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The duality of cusp singularities

RALKZEHRZEH FAMHEENR  (Masanori Ishida)

Introduction

In [T}, Tsuchihashi defined the notion of cusp singularities in arbitrary dimen-
sions which includes the Hilbert modular cusp singulaities as a subclass. In this pa-
per, we will show a dual relation of the invariants of the cusp singularities. Namely,
we prove the conjecture (C3) given by Satake and Ogata [SO] which asserts that
the value at zero Z(0) of the zeta function associated to an even dimensional cusp
singularity is equal to the arithmetic genus defect x, of its dual cusp singularity.
This is a generalization of the dual relation obtained by Nakamura [N, Thm.7.11.1}
for twodimensional cusp singularities. The conjecture (C3), with a modification of
the sign, has already known to be true in the odd dimensional cases by the results
of Satake and Ogata [SO].

Satake and Ogata conjectured three equalities named (C1), (C2) and (C3) such
that any two of them imply the other. In the case of the Hilbert modular cusp sin-
gularities, (C2) is the Hirzebruch conjecture which was proved by Atiyah-Donnelly-
Singer and Miller. Hence our result implies that these three conjectures are true for
the Hilbert modular cusp singularities. In the case of Hilbert modular cusp singu-
larities, there was a similar conjecture [HG, p.95] related to the dimension formula
of the space of cusp forms on a Hilbert modular variety. As it is mentioned in [SO,
p.20], the combination of our result and [SO, Thm.2.4.1] implies that this conjecture
is also true.

In [I1], we introduce the notion of T-complexes, in order to describe the combi-
natorial data of the toroidal desingularizations of the cusp singularities. By using

Ogata’s formula [SO, Thm.4.2.5], we described the zeta zero value Z (0) of a cusp



singularity as an element of the inductive limit of a system of vector spaces on the
nonsingular 7T-complex [I1, Thm.5.2]. We generalize in Theorem 2.5 this description
of Z(0) so that it is valid for the T-complexes consisting of simplicial cones.

On the other hé,nd, Xoo 1s described by the intersection numbers of the excep-
tional divisors of the desingularization [SO, 3.2.4]. Namely, if (V,X) is a toroidal
desingularization of an r~diménsional_l cusp (V, p) such that the exceptional divisor
X = UY, D; has only simple normal é:rossings. Then o is equal to

N 5;
[g 1 — exp(—6;) ]r ’
where §; is the divisor class [D;], and | ], means the homogeneous part of degree r.
By Sczech’s description of the intersection numbers, this is equal to the formula in
Theorem 1.2 which is convenient to consider on the T-complexes.

The proof is done by comparing these invariants in the system of vector spaces
on the T-complex. Brion’s equality [B] which is explained in [I2] is essential in the
proof. ‘

The values of these invariants for explicit examples of dimension four were given
in [I4]. They take various values in contrast to the odd dimensional case.

An article with the almost same contents with these notes is submitted in Math-

ematische Annalen.

1 The statement of Theorem

Let N be a free Z-module of rank r < oo and M the dual Z-module. We
assume that r is at least 2. We consider a pair (C,I') of an open convex cone C
in Np := N @z R and a subgroup I' of Aut(N) ~ GL(r,Z) with the following
properties.

(1) For the closure C of C, C n (~C) = {0}.

(2) gC = C for every g € T.

(3) The action of T on C is properly discontinuous and free.

(4) The quotient (C/R,)/T is compact. |

For such a pair (C,T'), Tsuchihashi [T] constructed a complex analytic isolated
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singularity V(C,T") by using the theory of toric varieties and called it a cusp singu-
larity.

This cusp singulairty has a natural dual. Namely, let C* be the interior of the
cone {x € Mg ; (z,a) > 0,Va € C} and I'* := ‘T, where Mg := M ®z R and
(, ): Mr x Nr — R is the natural bilinear map. Then the pair (C*,I'*) satisfies
similar condition and hence defines a cusp singularity V(C*, I*). We call V(C*,IT™)
the dual cusp singularity of V(C,T). Clearly, the dual of V(C*,T*) is equal to
V(C,T).

The arithmetic genus defect xo, and Ogata’s zeta zero Z(0) are numerical invari-
ants defined for cusp singularities. Here note that our cusp singularities are called
“Tsuchihashi singularities” in [SO], and the zeta function is defined by

Z(s) = Y. do(u),

ve(CNM)/T

where ¢¢(z) is the characteristic function of the cone C [SO, 4.2]. As it is mentioned
in [SO, 4.2], this zeta function is slightly different from the one defined by the norm
function in the case of self-dual homBgeneous cones. However, the values at zero
of these zeta functions are equal [SO, 4.2]. In thié paper, we denote this value by
Z(0)(C,T) while we denote by xo(C,T') the arithmetic genus defect.

For the convenience to state our main theorem, we will explain Z(0) for V(C,T)
and xo for V(C*,T™). |

We introduce here some notations in this paper.

Besides C and C*, cones are always closed convex rational polyhedral cones.
Namely, a cone 7 in Np is equal to Ron; +- - -+ Ron, for a finite subset {ny,---,n,}
of the lattice N, where Ry := {c € R ; ¢ > 0}. For a cone 7 in NR, the linear
subspace m + (—7) of Nr is denoted by H(r). The interior of 7 as a subset of H(7)
is called the relative interior of 7 and is denoted by rel. int =.

For a cone 7, we denote by F(x) the set of faces of 7. 7 is said to be strongly
convex if # N (—x) = {0} or equivalently if the zero cone 0 := {0} is in F(r).

