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The intersection cohomology of toric varieties

小田 忠雄 (中北大学理学部)

Tadao ODA (Tohoku University, Faculty of Science)

Introduction

The intersection cohomology theory of Goresky and MacPherson [10], [12], which was
further developed by $Beilinson\backslash$

’ Bernstein and Deligne [1], attaches to singular spaces new
topological invariants much better behaved than ordinary cohomology or homology groups.

Since a toric variety is a simpleminded singular space described in terms of a fan,
it is natural to try to describe its intersection cohomology group and, more generally its
intersection complex, in terms of the fan as well.

There have been earlier attemps in this direction by J. N. Bernstein, A. G. Khovanskii
and R. D. MacPherson (see Stanley [26]), Denef and Loeser [9] and others. However, they
depend either on the decomposition theorem of Beilinson, Bernstein, Deligne and Gabber
(see Beilinson, Bernstein and Deligne [1] as well as Goresky and MacPherson [11]) or on
the purity theorem of Deligne and Gabber (cf. Deligne [7], [8]).

We also resort here to the decomposition theorem to interpret, in terms of fans, the
intersection cohomology groups and intersection complexes of toric varieties with respect
to the middle oerversity. Hopefully we will be able to find an elementary proof for these
results. In this paper, we only give clues. Our problem turns out to be closely related to the
problem of finding an elementary proof of the strong Lefschetz theorem for toric varieties,
and hence of the elementary proof due to Stanley [25] of the “g-theorem” for simplicial
convex polytopes conjectured by McMullen [18]. (See also [20], $[21!l$

In Section 1, we quote the relevant parts of [22] to recall the definitions of the log-
arithmic double complexes and Ishida’s complexes for toric varieties. The algebraic de
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Rham theorem as well as certain vanishing theorems for them will play important roles in
describing the intersection cohomology and intersection complexes for toric varieties. We
also recall the Chow rings for simplicial fans which provide convenient tools later. The
details will appear in Park [24].

In Section 2, we apply results in the previous section to study the intersection coho-
mology and intersection complex for toric varietis. After quoting relevant results valid in
general, we restrict ourselves to the simplest nontrivial case of isolated non-quotient toric
singularities.

1 The algebraic de Rham theorem

1.1 Logarithmic double complex

The following logarithmic double complex for a toric variety will play important roles in
the description of the intersection cohomology groups and intersection complex of the toric
variety.

Let $\Delta$ be a finite fan for a free Z-module $N$ of rank $r$ , and denote by $X$ $:=T_{N}emb(\Delta)$

the associated r-dimensional toric variety over the field $C$ of complex numbers. The com-
plement $D:=X\backslash T_{N}$ of the algebraic torus $T_{N}$ $:=N\otimes_{Z}C"\cong(C^{*})$ ‘ is a Weil divisor on
$X$ but is not necessarily a Cartier divisor. The dual Z-module $M$ $:=Hom_{Z}(N, Z)$ , with
the canonical bilinear pairing ( , } : $M\cross Narrow Z$ , is isomorphic to the character group
of the algebraic torus $T_{N}$ . For each $m\in M$ we denote the corresponding character by
$t^{m}$ : $T_{N}arrow C^{*}$ (which was denoted by $e(m)$ in [19]), and identify $C[M]:=\oplus_{m\in M}Ct^{m}$ with
the group algebra of $M$ over C. Hence $T_{N}$ is the group of C-valued points of the group
scheme $Spec(C[M])$ .

Each $n\in N$ gives rise to a C-derivation $\delta_{n}$ of $C[M]$ defined by $\delta_{n}(t^{m});=\{m,n\rangle$ $t^{m}$ .
Consequently, we have a canonical isomorphism to the Lie algebra

$C\otimes_{Z}Narrow^{\sim}Lie(T_{N})$ , $1\otimes nrightarrow\delta_{n}$ ,

hence an $O_{X}$-isomorphism $O_{X}\otimes_{Z}Narrow\sim\Theta_{X}(-\log D)$, where the right hand side is the sheaf
of germs of algebraic vector fields on $X$ with logarithmic zeros along the Weil divisor $D$ .
Its dual $\Omega_{X}^{1}(\log D)$ is the sheaf of germs of algebraic l-forms with logarithmic poles along
$D$ , and we get an $\mathcal{O}_{X}$ -isomorphism

$\mathcal{O}_{X}\otimes_{Z}Marrow^{\sim}\Omega_{X}^{1}(\log D)$ , $1 \otimes mrightarrow\frac{dt^{m}}{t^{m}}$ .

