by
using the orthonormal wavelet expansion. Further comparisons are
made by introducing the local wavelet spectrum in Section 4. We
summarize the results in Section 5.

2. Fourier and wavelet spectra of turbulence

In this paper, we discuss an orthonormal wavelet analysis of
a velocity signal 1in turbulence. The orthonormal wavelet
expansion of a function f(t) takes the following form,

f(t)=S;23kdj.cW®i,« (1)

where doj,«x (j,keZ, where Z is the set of all .integers) 1is an
expansion coefficient and ({(y;.«|j.keZ} is a complete orthonormal
set of wavelets generated from an analyzing wavelet g(t) by
descrete translations and discrete dilations. It 1is usual to
take the discrete dilation in octaves, and to make the wavelets
as

Wi,k (t)y=2i729(2it-k) (j,kez), (2a)
with the orthonormality condition
T-o®wj, k(L) , xr (£)dt=8; ;" 8xx* (Jj,keZ), (2b)

where &8;; 1s the Kronecker's symbol. Note that j is the dilation
parameter and k indicates the temporal position of time k/2i.
In order that {w;.«)} may be a complete orthonormal basis (in
L2 (R)), the analyzing wavelet p(t) has to be carefully chosen.
Some methods have been proposed so far to construct the analyzing
wavelet (Battle 1987; Daubechies 1988; Lemarie 1988; Mallat
1988). Now we follow Meyer's procedure to obtain the analyzing
wavelet. Here we do not go into 1its details, which should be
found in Meyer(1985,1989), Morimoto(1988) and Yamada and
Ohkitani(1990). We only mention that the wavelet spectrum
E; is related to the Fourier spectrum E(w) of f(t) as

E;=S laj. v [2 ~ 0E(w), (0~2i+27/3). (3)
We remark that if the energy spectrum‘has a power law, so does

the left hand side of (3), and vice versa,

-2-
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E(0) ~ @? <-=> E; ~ 2-i¢p-1) (4)

At present, turbulent velocity data with highest Reynolds
number can be obtained by geophysical or possibly astronomical
observations, although they usually give only time serjies at a
single or a few spatial points. The Reynolds number in these
cases is at least one or two digits larger than those available
in numerical simulation or in laboratoty experiment. Here we took
a velocity singal of turbulence 1in the atmospheric boundary
leyer, by a single hot-wire anemometer at a samplng frequency 500
Hz for over 3 minutes. The mean velocity was U=<u(t)>=5.4 [m/sec]
and the turbulence level was u'/U=0.27, where u(t) denotes the
velocity at time t, <> time average and u'=v<(u{t)-U)>)Z>. The
turbulence level is not very small, but we employ the Taylor's
frozen hypothesis assuming that it is valid at least for small-
scale of motion. Other turbulence parameters of interest are
Kolomogorov's dissipation scale n=[v2U2/15<(9u/23t)2>]174=6.9%x10"
4fm], Taylor microscale A=u'U/<(9u/9t)2>172=1,8%x10"!'[m], and
the micro-scale Reynolds number Ry=u'A/v=1.8x104, where v=1.5x10"
5[msec-!] is the kinematic viscosity of the air. We note that
the validity of the Taylor hypothesis influences the accuracy of
A

We show in Fig.1l the Fourier spectrum averaged over 80
samples, each of which was obtained from a time series of 10!2

points. A power law consistent with an exponent -5/3
(Kolmogorov's spectrum) iS observed over 2 decades -of the
wavenumber.® We note that for this high Reynolds number

! Here no conditional sampling method is employed in contrast to
the case of Yamada and Ohkitani(1990).

atmospheric turbulence, longer duration of the data sampling
would yield a wider inertial subrange spectrum extending toward
lower wavenumbers. At the highest wavenumber region the
dissipation range is captured only marginally with this sampling
frequency. However, this is not a significant drawback because
here we are primarily interested in the velocity structure of the
velocity field in the 1inertial subrange rather than at the
dissipation wavenumbers.

The wavelet spectrum [E; with n=15 (with no averaging
procedure) for the turbulence is shown in Fig.2 against j, where
the logarithm of E; to the base 2 was plotted for the direct
assessment of the slope*. Remember that Ei is a sum of 2i wavelet

coefficients, which implies that statistical fluctuations is
significant for smaller j but not for larger j. The inertial
subrange with the expected slope -2/3 was observed over 8 octaves
(j=5~12) in accordance with that over 2 decades of -5/3 range in
the Fourier spectrum. The dissipation range begins around j=13
where a fall-off of the wavelet spectrum is observed.