A nonempty collection ® of strongly convex cones in NR is said to be a fan if
(1) # € ® and 0 < 7 imply o € ®, and (2) if 0,7 € ®, then o N7 is a common

face of 0 and 7. For a subset ¥ of a fan ® and an element p € ®, we denote



U(<p) :={c € ¥ ;0 < p}and ¥(p<):={oc € V; p < o}. For an integer d we
denote ¥(d) := {0 € ¥ ; dimo = d}.

For two cones o, 7, we denote o a7 if 0 C m and o Nrel.int 7 # @.. For a subset
¥ of a fan, we denote ¥(ar) := {0 € ¥ ; 0 a7}

We use same notations for cones in the other real vector spaces with lattices.

We take a I'-invariant locally polyhedral closed convex set © contained in C such
that each nonempty proper face of it is a simplex with rational vertices.

We can find such a © as follows. Let ©’ be the convex hull of NNC in Ng. Then
©' is locally polyhedral and every proper face of it is a bounded convex polyhedron.
Let PF(©') be the set of nonempty proper faces of ©’. By the assumption, I acts
on PF(Q') freely and the quotient is finite. For each P € PF(©'), we take a
rational point ap in the relative interior of P so that the set {ap ; P € PF(O')}
is I-invariant. For a positive rational number ¢ and for each P € PF(0O’), we set
bp(e) := (1 — e"~4mPYqp. Let O(e) be the convex hull of {bp(e) ; P € PF(0')} in
Nr. If € is sufficiently small, then © := O(¢) satisfies the conditions, since the set
of proper faces of it is combinatorially a barycentric subdivision of that of ©'.

We fix such a convex set © and call it the kernel of C. Let PF(©) be the set of
nonempty proper faces of ©. We define ¥ := {RoQ ; Q € PF(0)}. Then X U {0}
is a I'-invariant simplicial fan of Ng with the support C U {0} which is locally finite
at each point of C. The face of © corresponding to o € ¥ is denoted by P(¢).

For each point z of the boundary 00, the cone (0 —z)¥ C Mg depends only on
the cone o € ¥ which contains z in its relative interior. We denote this cone by o*.
We set £* := {0 ; 0 € £}. Then £* U {0} is a [*-invariant fan of Mg with the
support C*U {0} which is locally finite at each point of C* (cf. [SC, IL,5]). For each
o € £, we have dimo = dim P(a) + 1 and dimo” = r — dim P(0). Hence we have
the relation dimo + dimo* = r + 1. For 0,7 € £, ¢ < 7 if and only if 7* < o™.

Fans £ U {0} and ¥* U {0} may have singular cones. We take a I-invariant
nonsingular subdivision ZU {0} of ¥U{0} and I™-invariant nonsingular subdivision
A U {0} of £* U {0}, respectively. Here we assume 0 ¢ = and 0 ¢ A for the
convenience of the notations.

Recall some notations in [I1].
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We denote by C the category of pairs a = (N(a), ¢(a)) of a free Z-module N{«a)
of finite rank and a strongly convex cone ¢(a) in N(a)r := N(a) ®z R, where we
write the cone by ¢(a) which we wrote o(«) in [I1]. In this paper, we call an object
of C a free cone. For two free cones a, € C, a morphism u : a — f consists of
an isomorphism uz : N(a) — N(B) such that ur(c(a)) is a face of ¢(8), where
up = ug @ Ir. For a € C, we set r(a) := rank N(a) and d(a) := dimc(c). The
dual Z-module of N(a) is denoted by M(a). For a morphism v : @ — f#in C, we
denote i(u) = @ and f(u) = S.

A finite subcategory of C is said to be a graph of cones. For a graph of cones
®, the set of morphisms in ® is denoted by mor ®. This is a finite set by definition.
For a covariant functor

A : C — (Additive groups) ,

we denote by Ag the restriction of A to ®. In other words, Ag is the finite sys-
tem of the additive groups (A(a))aee and the homomorphisms (A(u) : A(¢(u)) —
A(f(%)))uemors- The inductive limit ind lim Ag of the system Ag is described as the

cokernel
p
P AGw) — P A(a) — ind lim A,
u€mor ¢ - a€P
q

where p consists of the identities 14(i()) : A(3(u)) = A(¢(v)) C Bqeq A(a) and ¢
consists of the homomorphisms A(u) : A(i(u)) = A(f(u)) C Bacs A(a).

The graph of cones = is defined as follows. As the set of objects, = is a set of
representatives of the quotient Z/T. For a € Z, we set N(a) := N and c(a) := a.
For a,3 € =, a morphism u : @ — [ in C is defined to be in mor = if and only if
uz is an element of I'. Then the graph of cones = is a nonsingular T-complex [I1,
Ex.2.6,(3)].

A free cone a = (N(a),c(a)) is said to be nonsingular if ¢(a) is a nonsingular
cone of N(a)r, i.e., c(a) = Rozy + - - + RoZa(q) for a basis {zy, -, Z,()}. In this
case, we set gena := {21, -, Taa)} and z(a) = [regena T € SH(N(a)q), Where
S? means the d-th symmetric power over the rational number field Q. We denote

by C™* the subcategory of C consisting of nonsingular free cones.



A functor D° : C** — (Q-vector spaces ) is defined by

D%(a) := {f/=(a) ; f € S“(N(a)qQ)} .