Taking the exterior product, we thus get an $O_{X}$-isomorphism $O_{X}\otimes z\wedge Marrow\sim\Omega_{X}(\log D)$ .
The exterior differentiation $d$ on the right hand side corresponds to the operation on the left
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hand side which sends a p-form $t^{m}\otimes m_{1}\wedge\cdots\wedge m_{p}$ to the $(p+1)$-form $t^{m}\otimes m\wedge m_{1}\wedge\cdots\wedge m_{p}$

(cf. [19, Chap. 3]).
Recall that the set of $T_{N}$-orbits in $X$ is in one-to-one correspondence with $\Delta$ by the

map which sends each $\sigma\in\triangle$ to the $T_{N}$-orbit

orb $(\sigma)=Spec(C[M\cap\sigma^{\perp}])=T_{N/Z(N\cap\sigma)}$ .

The closure $V(\sigma)$ in $X$ of orb $(\sigma)$ is known to be a toric variety with respect to a fan for
the Z-module $N/Z(N\cap\sigma)$ . Namely,

$V(\sigma)=T_{N/Z(N\cap\sigma)}emb(\{(\tau+(-\sigma))/R\sigma|\tau\in Star_{\sigma}(\Delta)\})$ ,

where $R\sigma=\sigma+(-\sigma)$ is the smallest R-subspace containing $\sigma$ of $N_{R}$ $:=N\otimes_{Z}R$ , while
$Star_{\sigma}(\triangle):=\{\tau\in\Delta|\tau\succ\sigma\}$ . Hence $D(\sigma)$ $:=V(\sigma)\backslash orb(\sigma)$ is a Weil divisor on $V(\sigma)$ . In
particular, we have orb$(\{0\})=T_{N},$ $D(\{0\})=D$ and $V(\{0\})=X$ .

For each integer $q$ with $0\leq q\leq r$ , denote $\Delta(q)$ $:=\{\sigma\in\Delta|\dim\sigma=q\}$ . For each pair
of integers $p,$ $q$ , let

$\mathcal{L}_{\acute{X}^{q}}^{p}$ $:=$ $\oplus\Omega_{V(\sigma)}^{p-q}(\log D(\sigma))=$ $\oplus \mathcal{O}_{V(\sigma)}\otimes_{Z}\wedge^{p-q}(M\cap\sigma^{\perp})$ if $0\leq q\leq p$ ,
$\sigma\in\Delta\langle q)$ $\sigma\in\Delta(q)$

and $\mathcal{L}^{p,q}=0$ otherwise. $d_{I}$ : $\mathcal{L}_{X^{q}}^{p}arrow \mathcal{L}_{X}^{p+1,q}$ is defined to be the direct sum of the exterior
differentiation for each $\sigma\in\Delta(q)$ . We define $d_{II}$ : $\mathcal{L}_{X^{q}}^{p}arrow \mathcal{L}_{X^{q+1}}^{p}$ as follows: The $(\sigma,\tau)-$

component of $d_{IJ}$ for $\sigma\in\Delta(q)$ and $\tau\in\Delta(q+1)$ is defined to be zero when $\sigma$ is not a face
of $\tau$ . On the other hand, if $\sigma$ is a face of $\tau$ , then a primitive element $n\in N$ is uniquely
determined modulo $N\cap R\sigma$ so that $\tau+(-\sigma)=R_{\geq 0}n+R\sigma$ . $M\cap\tau^{\perp}$ is a Z-submodule of
corank one in $M\cap\sigma^{\perp}$ . The $(\sigma,\tau)$-component of $d_{II}$ in this case is then defined to be the
tensor product of the restriction homomorphism $\mathcal{O}_{V(\sigma)}arrow \mathcal{O}_{V(\tau)}$ with the interior product
with respect to $n$ . Namely, an element in the $\sigma$-component of $\mathcal{L}_{X^{q}}^{p}$ of the form