3.Turbulence and phase-randomized signal
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In order to capture the energy cascade 1in fully-developed
turbulence, here we have recourse to a comparison of the
turbulence signal with its phase-randomized counterpart, which we
obtained by the inverse transform of the Fourier coefficients of
the original data after randomizing their phases uniformly over
[0,2%r] with their amplitudes unchanged. In Fig.3 we show the
signals of the turbulence and the phase-randomaized signal over a
whole interval (N=2!%). We cannot distinguish them by merely
looking at their appearances. The Fourier (or wavelet) spectra
are identical between the turbulence and the phase-randomized
signal, by the definition of the latter.

In fully-developed turbulence we have the energy cascade
from lower to higher wavenumbers, which gives rise to a constant
energy spectral flux throughout the inertial subrange on the
average. In physical space, such a relation can be described in
terms of the third-order structure functions as <§u(r)3>~r, where
su(r)=u(x+r)-u(x) is the longitudinal velocity difference. We can
obtain a corresponding quantity T;%*in terms.of the orthonormal
wavelet coefficients as

T;=23i72%a;,x3. (5)

which should be proportional to 2-i when <8u(r)3>~r. Here we have
made use of the fact that «;,«w;j.x(t) expresses the velocity
variation of scale j (at position k/2i) and the amplitude of
p;j.k{(t) is of order 2i“2, In Fig.4(a), Tj is shown in a log-
"2Tn a previous paper T; was defined in terms of l|aj.x| rather
than a;,«x (Yamada and Ohkitani 1990).

-linear plot for the case of turbulence. Only the positive values
are shown. There are 5 points well on a straight line with
slope -1. We note that the inertial subrange determined by the
third-order structure function is narrower than that determined
by spectrum, as pointed out in other experiments. In Fig.4(b) we
plot (the positive values of) T; for phase-randomized signal. As
expected, its behavior is a mess with no power-law behavior. The
behavior of T; can therefore distinguish the turbulence from the
phase-randomized signal.

Next, we are concerned with the probabilty density function
(PDFF) of velocity difference in physical space. The PDF of
veloclty in turbulence is known to be necarly Gaussian, whereas.
that of velocity derivative nearly exponential. Now the
orthonormal wavelet coefficients a;,« (multiplied by 2i-2)
correspond to the velocity difference of spatial scale 2-i. It is
therefore of 1interest to examine how the PDF of wavelet
coefficients changes from larger scale (lower j) to smaller scale
(larger Jj). In Fig.5(a) we show the PDFs of the wavelet
coefficients for j=9~14. Each PDF is normalized to have unit
variance, and the so0lid curve shows the standard Gaussian
ditribution with zero mean and unit wvariance. For smaller
j(211), the departure from Gaussian distribution 1is not so
significant. But for larger j (212) the PDFs look nearer to
exponential than to Gaussian. Remember that j=13 and 14 1lie 1in
the dissipation range. Similar results were obtained by the use
of band-pass filtering of the numerical turbulence (She et al.
1988), and by studying PDF of velocity difference for various

-4-
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spatio-temporal separations (Biskamp et al. 1990). On the other
hand, the corresponding PDFs for phase-randomized signal
naturallly has Gaussion distribution throught j=9~14(Fig.5(b)),
in accordance with the central-limit-theorem (Sanada 1990).

5. Local wavelet spectra

The Gaussian distribution of the wavelet: coefficients for
the phase-randomized signal and the non-Gaussian distribution for
the turbulence reflect the difference in the spatial
distributions of energy. In Fig.6, we show the spatial
distribution of the squared wavelet coefficients (j=9~12) for
(a)turbulence and (b)the phase-randomized signal. We can see
quite an intermittent distribution of energy in the case of

turbulence, while the energy appears to be far less
intermittent for the phase-randomized signal. These results
support a view that the non-Gaussian statistics 1is associated
with the intermittency. Also in Fig.6 we can observe that

in the case of turbulence there is a strong correlations of the
wavelet coefficients between octaves, while not for the phase-
randomized signal. In order to reveal this difference more
clearly, here we introduce the local wavelet spectrum. Recall
that the (global) wavelet spectrum 1Is defined as the sum of
squared wavelet coefficients for each scale over all k, that 'is,
over the whole interval (See Eq.(3)). To define 1local wavelet
spectra, we first choose scale js. Then, the local wavelet
spectrum E; k' for scale j(2js) at position k' is defined as a sum
of squared wavelet coefficients over the subinterval
corresponding to the spatial resolution at J=Js. More
.specifically, we define

E;jx =2']|a;,«' |2 for k=0~2is-1, (8)

where poN denotes the summation over k' satisfying
k/2isck'/2i<(k+1)/2is. Note that the sum of the 1local spectra
over k recovers the (global) wavelet spectrum;

E; =S¢ E; ¥. (7)

In Fig.7(a) we show the local wavelet spectra with js=7 for
the turbulence in a perspective plot. We take as the height the
logarithm (to the base 2) of 2is:E;k', where the factor 2is
normalizes the magnitude of the 1local wavelet spectrum to
helpdirect comparison of the local wavelet spectra for different
js . We can see characteristic strucures running in parallel with
j-axis. Crests and troughs, that are observed at the lower
wavenumbers in the inertial subrange (j=5~12), penetrate deeply
into the higher wavenumbers. We note that the plot 1looks highly
irregular at j=14 in the dissipation range.