For u : a — B, D°(u) : D°(a) — D°(B) is defined to be the natural injection induced
by the isomorphism uq : N(a)q — N(B)q. Note that gen a is mapped into gen 8
by uz. Although this definition is slightly different from that of DOQ in [I1], they are
equivalent as functors.

Let Q™ : C — (Q—vector spaces) be the constant functor defined by Q™ (c) := Q
and Q~(u) := 1q for all @ € C and v € morC. Since = is connected as a graph of
cones, we have ind limQz = Q.

Since each D%(a) contains Q, there exists a natural morphism of functors ez :
Q~ — D°. By [I1, Lem.3.1], the Q-linear map

Q = ind lim Q% — ind lim D2

is injective. Hence we regard Q as a linear subspace of ind lim D2.
We recall some notations in [I2] with exchanging the roles of M and N..
We denote by Q(N) the quotient field of the group ring Q[N] = @nen Qe(n).

For a nonsingular cone o in N, the elements Qqo(c) and Q(o) are defined by
e(y)
4 o) = ———€Q(N
QO( ) yeIg-eIng' 1 _e(y) Q( )

and

Q)= I —

v€geno 1- e(y)

For a general rational polyhedral cone 7, Qo(7) and Q() are defined as follow. We

€Q(N).

take a nonsingular finite fan ® with the support = and we set

Qo(m) = E Qo(0)

g€P(ar)

and '

Q(r) =Y Qolo) .

. ged

This definition does not depend on the choice of ¢ [I2, Thm.1.2].
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Let ¢ : M @ C — M ® C* be the holomorphic map defined by e(m ® z) :=
m ® exp(—z). For each y € N, e(y) is a regular function on M @ C*, and the pull
back £*e(y) is equal to exp(—y). For a nonsingular cone o in Ng,

. y exp(—y) Y
z(0)e*Qo(0) = yelg—eIna——————l —exp(—y) yegw e

is an entire function on M ® C. We denote by [e*Qo(c)]o the rational function
fa/z(o), where f,; is the homogeneous degree d := dim o part of the Taylor expansion
of z(0)e*Qo(o) at the origin. ‘

For each a of the T-complex =, we set
w(a) := [e(2)"Qo(c(a))]o € D*(a) ,

where e(a) = 1p1(a) ® exp(—*) : M(a) @ C — M(a) ® C*. The class of (w(a))aez
in ind lim D2 is denoted by w(Z).
The main result of [I1] is the following.

Theorem 1.1 The class w(Z) € ind lim D2 is in Q, and this rational number
is equal to the zeta zero value Z(0)(C,T') of the cusp V(C,T).

Now, we consider the nonsingular fan AU {0} of Mg. For p € A and an integer
n > 0, we denote by Index(p,n) the set of maps f : genp = Z, := {c € Z ; ¢ > 0}
with 3,cgen, f(@) = n. We use mainly Index(p, r) and denote it simply by Index(p).
An element f of Index(p, n) is said to be an index of norm n on p.

Let o be a nonsingular cone of maximal dimension in Mg. Then ¢V is a nonsin-
gular cone of dimension r in Nr. The bijection z(o, ) : geno — genaV is defined
so that (a,z(o,b)) is 1 if @ = b and is zero otherwise for a,b € geno. We set
2*(0) 1= Tacgeno 2(0) = 2(0").

For f € Index(p,n) and o € A(p=<)(r), we set

naEgen p $(0‘, a)f(a)
z*(0)

I(o,f) :=

and we define

IAf):= Y Io,f).

s€A(p=)(r)



Then I(A,f) is an integer if n = r (cf. [I2, Thm.3.2]).

- For each integer n > 0, we define b, := B,/n!, where B,’s are the Bernoulli
numbers defined by 1/(1 —exp(—z)) = L2 o(B,/n!)z""!. For an index f on a cone
p, we set b := [Tocgen, br(a) € Q-

Let (V, X) be the toroidal desingularization of the cusp singularity V(C*,T*)
associated to the fan AU{0}. Then there exists a natural one-to-one correspondence
between A(1)/T* and the set of irreducible components of X. We denote D(y) the
prime divisor corresponding to ¥ € A(1). If we assume that the fan A U {0} is
sufficiently fine, then these prime divisors are nonsingular and X has only normal
crossings. Then by expanding the formula for x., in the introduction, we get a

equality

)= ¥ % i JI Da@)®

p€A T+ felndex(p) a€genp

where ~v(a) := Rga € A(1) and the products of divisors mean the intersection
numbers.

The following theorem is the consequence of the the Sczech’s equality [S2]

I(Af)= I D(y(a))f®

a€genp

which is written in our notation in [I2, Thm.3.2].

| Theorem 1.2 The rational number

oY kIAf

p€A/r* felndex(p)

is equal to the arithmetic genus defect xoo(C*, ") of the cusp V(C*,T*).

Note that we need not assume that X has only simple normal crossings by [I2,
Thm.4.9]

In this paper, we prove the following theorem.

Theorem x(C*, ') is equal to (—1)"Z(0)(C,T).
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2 A system of vector spaces on a T-complex

In this section, we define a system ER on the T-complex ¥ := $/T.
Let S*(Nq) be the symmetric algebra of Nq over Q with the natural grading,
and HQ(S*(Nq)) the homogeneous quotient ring of it. We denote by Gen(N) the

set

{gen o ; o is a nonsingular cone of Ngr},

i.e., each element S € Gen(N) is a subsets of a Z-basis of N. For each integer
0 < d < r, we set Geng(N) := .{S € Gen(N) ; 'S = d}. For an element S =
{z1,---,z4} € Gen(N), we set z(S) := [, z: € S%(NqQ). For a cone 0 C Ng, we
denote by S%(Nq) the graded S*(Nq)-submodule of HQ(S*(Nq)) generated by

{z(S)™'; S € Gen(N) s.t. SC H(o)}.