$t^{m}\otimes m_{1}\wedge m_{2}\wedge\cdots\wedge m_{p-q}$ , $m,m_{1}\in M\cap\sigma^{\perp}$ , $m_{2},$ $\ldots,m_{p-q}\in M\cap\tau^{\perp}$

is sent to $t^{m}\otimes\{m_{1},$ $n\rangle$ $m_{2}\wedge\cdots$ A $m_{p-q}$ if $m\in M\cap\tau^{\perp}$ , and to $0$ otherwise. $d_{II}$ is the Poincar\’e

residue map.
$d_{I}od_{I}=0$ and $d_{I}od_{II}+d_{II}od_{I}=0$ are obvious, while $d_{II}od_{\Pi}=0$ was shown in Ishida [15,

Lemma 1.4 and Prop. 1.6]. Consequently, we get a double complex $\mathcal{L}_{X}$ of $\mathcal{O}_{X}$-modules,
which we call the logarithmic double complex for the toric variety $X$ . The associated single
complex is denoted by $\mathcal{L}_{X}$ and is called the logarithmic complex for $X$ .

For simplicity, we denote by $\mathcal{X}$ $:=X^{an}$ the complex analytic space associated to the
toric variety $X=T_{N}emb(\triangle)$ .
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Theorem 1.1 If $\Delta$ is $a$ simplicial fan, then we have a quasi-isomorphism $C_{\mathcal{X}}\simeq(\mathcal{L}_{X})^{an}$ .

Remark. In [19], $\mathcal{L}_{\acute{X}}^{p}$ was denoted by $\mathcal{K}(X;p)$ .
As for an arbitrary fan $\triangle$ for $N\cong(Z)^{r}$ which need not be simplicial, Ishida has a proof

for the following amazing result: $(\mathcal{L}_{X})^{an}[2r]$ is quasi-isomorphic to the globally normalized
dualizing complex $\mathcal{D}_{\mathcal{X}}$ of $C_{\mathcal{X}}$ -modules in the sense of Verdier [29]. The point of this result
of Ishida’s lies in the fact that the dualizing complex $\mathcal{D}_{\mathcal{X}}$ can be expressed in terms of
a complex comprizing of algebmic and coherent $\mathcal{O}_{X}$-modules. Analogously, Ishida [15,
Theorem 3.3] and [16, Theorem 5.4] earlier showed $\mathcal{L}_{X}^{f}[r]$ to be quasi-isomorphic to the
globally normalized dualizing complex of $\mathcal{O}_{X}$-modules.

1.2 Ishida’s complexes

In this subsection, we recall the definition of Ishida’s complexes by quoting the relevant
part of [22].

Let $\triangle$ be a finite fan for a free Z-module $N$ of rank $r$ , and for $0\leq q\leq r$ denote
$\Delta(q)$ $:=\{\sigma\in\triangle|\dim\sigma=q\}$ as before.

For each integer $p$ with $0\leq p\leq r$ , Ishida’s p-th complex $C^{\cdot}(\Delta, \Lambda^{p})$ of Z-modules is
defined as follows:

$C^{q}(\Delta, \Lambda^{p})$

$:= \bigoplus_{\sigma\in\Delta(q)}\wedge^{p-q}(M\cap\sigma^{\perp})$
if $0\leq q\leq p$ ,

and $C^{q}(\triangle, \Lambda^{p})=0$ otherwise. For $\sigma\in\triangle(q)$ and $\tau\in\Delta(q+1)$ , the $(\sigma,\tau)$ -component of the
coboundary map

$\delta:C^{q}(\triangle, \Lambda^{p})=\bigoplus_{\sigma\in\Delta\{q)}\wedge^{p-q}(M\cap\sigma^{\perp})arrow C^{q+1}(\triangle, \Lambda^{p})=\bigoplus_{\tau\in\Delta(q+1)}\wedge^{p-q-1}(M\cap\tau^{\perp})$

is defined to be $0$ if $\sigma$ is not a face of $\tau$ . On the other hand, if $\sigma$ is a face of $\tau$ , then a primitive
element $n\in N$ is uniquely determined modulo $N\cap R\sigma$ so that $\tau+(-\sigma)=R_{\geq 0}n+R\sigma$ . The
$(\sigma,\tau)$-component of $\delta$ in this case is defined to be the interior product with respect to this
$n$ . Namely, the element $m_{1}\wedge m_{2}\wedge\cdots\wedge m_{p-q}$ with $m_{1}\in M\cap\sigma^{\perp}$ and $m_{2},$ $\ldots,$