In Fig.7(b) we show the similar plot for the phase-
randomized signal. The crests and troughs are observed at the
smaller j(<7), but they disappear immediately toward larger j's,
and the surface is quite uniform along k-axis at the scale of
j=14. The prominent structure along j-axis 1in Fig.7(a) are,
therefore, considered to originate from a substatial property of
turbulence, rather than a formal property of  the wavelet
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expansion. Also in a numerical turbulence, the phase-
randomization is found to suppress the vortex structures (She et
al. 1990).

The phase-randomized signal does not include a structure
corresponding to the energy cascade process in turbulence.
Therefore, we consider that the prominent structures observed
along j-axis in Fig.6(a) are traces of the energy cascade process
in turbulence. It has been reported that continuous wavelet
analysis gives similar branching patterns in the diagram of
wavelet coefficients both for the turbulence and the artificial
Gaussian signals**. In constrast, the present patterns in the
perspective plots are clearly different between turbulence and
**Such comparison was suggested by Kraichnan (Bacry et al. 1989).
Similar studies were done with the continuous wavelet analysis,
independently by Everson and Sirovich (1989), and by Everson,
Sirovich and Sreenivasan (1989) and by Ohtaguro (private
communication 1990).
the phase-randomaized signal. At present, we cannot find a clear
reason for the similar branching patterns observed by the
continuous wavelet analysis. But the formal mutual dependence
between continuous wavelet coefficients, originating from the
non-orthogonality of the continuous wavelets, might lead to the
branching pattern even in the case of phase-randomized signal.
It might also make it difficult to decide whether the branching
patterns is subtantial or formal 1in the case of turbulence.
Continuous wavelet analysis using the present analyzing
wavelet would be helpful to settle the matter.

As far as lower order quantities are concerned, the inertial
subrange in turbulence has a statistical scale-similarity if a
slight deviation due to intermittency is ignored <(Anselmet et
al. 1984). We can observe this similarity by comparing the
overall view of the rescaled local energy spectra for different
values of js (Fig.8), where the viscous effect reduces the
magnitude of the spectrum at highest wavenumber range. These
local wavelet spectra have - similar structures, reflecting the
scale-similarity of the inertial subrange. Because the phase-
randomized signal has also no characteristic scale in the power-
law range, it shows structures with scale-similarity, whose
shapes are different from those of turbulence (Fig.9).

6. Summary

We applied the orthonormal wavelets to the data analysis of
atmospheric turbulence which has a clear Kolmogorov spectrum.
The orthonormal wavelet expansion has a merit that the basis
functions are orthonormal and the mutual independency of the
expansion coefficients are assured. Also the expansion
coefficients are directly related to quantities examined in the
conventional turbulence analysis.

In order to assure that substantial properties of turbulence
are captured, we compared the results of the wavelet analysis for
turbulence with those for an artificial phase-randomized signal.
Both the third-order moments and the distribution function of the
wavelet coefficients show a clear difference between turbulence

-6-
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and the phase-randomized signal. Then we introduced the 1local
wavelet spectrum to visualize the energy cascade process in
turbulence. A characteristic structure over the inertial
subrange is observed for turbulence, while not for the phase-
randomized signal. This structure corresponds to be a trace of
the energy .cascade process 1in turbulence. Remark that the
present orthonormal wavelets have distinguished the turbulence
from the phase-randomized signal, while the continous wavelet
does not appear to give a clear distinction between them.

The orthonormal wavelet coefficients also give quantitative
information about scaling properties of moments of the vecolity
field, which we will report in a separate paper.
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Figure Captions
Fig.1l The energy spectrum of the turbulence.
Fig.2 The wavelet spectrum of the turbulence.

Fig.3 The time series of (a) the turbulence u and (b) the phase-
randomized signal ur.

Fig.4 The third order structure function for (a) the turbulence
(b) the phase-randomized signal.

Fig.5 The PDF's of the wavelet coefficients for (a) the
turbulence and (b) the phase-randomized signal.

Fig.6 The spatial distribution of the wavelet coefficients for
(a) the turbulence and (b) the phase-randomized signal.

Fig.7 The local wavelet spactra with Jjs=7 for (a) the
turbulence and (b) the phase-randomized signal. The whole
interval of k'-axis corresponds to the whole data.

Fig.8 The local wavelet spectra for the turbulence with (a)
js=5, (b) js=7. In (b) the spatial coordinate is expanded by a
factor 4, in order to see the scale-similarity directly.

Fig.9 The local wavelet spectra for the phase-randomized signal
plotted as in Fig.8.
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