The homogeneous part of degree d of this module is denoted by S¢(Nq). If o is
contained in another cone 7, then S;(Nq) is a submodule of S}(Nq).

Let H and L be a Q-linear subspaces of Nq such that Nq = H @ L. We denote
by S°(H, L) the Q-vector space generated by

{f/2(S); f € S¥(L),S € Geng(Nq) s.t. SC H},
where d := dim H. Note that $°({0}, Nq) = Q.

" Lemma 2.1 Let Hy,---,H,, Ly,---, L, be Q-linear subspaces of Nq such that
Nq = H; ® L; for each i. If Hy,---,H, are mutually distinct, then the Q-vector

spaces S°(H;, L;), i = 1,- -+, s are linearly independent.

Proof. Assume that hi+---+h, =0 for h; € S°(H;,L;),i =1,--,s. Suppose
that not all h;’s were zero.

Let d; := dim H; for each ;. We may assume that d, is maximal among d;’s with
h; # 0. Let Hy :== MQNL{ and L} := MqnHjt. Then Mq is the direct sum Hy @ Lj.
Let p; and p; be the projections from Mq to H; and L3, respectively. Then at a
general point (a,b) € Hy @ L}, the rational function h, is regular and has a nonzero

value. For any element f € S¢(L,), we have f(y) = f(p2(y)) for every y € Mq. jOn



the other hand, for S € Geny(N) with S C H;, we have z(S)(y) = z(S)(p1(y)) for
every y € Mq. Hence we have hy(a,tb) = t*1h;(a,b) for a real variable ¢.

On the other hand, the other &;’s are finite sum of rational functions of type
f/z(S), where f 6 S%(L;) and S € Geny,(N) with S C H;. By the maximality
of dy, Hy contains at most d1 — 1 elements of S. For z € N, the linear function
z(a,tb) is not constant if b ¢ z1. Hence, if b € H} is sufficiently general, then
z(S)(a, tb) = [1,es z(a, td) is of degree at least d; —d; + 1 as a polynomial in ¢ while
f(a,tb) is of degree at most d; in t. Hence k;(a,tb) is of order at most t¥1~1 at t = oo
for ¢ > 1. Hence the rational function (hy +- - -+ hs)(a, td) in ¢ can not be zero. This

is a contradiction. g.ed.

For each Q-linear subspace H of Nq, we choose and define a subspace L(H) C
NQ with NQ =H® L(H)

Lemma 2.2 For any cone o in Ny, the Q-vector space S2(Nq) is decomposed

to the direct sum

@ s°(H,L(H)),

HCH(o)

where H runs over all Q-linear subspaces of H(o).

Proof. By Lemma 2.1, these components are linearly independent. Let A be
the direct sum. It is sufficient to show that A = S2(Nq). Any element in S2(Ngq) is
expressed as a sum of elements of type f/z(S), where S € Gen(N) with S C H(o)
and f € S%(Nq) for d :="'S. We will show f/z(S) € A by induction on d. If d = 0,
then f/z(S) is contained in Q = S°({0}, Nq).

Assume that d > 0 and any element f'/z(S') € S2(NQ) is in A for every
proper subset S’ of S. Let H be the linear subspace of Nq generated by S. We
take a basis {1, --,z,} of Nq such that S = {z;,---,24} and L(H) is gener-
ated by {z441, "+, 2,}. Then f is a homogeneous polynomial of degree d in z;’s.
We decompose f = f; + f, so that f; is a polynomial in {2441, -, %,} and each
monomial of f; is divisible by one of z,---,z4. Then we have f/z(S) € A since
fi/z(S) € S°(H, L(H)) and f,/z(S) € A by the induction assumption. g.e.d.

We define a covariant functor E° : C — (Q-vector spaces) as follows.
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For each a € C, we set

Eo(a) = Sg(a)(N(a)Q) .

Note that Q C E°(a) for every a. For a morphism u : @ — (3, the isomorphism
uq : N(a)q — N(B)q induces an isomorphism HQ(S*(N(a)q)) ~ HQ(S*(N(8)q))-
The morphism E°(u) : E%(a) — E°(B) is defined to be the injection induced by this
isomorphism.

Let ® be a fan of Ng. Any finite subset ¥ of ® is considered to be a graph of
cones by defining N(¢') := N and ¢(0) := o for every o € ¥. A morphismu: 0 — T

is defined to be in mor ¥ if 0,7 € ¥ and u = 1x.

Lemma 2.3 Let o be a simplicial cone in Np. We set F(a)* := F(o) \ {o}.

Then the natural Q-linear map
ind lim E,yx — E°%(0)
s injective.

Proof. Let (a,),er(o)x be an element of @,cr(s)x SO(NQ). By Lemma 2.2, each
a, is expressed as the sum a, g, + -+ + a, g, where each H; is a Q-linear subspace
of H(p) and a, g, is an element of S°(H;, L(H;)). For each H;, there exists a unique
minimal face n of o with H; C H(n), since ¢ is simplicial. If we define an element
(a},)per(o)x by @, := a, — aym,, a; = @y + a, 5, and a), := a, for the other p’s,
this represents a same class as (a,),er(s)x in the inductive limit. By doing this
process successively for all p € F (ajx and components a, p,, we get an element
(bs)peF(o)x of B,er(s)x SH(NQ) which is equivalent to (a,),er(,)x and each b, is a
sum b, g, + -+ + b, p, such that g is the unique minimal element in {n € F(o)* ;
H; C H(n)} for every 1.