$m_{p-q}\in M\cap\tau^{\perp}$

is sent to ($m_{1},$ $n$ } $m_{2}\wedge\cdots$ A $m_{p-q}$ . As Ishida [15, Prop. 1.6] showed, $\delta 0\delta=0$ holds so that
$C^{\cdot}(\triangle, \Lambda^{p})$ is a complex of Z-modules. We denote its cohomology group by $H^{\cdot}(\triangle, \Lambda^{p})$ . We
will be mainly concerned with their scalar extensions $C(\Delta,\Lambda^{p})_{Q},$ $C(\triangle, \Lambda^{p})_{C},$ $H^{\cdot}(\triangle, \Lambda^{p})_{Q}$ ,
$H^{\cdot}(\Delta, \Lambda^{p})_{C}$ to $Q$ and C.

By definition, we have $H^{q}(\triangle, \Lambda^{p})=0$ unless $0\leq q\leq p$ .

Remark. In [19, \S 3.2], $C(\Delta, \Lambda^{P})$ and $H^{\cdot}(\Delta, \Lambda^{P})$ were denoted by $C(\Delta;p)$ and $H(\Delta;p)$ ,
respectively.
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As in [20], we can define a similar complex $C^{\cdot}(\Pi, \mathcal{G}_{p})$ of R-vector spaces for a simplicial
polyhedral cone decomposition $\Pi$ of an R-vector space endowed with a marking for each
one-dimensional cone in $\Pi$ . Note, however, that unless a lattice $N$ is given as in the case
of a fan, we cannot define the coboundary map in the case of a non-simplicial convex
polyhedral cone decomposition $\Pi$ even if it is endowed with a marking. It is crucial that
for a codimension one face $\sigma$ of $\tau$ in a fan, a primitive element $n\in N$ is uniquely determined
modulo $N\cap R\sigma$ so that $\tau+(-\sigma)=R_{\geq 0}n+R\sigma$ holds as above, regardless of whether $\tau$ is
simplicial or not.

The following result is slightly stronger than [19, Lemma 3.7], and the proof is similar
to that for [20, Prop. 3.5], which concerns analogous R-coefficient cohomology groups for
the simplicial polyhedral cone decomposition consisting of the faces of a simplicial cone in
a finite dimensional R-vector space:

Proposition 1.2 Let $\pi$ be $a$ simplicial mtional polyhedml cone in $N_{R}$ . Then for each
$0\leq p\leq r$ , the cohomology group of Ishida’s p-th complex for the fan $\Gamma_{\pi}$ consisting of all
the faces of $\pi$ satisfies

$H^{q}(\Gamma_{\pi}, \Lambda^{p})_{Q}$ $:=H^{q}(\Gamma_{\pi}, \Lambda^{p})\otimes_{Z}Q=\{\begin{array}{l}\wedge^{p}(M_{Q}\cap\pi^{\perp})q=00q\neq 0\end{array}$

where $M_{Q}$ $:=M\otimes z$ Q.

1.3 The algebraic de Rham theorem

In this subsection, we denote by $X$ $:=T_{N}emb(\triangle)$ the r-dimensional toric variety over $C$

corresponding to a finite fan $\Delta$ for $N\cong Z$ ‘. For simplicity, we again denote the corre-
sponding complex analytic space by X $:=X^{an}$ .

Proposition 1.3 For an arbitrary fan $\Delta$ which need not be complete nor simplicial, the
hypercohomology group of the logarithmic complex $\mathcal{L}_{X}$ has a direct sum decomposition

$H^{l}(X,\mathcal{L}_{X})=\bigoplus_{p+q=l}H^{q}(\Delta, \Lambda^{p})_{C}$ for each $l$ .

We are now ready to state a generalization, in the toric context, of the algebraic de
Rham theorem due to Grothendieck [13]. An algebro-geometric $pro$of valid in the case of
complete nonsingular fans can be found in Danilov [4] and in [19, Theorem 3.11].
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Theorem 1.4 (The algebraic de Rham theorem) For $a$ simplicial fan $\Delta$ which need not
be complete, we have the following for each $l$ :

$H^{l}( \mathcal{X}, C)=H^{l}(\mathcal{X}, (\mathcal{L}_{X})^{an})=H^{l}(X, \mathcal{L}_{X})=\bigoplus_{p+q=l}H^{q}(\Delta,\Lambda^{p})_{C}$
,

where the second term from the left is the corresponding analytic hypercohomology gmup.

1.4 Vanishing theorems

Analogs of the following were proved first in [19, Theorem 3.11] for complete nonsingular
fans by means of the algebraic de Rham theorem, and then directly in [20, Theorem 4.1]
for complete simplicial polyhedral cone decompositions endowed with markings:

Proposition 1.5 Let $\Delta$ be $a$ simplicial and complete fan for $N\cong Z$‘. Then for all $p$ with
$0\leq p\leq r$ we have

$H^{q}(\Delta,\Lambda^{p})_{Q}=0$ for $q\neq p$.
Moreover for all $p$, we have a perfect pairing

$H^{p}(\triangle, \Lambda^{p})_{Q}\cross H^{r-p}(\Delta, \Lambda^{r-p})_{Q}arrow H^{f}(\Delta, \Lambda^{f})_{Q}\cong\wedge^{f}M_{Q}$ .

The following is an important generalization, due to Ishida, of our earlier result stated
as Corollary 1.7 later.

Theorem 1.6 (Ishida) Let $\Delta$ be a finite simplicial fan for $N\cong Z^{r}$ which may not be
complete. If there exist a finite complete simplicial fan $\tilde{\Delta}$ and a $\rho\in\triangle(1)\sim$ such that
$\triangle=\cdot\triangle\sim\backslash Star_{\rho}(\tilde{\Delta})_{f}$ then

$H^{q}(\Delta, \Lambda^{p})_{Q}=0$ for all $q\neq p$ .

Corollary 1.7 Let $\Delta$ be a finite simplicial fan for $N\cong Z^{r}$ such that its support $|\Delta|$ is
convex of dimension $r$ . Then

$H^{q}(\triangle, \Lambda^{p})_{Q}=0$ for all $q\neq p$ .

1.5 Chow rings for simplicial fans

It is convenient to introduce the Chow ring over $Q$ for simplicial fans, generalizing results
in Danilov [4] and [19], [20].

Let $\triangle$ be a finite simplicial fan for $N\cong Z$ ‘ which need not be complete. As before, we
denote $\triangle(1)$ $:=\{\rho\in\triangle|\dim\rho=1\}$ . For each $\rho\in\Delta(1)$ , let $n(\rho)$ be the unique primitive
element of $N$ contained in $\rho$ .
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Introduce a variable $x_{\rho}$ for each $\rho\in\Delta(1)$ and denote by

$S:=Q[x_{\rho}|\rho\in\Delta(1)]$

the polynomial ring over $Q$ in the variables $\{x_{\rho}|\rho\in\Delta(1)\}$ . Let $I$ be the ideal of $S$

generated by the set

{ $x_{\rho_{1}}x_{\rho_{2}}\cdots x_{\rho}$. $|\rho_{1},$ $\ldots,\rho_{s}\in\Delta(1)$ distinct and $\rho_{1}+\cdots+\rho_{s}\not\in\Delta$ }

of square-free monomials. On the other hand, let $J$ be the ideal of $S$ generated by the set

$\{\sum_{\rho\in\Delta(1)}\{m,n(\rho)\}x_{\rho}|m\in M\}$

of linear forms.

Definition. The Chow ring for a finite simplicial fan $\Delta$ is defined to be

$A=A(\Delta)$ $:=S\cdot/(I+J)$ .