The image of the class in E°(0) is just the sum 3 ¢p(s)x b,. If this is zero, then

all b,’s are zero by Lemma 2.2. g.e.d.

Let © be the T-complex defined from the I-invariant fan % U {0} similarly as
we defined = from ZU {0} in Section 1 (cf. [I1, Ex.2.6,(3)]). £ consists of simplicial

free cones, since £ U {0} is a simplicial fan.



By defining ex(a) : Q — E°(a) to be the natural inclusion for every a € I, we

get a homomorphism of functors ez : QF — E2.

Lemma 2.4 There exists a homomorphism of functors v : E2 — Q3 such that

v-eg is the identity. In particular, ind limeg defines an injection Q < ind lim ES.

Proof. A subset ® of ¥ is said to be star open if it has the property: If there
exists u: a — B € morY and 8 € ®, then a € ®. Let & be a maximal star open
subset of ¥ such that there exists a set (v(a))aese of Q-linear maps v(a) : E'O(a) - Q
satisfying the following conditions.

(1) v(a) is identity on Q for every a € 9.

(2) v(B)-E°(u) = v(a) for every u: o — 3 € mor X with 8 € ®.

It is sufficient to show that ® = . Suppose that ® # £ and let p € £\ & be
an element with the lowest d(p). By the property of T-complexes [I1, Def.2.5,(2)],
there exists a bijection between the set {u € morX ; f(u) = p} and F(p)x :=
F(p)\{0} by the correspondence u — ug(c(i(x))). We denote by u(n) the morphism
corresponding to 7 € F(p)x by this bijection, and we denote a(n) := i(u(n)). By
the minimality of d(p), a(n) is in ® for every 7 € F(p)x \ {p}.

Wesset F(p)* := F(p)\{p}. Foreachn € F(p)* with n # 0, we define a Q-linear
map v(n) : E%(n) — Q so that v(n)-E°(u(n)) = v(a(n)). Here note that the image
of E%u(n)) is equal to E°(n) C E°(p). For 0, we define »(0) : E°(0) = Q — Q to
be the identity. Then we get a set of Q-linear morphisms (¥(7)),er()x such that
v(n)|gow) = v(p) for any n,u € F(p)* with p < 1. This set defines a Q-linear
map »' : ind lim ER,)x — Q such that v(n) = v"-), for every n € F(p)*, where
A, : E°(n) — ind lim Eg( p)x is the natural Q-linear map. Hence, by Lemma 2.3,
there exists a Q-linear map v(p) : E°(p) — Q such that v(n) = v(p)|po(y for every
n € F(p). For every u € mor L, with f(u) = p, we have

v(p)-E°(u) = v(n)-E°(u) = v(i(v))

for n := ur(c(i(u))). Hence the set of Q-linear maps (v(a))acau(y) satisfies the
conditions (1) and (2). This contradicts the maximality of ®. q.ed.
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Recall that

Qo) = I _exp(=y)  _ I 1

y€geno 1- exp(—y) - y€geno exp(y) -1

)

for a nonsingular cone 0 C NR, and z(0)Qo(c) is an entire function on Mc¢ for
z(0) = [lyegeno y- Hence for each integer d, the homogeneous part of degree d of
€*Qo(c), which we denote by [¢*Qo( )]s, is in S2 (Nq). Hence for a general polyhedral
cone 7, [e*Qo(r)]s and [e*Q(7)]s are in S%(NQ) since each of them is the sum of
[e*Qo(0)]a’s for a set of nonsingular cones contained in .

For each a € X, w(a) := [e(a)*Qo(c(a))]o is an element of E%(a).

Theorem 2.5 The class of (w(@))aes in ind lim ER is in Q and is equal to
w(Z) = Z(0)(C, ). '

Proof. Since Z U {0} is a I-invariant subdivision of £ U {0}, there exists a
unique map X : = — ¥ such that o< X(a) for every o € Z. We may assume that the
set of representatives of =/T" is taken so that o € Z is a representative if and only if
M(o) € £ is a representative of a class in £/T.

Let A : = — L be theinduced map. Foru : 0 — 7in Z, we get A(u) : A(o) — A(71)
in ¥ by setting A(u)z := uz. Hence X is a functor of finite categories. We denote
by k(o) the natural isomorphism N(o)q — N(A(0))q for each 0 € =. By our
choice of the representatives, we may regard h(c) as the identity map for every o.
Each h(o) induces a Q-linear map g(o) : D%o) — E%\(s)). Foru:0 — 7 in
E, the equality g(7)-D°(u) = E°(A(u))-g(o) holds, since the both Q-linear maps
are restrictions of the isomorphism HQ(S*(N(e))) ~ HQ(S*(N(7))). Hence ¢g(0)sez
induces a Q-linear map ind lim D2 — ind lim E2 which maps Q identically to Q.

For each 7 € X, we set 5(«r) := {c € = ; A(¢) = 7}. Then N(o) is identified
with N(r) for every o € Z(ar). Hence we have

2 90 w(@)= 3 [e(r)"Qol(c(a))]o = [e(7)*Qu(c(m))]o = w(n) .

o €E(ar) o€E(ar)

Hence the image of w(Z) € ind lim D2 in ind lim E is equal to the class of (w(7))rex-
This is the rational number Z(0)(C,T') by Theorem 1.1. q.e.d.