We denote by $v(\rho)$ the image in $A$ of the variable $x_{\rho}$ . More generally, for each $\sigma\in\Delta$ , which
is uniquely expressed in the form $\sigma=\rho_{1}+\cdots+\rho_{p}$ with distinct $\rho_{1},$ $\ldots,$

$\rho_{p}\in\Delta(1)$ and
$p$

$:=\dim\sigma$ , we denote $v(\sigma)$ $:=v(\rho_{1})v(\rho_{2})\cdots v(\rho_{p})$ , which is the image in $A$ of $x_{\rho_{1}}x_{\rho_{2}}\cdots x_{\rho_{p}}$ .

Proposition 1.8 The Chow ring $A=A(\Delta)$ for a simplicial fan $\Delta$ for $N\cong Z$‘ is an
Artinian gmded algebm of the form

$A= \bigoplus_{p=0}^{f}A^{p}$ with
$A^{p}=A^{p}( \Delta)=\sum_{\sigma\in\Delta(p)}Qv(\sigma)$

and is genemted by $A^{1}$ over $A^{0}=Q$ . Moreover, we have the following relations:

$\sum_{\rho\epsilon\Delta(1)}\{m,n(\rho)\}v(\rho)=0$ for all $m\in M$ ,

and, for $\sigma,\sigma’\in\triangle$ ,

$v(\sigma)v(\sigma’)=\{\begin{array}{l}0if\sigma+\sigma’\not\in\Delta v(\sigma+\sigma’)if\sigma\cap\sigma=\{0\}\end{array}$

$\sigma+\sigma’\in\Delta$ .

The following is easy to show:

Lemma 1.9 For a finite simplicial fan $\Delta$ , we have canonical isomorphisms

$H^{p}(\Delta,\Lambda^{p})_{Q}=A^{p}(\Delta)$ for all $0\leq p\leq r$ .
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In view of Theorem 1.4 and Proposition 1.5, we thus have:

Corollary 1.10 The Chow ring $A(\triangle)$ for a finite simplicial and complete fan $\triangle$ is a
Gorenstein ring and satisfies the duality $\dim_{Q}A^{p}(\Delta)=\dim_{Q}A^{r-p}(\triangle)$ for all $0\leq p\leq r$ .
Moreover, $H^{l}(\mathcal{X}, C)=0$ for all $l$ odd, while

$H^{2p}(\mathcal{X}, C)=H^{2p}(X, \mathcal{L}_{X})=A^{p}(\triangle)_{C}$ for all $0\leq p\leq r$ .

Corollary 1.11 If $\Delta$ is a finite simplicial fan for $N\cong Z$‘ such that the support $|\Delta|$ is a
convex cone of dimension $r_{2}$ then $H^{l}(\mathcal{X}, C)=0$ for all $l$ odd, while

$H^{2p}(\mathcal{X}, C)=H^{2p}(X, \mathcal{L}_{X})=A^{p}(\Delta)_{C}$ for all $0\leq p\leq r$ .

For a simplicial and complete fan $\Sigma$ for $\overline{N}\cong Z^{r-1}$ , let us now consider equivariant
$P_{1}$ (C)-bundles over $\overline{X}$ $:=T_{\overline{N}}emb(\Sigma)$ and associated C-bundles and C’-bundles.

For that purpose, let $\eta$ : $\overline{N}_{R}arrow R$ be an R-valued function which is Z-valued on $\overline{N}$ and
piecewise linear with respect to the fan $\Sigma$ . Denote $N$ $:=\overline{N}\oplus Zn_{0}\cong Z$‘ and consider the
graph $g$ : $\overline{N}_{R}arrow N_{R}$ of $\eta$ defined by $g(\overline{n})$ $:=\overline{n}+\eta(\overline{n})n_{0}$ . We then let

$\Phi^{b}$

$;=$ $\{g(\overline{\sigma})|\overline{\sigma}\in\Sigma\}$

$\Phi$ $;=$ $\Phi^{b}\prod\{\tau+R_{\geq 0}n_{0}|\tau\in\Phi^{b}\}$

$\tilde{\Phi}$

$;=$ $\Phi\prod\{\tau+R_{\geq 0}(-n_{0})|\tau\in\Phi^{b}\}$ .