3 Local calculations

The main purpose of this section is to prove Lemma 3.6 which connects locally
the zeta zero value Z(0)(C,T') and the arithmetic genus defect x..(C*,T"*).
We denote by ¢ the involution of Mc defined by «(z) = —z. By using this

involution, we get the following lemma.

Lemma 3.1 Let 7 be a rational polyhedral cone in Nr. Then, for any integer
d, we have [e*Q(7)]g = (=1)™™+[e*Qq(7)]4.

Proof. Let o be a nonsingular cone. Then

e Qo(o)

exp(y)
y€geno 1- exp(.y)
— (—q)dme T] — 1
Bl ( 1) yEIg—eInol—exp(_y)
= (-1)meQ(o)

For a nonsingular finite fan ® of Ng with |®| = =, we have

e Q()

= E%L*E*Qo(a)

= T(1ieq)

— E(_l)dm\a XE)E*QO(T)
oed r€F (0

= 2. 2 (=1)"™)e"Qu(r)
T€EP s€d(7<)

By the convexity of , Zae¢(,<)(—1)di‘“” is equal to (—1)%™" if 7 a7 and is zero
otherwise. Hence the last formula is equal to

(DT 30 €'Qo(7)

T€P(ar)

= (1) Qo(r) .
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On the other hand, ¢* is the multiplication by (—1)¢ for S¢(Nq). Hence

[ Q(m)]a = (—1)%[¢*e"Q(m)]a = (=1)*™ *+[eQo()]a -
q.e.d.

Let p be an element of a nonsingular fan ® of M. If ®(p<) is finite, we define
I(®,f) := ¥ ea(p<)r) {(0,f) for each index f on p as in Section 1. This is in general
an element of HQ(S*(Nq)).

Lemma 3.2 Let ® be a nonsingular finite fan of Mg such that = := |®| is an
r-dimensional conver cone. For an element p € ®, let 0 C Ny be the dual cone of
7+ H(p). Then, for any indez f on p, I(®,f) is in S, (NQ)-

Proof. Let d := dim p and s the norm of f. We prove the Lemma by induction
ons—d.

Assume s = d. Then f isequalto 1,,i.e.,,f(a) = 1foralla € genp. If s = r, then
I(®,f) = I(p,f) =1 € S;(NQ). Assume s < r. Let ®[p] be the nonsingular convex
fan of the quotient space Mg /H(p) consisting of the images of the cones of ®(p=<).
Then I(®,1,) is equal to I(®[p],1), where 1 is the trivial index gen0 =0 — Z, on
0. Hence, by [I2, Lem.3.1], I(®[p], 1) = 0 if the support (= + H(p))/H(p) of ®[p] is
not strongly convex. If it is strongly convex, then H(c) = p*. Since the dual space
of Mp/H(p) is p* C Ng, I(®[p],1) is in S}(Ng N pt) C S;(Nq).

Let u be a positive integer. We assume the lemma is generally true if s — d < u.
Now we assume s — d = u. Since d < s, at least one f(a) is greater than one. We
fix an a; € genp with f(a;) > 2 and define a new index f’ by f'(a;) = f(a;) — 1
and f'(a) = f(a) for all the other a € gen p. We choose an element n € N such that
{(a1,n) =1 and (a,n) = 0 for all the other a € genp. For each o € ®(p=<)(r), we

have

n = Y (an)z(c,a)

a€geno

= z(o,a)+ Y. (bn)z(s,b).

bEgeno\genp



By this equality, we substitute the numerator [],¢gen, (0, a)f@® of I(o,f) by

(n_ Z (b’n)x(asb)) H .T(o‘,a)f'(a)

bEgeno\genp a€genp

For each b € geno \ gen p, n := p+ Rob is a (d + 1)-dimensional cone in ®(p<). We
set ®(p<)(d+1) := {n € ®(p<) ; dimn = d + 1}. Then, by the above substitution
for all o € ®(p<)(r), we get an equality

12,f) =nI(®,f)— 3 (an)I(,1,),
n€®(p=<)(d+1)

where a, is the unique element of genn \ genp and f, is the index on 7 defined
by f,(a,) := 1 and f,(a) := f'(a) for all « € genp. Since f' is of norm s — 1,
I(®,f') € S;(Nq) by the induction assumption. Hence nI(®,f’) € S};(Nqg). On the
other hand, since dimn = d+1 and f,, is of norm s, we can also apply the induction
assumption to I(®,f,). Since 7 + H(p) C 7 + H(n), the dual cone of 7 + H(n) is
contained in o for every . Hence I(®,f,) € S;(Nq) for all 9. :

q.ed.

Homological triviality of a subset ® of a fan is defined in [I3]. If ® is homologically
trivial then 3, ¢q(—1)4™7 = 0.

Lemma 3.3 Let # C MR be a polyhedral cone of mazimal dimension. For
T € Mq, we define

F(n,z):= {0 € F(r);z € int(r + H(o))} .
IfIL‘ g -7, then EaeF(ﬂ,z)(—l)djma =0.

Proof. For each o € F(r), the dual cone of # + H(c) in Ny is the face 7¥ Not
of #¥ C Mg. Hence o is in F(r,z) if and only if the face 7¥ N o' is contained in
the open half space (z > 0) C Ny except the origin. If we take an element y € int 7

sufficiently near 0, then we have

F(r,2) = {o € F(r) ;¥ no* C (z—y > 0)}.
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Since we can take y so that z —y ¢ —n, theset {r € F(7V); 7 C(z —y > 0)} is

homologically trivial by [I3, Prop.2.3]. Since dimo + dim#¥ N ot = r for every o,

- we have

S (1) (1) ¥ (e <o,

o€F(m,x) o€F(r,x)
q.ed.

We take a one-dimensional cone o € ¥ and fix it in the rest of this section. Then
P(0) is a vertex of the kernel @ C C. Recall that o* € ¥*(r) is the dual cone of
R,(© — P(0)). Note that o* is contained in the closed half space 0¥ and intersects
the hyperplane ot only at the origin. The correspondences p — p* define a bijection
of £(0~<) and F(o)y. |

For each element p € £(0<), p* is a face of o*. We define the polyhedral cone
C(p,0) C Ng by C(p,a) := o + Ro(P(p) — P(c)). Note that Ro(P(p) — P(0)) is
the face (6*)V N (p*)t of (0*)V. Hence the dual cone C(p,0)V C Mg is equal to
¥ N (o* + H(p*)). Clearly, the relation o* C C(p,o)Y C ¢V holds.

We take a nonsingular finite fan ®(o) of Mg with the following properties.

(1) The support |®(c)| is equal to V.

(2) For each p € £(0<), there exists a subfan ®(s,p) C (o) with the support
C(p, ). |

(3) ®(o) contains A(Co*)U{0} as a subfan, where A(Co*) := {n € A ; 5 C o*}.

Such a fan ®(o) is obtained as follows. In order to simplify the notation, set
&, := A(Co*)U{0} and B := @, \ A(<0”). Let z be a rational point in the interior
of o*. Then

@ := &, U {n + Ro(~2) ; 7 € o}

is a complete fan of MR. For each p € £(0<), the cone C(p,0)V is defined by a
finite number of rational hypérplanes which do not intersect int o*. We subdivide
the fan ® by these hyperplanes for all p and we get a fan ®’. We can take a
nonsingular subdivision ®” of &' without subdividing the nonsingular subfan @,.
Then ®(0) := {n € ®" ; n C oV} satisfies the condition.

Note that, if a cone 7 is contained in a cone #, then there exists a unique face 7

of = with 5 « 7. This fact is used in the following definition of u(n, p).



Let n be an element of ®(c) \ {0}. Assume. that 5 is contained in the cone
C(p,0)Y for p € £(a<). Since F(o*+ H(p*)) = {u* + H(p") ; u € F(p)(c<)}, there
exists a unique p(n, p) € F(p)(o<) with n < u(n, p)* + H(p*). Since p* < ﬂ(r],h)", n
is contained in the linear space H(u(n, p)*).

For n € ®(o) \ {0} and p € $(0<), we set

G(u,m) :={p € £(u=) ; n € ¥(0,p) and p(n,p) = p} .
Clearly, G(p,n) = 0 if 1 is not contained in H(u*).

Lemma 3.4 For any element p € G(p,n) and for any f € Index(n), I(®(o, p),f)
is equal to I(®(o,1),f) and is contained in S)(NQ).

Proof. Since p = RoP(p) C C(p,0) C H(p), we have H(C(u,0)) = H(u).
Hence I(®(o, 1),f) € S(Nq) by Lemma 3.2 and the definition of S(Ngq). Since
nap*+ H(p*) C o™+ H(p*), we have H(p*) C 0* + H(p*) + H(n). Hence

- C(p,0)Y =0"n (0" + H(p")) Ca¥ N (o™ + H(p") + H(n)) .

In view of the fact that oV is a closed half space, we see easily that the right-hand
side is containd in o¥ N (o* + H(p*)) + H(n) = C(p,o)¥ + H(n). Hence we have
C(p,o)V + H(n) = C(p,0)Y + H(n). This implies ®(o, p)(n<) = ®(o, u)(n<). Then
the equality I(®(o,p),f) = I(®(o, 1), f) is clear by the definitions. g.e.d.

Lemma 3.5 Forn € ®(c)\ {0} and pu € %(o=),
> (1t
PEG(pym)

is equal to (—1)" if n a p* and is 0 otherwise.

Proof. We may assume n C H(p*). Let z be a point of rel.intn. If z €
rel. int(u*+H(p*)) C 0"+ H(p*) forp € $(u=), then n is in &(c, p) and pap*+H(p*).
Hence p € £(u~) is in G(g, ) if and only if 7 € rel. int(p* + H(p*)). Since {p*; p €
2(u=)} = F(u*) \ {0}, we have

{p*; p € G(u,n)} = F(p*,2) \ {0},
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where we defined F(p*,z) as in Lemma 3.3 for u* C H(y*) and z € H(p*). Since
oVN(—p*) = {0} and n C oY, z is not in —u*. By the relation dim p+dim p* = r+1
and Lemma 3.3, we have
>, (=pEme=(-1* 30 ()T —(-1)Ma=(~1)a,
p€G(um) p*EF(u*,x) _
where a = 1 if 0 € F(p*,z) and a = 0 otherwise. We get the lemma, since the zero

cone 0 is in F(u*, z) if and only if nap. g.ed.