The projection $Narrow\overline{N}$ killing $n_{0}$ induces maps of fans $(N,\tilde{\Phi})arrow(\overline{N}, \Sigma),$ $(N, \Phi)arrow(\overline{N}, \Sigma)$

and $(N, \Phi^{b})arrow(\overline{N}, \Sigma)$ which respectively give an equivariant $P_{1}$ (C)-bundle $T_{N}emb(\tilde{\Phi})arrow$

$\overline{X}$ , the associated C-bundle $T_{N}emb(\Phi)arrow\overline{X}$ and the associated C’-bundle $T_{N}emb(\Phi^{b})arrow$

X.

Proposition 1.12 $A(\tilde{\Phi})$ is canonically isomorphic to the algebm $A(\Sigma)[\xi]$ over $A(\Sigma)$ gen-
emted by an element $\xi$ subject to the relation

$\xi(\xi+\overline{\eta})=0$ with $\overline{\eta}$

$:= \sum_{\overline{\rho}\in\Sigma(1)}\eta(\overline{n}(\overline{\rho}))\overline{v}(\overline{\rho})\in A^{1}(\Sigma)$
,

where $\overline{n}(\overline{\rho})$ and $\overline{v}(\overline{\rho})$ for $\overline{\rho}\in\Sigma(1)$ are similar to $n(\rho)$ and $v(\rho)$ previously defined for
$\rho\in\Delta(1)$ .

Moreover, we have canonical isomorphisms

$A(\Phi)=A(\Sigma)$ and $A(\Phi^{b})=A(\Sigma)/A(\Sigma)\overline{\eta}$.
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In fact, we have further information which we need later:

Proposition 1.13 We have $H^{q}(\Phi^{b}, \Lambda^{p})_{Q}=0$ for all $q\neq p-1,p$ . Furthermore, for all $p_{l}$

there exists a canonical exact sequence

$0arrow H^{p-1}(\Phi^{b}, \Lambda^{p})_{Q}arrow A^{p-1}(\Sigma)arrow^{\eta\overline}A^{p}(\Sigma)arrow H^{p}(\Phi^{b}, \Lambda^{p})_{Q}=A^{p}(\Phi^{b})arrow 0$ ,

where the armw with $\overline{\eta}$ denotes the multiplication by $\overline{\eta}\in A^{1}(\Sigma)$ .

2 The intersection cohomology

2.1 Intersection cohomology and intersection complex

We briefly recall definitions and relevant results on the intersection cohomology and in-
tersection complex. We restrict ourselves to those over $C$ and with respect to the middle
perversity. For details, we refer the reader to Beilinson, Bernstein and Deligne [1], Borel et
al. [2], Brylinski [3], Deligne [8], Goresky and MacPherson [10], [11], [12], Kirwan [17] and
others.

Let $Y$ be an r-dimensional normal algebraic variety (of finite type) over the field $C$ of
complex numbers, and denote by $\mathcal{Y}:=Y^{an}$ the associated complex analytic space.

The intersection complex of $C_{\mathcal{Y}}$-modules (with respect to the middle perversity) is an
object $\mathcal{I}C_{\mathcal{Y}}$ in the derived category $D_{c}^{b}(C_{\mathcal{Y}})$ of bounded complexes of $C_{\mathcal{Y}}$-modules with
algebraically constructible cohomology sheaves. We here adopt the convention on the
degrees so that the homology sheaf satisfies

$\prime kl^{l}(\mathcal{I}C_{\mathcal{Y}})=0$ unless $-2r\leq l\leq 0$ .

The intersection cohomology group with coefficients in $C$ and with respect to the middle
perversity is defined to be the hypercohomology group

$IH(\mathcal{Y}, C)$ $:=H^{\cdot}(\mathcal{Y},\mathcal{I}C_{\mathcal{Y}}[-2r])$ ,

non-vanishing terms of which thus occur only in degrees between $0$ and $2r$ . The intersection
cohomology group with compact support is defined similarly by

$IH_{c}(\mathcal{Y}, C)$ $:=H_{c}(\mathcal{Y},\mathcal{I}C_{\mathcal{Y}}[-2r])$ .