We consider the graph of cones £(0<). We define elements (a(p)) pef(o<) 2nd
(b(p))pei(cM) of ®pei(a<) E°(p) by

a(p) := (1)~ [e*Q(C(p, )))o

and

o)=Y X bel(A(Co™)f).

n€4(ap*) f€lndex(n)

Lemma 3.6 The elements (a(P))pes(o<) and (b(p)),c5(s<) TePTESENt @ same el-

9

ement in the Q-vector space ind lim EE(H).

Proof. Since ®(o,p) is a finite nonsingular fan with the support C(p, o)V, we
have Q(C(p,0)) = E;€¢(,,p)(r) Q(7V) by [12, Cor.2.4]. For an r-dimensional nonsin-

gular cone 7 in MR, we have an expansion

Q)= Y S bl(ni).

n=0 neF(r) fe&Ilndex(n.n)

Hence a(p) is equal to

(=yame 30 [T

T€®(0,0)(r)

= (e 3 3 Y bI(nd)

7€9(0,p)(r) nEF(r)x f€Index(n)

(=1ydme 37 > bel(2(o,p),f).

1€®(e,0)\{0} felndex(n)

By Lemma 3.4, the component bgI(®(c,p),f) € E°p) in the last formula is
equal to bgI(®(o,u(n,p)),f) and is contained in E°(u(n, p)). Hence we can move



this component to E%(u(n, p)) within the equivalent class. By making this reduction

for all components, we know that (a(p)) ,¢5(,<) is equivalent to (c(1)),c5(,<) defined
by

o(p) v= (=1)78 X 2 (X (=1t beI(8(o, ), f) -

n€®(o)\{0} felndex(n) p€G(u,n)

If n 4 p*, then we have ¥ gy (—1)8m ~9m# = (—1)~4m« by Lemma 3.5. Fur-
thermore, since ‘

0" C C(p,0)" C o™+ H(p*) = 0" + H(n),
we have C(u, o)V + H(n) = o*+ H(n) and I(®(o, p),f) = I(A(Co*),f). If n is not in
A(4p*), then ¥ peGum)(—1)m#=dims = 0 by Lemma 3.5. Hence we have c(i) = b(u)
for every p. | g.ed.

We denote by (o) the element of ind lim E%(a <) Tepresented by (a(P)) peg(o<)-

We call (a(p)),ez(0<) the non-reduced representative and (b(p)),ez(,<) the reduced

representative of §(o), respectively.

4 Proof of Theorem

Lemma 4.1 Let p be an element of £. Then

> Q(C(p,0)) =Qp).

a€F(p)(1)

Proof. Let N' := NN H(p) and M’ := M/(M N pt). Then N’ and M’ are
mutually dual Z-modules. In this pfoof, 7V for a cone 7 C N means the dual cone
in M. We consider the unbounded closed convex set ©, := © N p of Ng. For each
o € F(p)(1), P(0o) is a vertex of ©, and we have C(p,0) = Ro(0, — P(c)). The
support function k : Mg — R of ©, is defined by |

h(z) := inf{(z,a} ; a € 0,}.

Then h has nonnegative value on p¥ and b = —0o0 on Mg \ p¥. Since p is of maximal

dimension in N, pV is strongly convex.
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There exists a unique coasest fan ¥ of Mr with the support p¥ such that & is
linear on each cone of ¥. Since the set of zero-dimensional faces of ©, is {P(0) ; 0 €
F(p)(1)}, The set of maximal dimensional cones of ¥ is {C(p, o) ; o € F(p)(1)}.
Then the lemma is the consequence of Brion’s equality [12, Cor.2.4] applied to the

convex fan V. q.ed.

Let & € £(1) be a representative of a one-dimensional free cone o € £(1). Then
there exists a natural morphism of graphs of cones f)(&«) — Y. This morphism

induces a Q-linear map

ind lim B3, _,

— ind lim E3 .
We denote by (o) the image of 6(5) by this map. Clearly, this definition does not
depend on the choice of & for o.

We define

6(2):= > 0(c) € ind imE} .
0€X(1)

We will see (X) by the non-reduced representatives of 6(5) for all o. Let
(A(p)),es be the sum of the non-reduced representatives.

Let 5 € £ be a representative of an element p € E. For each o € F (c(p))(1), we
denote by & the corresponding face of p. The cone C(p,0) C N(p)R is defined to
be the image of C(p,&) by the natural isomorphism Ng ~ N(p)r. By Lemma 4.1,
we have

Alp) = (-1)™"™ 5. [e(p)"QC(p,0)ho

o€F(c(p))(1)
= (1) "e(p)*Q(c(p))]o ,
where £(p) := 1p,) ®.exp(—*). This is equal to (—1)"[e(p)*Qo(c(p))]o = (1) w(p)
by Lemma 3.1. Hence 8(X) is equal to (—1)"Z(0)(C,T') by Theorem 2.5.
Now, we see the same class by the reduced representatives of 6(&) for all o. Let

(B(p)),ex be the sum. For each p € ¥, take a representative 5 € X. Then B(p) is

- equal to the image of

B(p) == Y X X buIA(co)f)

0€F(5)(1) neA(qp*) f€Index(n)
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S Y IAD

n€A(«p*) felndex(n)

by the natural isomorphism E°(p) ~ E°(p).

Then each I(A,f) is an integer by [I2, Thm.3.2]. Hence the class (%) €

ind lim EY is equal to the sum of rational numbers

Y Y uIA).

n€A/T* felndex(n)

This is equal to the invariant x(C*,I'*) by Theorem 1.2.
Hence 6(X) is in Q and is equal to both (—1)"Z(0)(C,T') and x(C*,T*). Thus

Theorem is proved.
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