Remark. The intersection complex of $C_{\mathcal{Y}}$-modules with respect to the zero perversity
is $C_{\mathcal{Y}}[2r]$ , while that with respect to the top perversity is the globally normalized dualizing
complex $\mathcal{D}_{y}$ of $C_{\mathcal{Y}}$-modules in the sense of Verdier (cf. [29]).
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Theorem 2.1 (Unique characterization, cf. Goresky and MacPherson [12, \S 4.1 and
\S 4.3 ]) $\mathcal{I}C_{y}$ is a unique object in $D_{c}^{b}(Cy)satis\dot{f}ying$ the following properties:

$\bullet$ $\mathcal{I}C_{\mathcal{Y}}|yo=Cy\circ[2r]$ for a Zanski dense nonsingular open subset $\mathcal{Y}^{Q}\subset \mathcal{Y}$ .
$\bullet lt^{j}(\mathcal{I}C_{y})=0$ for $j\leq-2r$ .
$\bullet$ $\dim_{C}supp\mathcal{H}^{j}(\mathcal{I}C_{y})<-j-rfor-2r<j$ .
$\bullet$ (Verdier self-duality) $\mathcal{D}y(\mathcal{I}C_{y})=\mathcal{I}C_{\mathcal{Y}}[-2r]$ .

Theorem 2.2 (Special case of the decomposition theorem of Beilinson, Bernstein, Deligne
and Gabber, cf. Beilinson, Bernstein and Deligne [1]; Goresky and MacPherson [11]) Let $f$ :
$Y’arrow Y$ be $a$ proper birational morphism of normal varieties. Then $\mathcal{I}C_{y}$ is a direct factor of
the direct image $Rf_{*}^{an}\mathcal{I}C_{y}$, as objects in $D_{c}^{b}(C_{\mathcal{Y}})$ . In particular, the $equality\mathcal{I}C_{\mathcal{Y}}=Rf_{*}^{an}\mathcal{I}C_{y}$ ,

holds if $Y’$ is nonsingular (or, more genemlly, with at worst quotient singularities) and $f$

$is$ small, $i.e.$ ,
$co\dim_{C}\{y\in Y|\dim_{C}f^{-1}(y)\geq l\}>2l$

holds for all $l>0$ .

Let $X$ $:=T_{N}emb(\Delta)$ be the r-dimensional toric variety over $C$ corresponding to a finite
fan $\Delta$ for $N\cong Z$‘, and denote X: $=X^{an}$ .

Combining a result due to Steenbrink [28] with our Theorem 1.1 and the algebraic de
Rham theorem (Theorem 1.4), we have:

Theorem 2.3 If $\triangle$ is simplicial, then $X$ has at worst quotient singularities so that

$C_{\mathcal{X}}[2r]=\mathcal{I}C_{\mathcal{X}}=\mathcal{D}_{\mathcal{X}}=(\mathcal{L}_{X})^{an}[2r]$

holds in $D_{c}^{b}(C_{\mathcal{X}})$ . Hence for all $l$ we have

$IH^{l}( \mathcal{X}, C)=H^{l}(\mathcal{X}, C)=H^{l}(\mathcal{X}, (\mathcal{L}_{X})^{an})=H^{l}(X, \mathcal{L}_{X})=\bigoplus_{p+q=l}H^{q}(\Delta,\Lambda^{p})_{C}$
.

In view of Corollary 1.7, Corollary 1.11, and the decomposition theorem (Theorem 2.2),
we have:

Corollary 2.4 Let $\Delta$ be a finite fan for $N\cong Z$‘ which need not be simplicial nor complete.

If the support $|\Delta|$ is a convex cone of dimension $r$ , then

$IH^{l}(\mathcal{X},$ $C$ } $=0$ for $l$ odd.

holds forX $:=T_{N}emb(\Delta)$ . If $\Delta$ is simplicial, then for all $0\leq p\leq r$ we have

$IH^{2p}(\mathcal{X}, C)=H^{2p}(\mathcal{X}, C)=H^{2p}(X,\mathcal{L}_{X})=A^{p}(\Delta)_{C}$ .
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For the proof, choose a simplicial subdivision $\Delta’$ of $\Delta$ and apply Theorem 2.3 to $\Delta’$ .
We are done, since $IH^{l}(\mathcal{X}, C)$ is a subspace of $IH^{l}(\mathcal{X}’,\cdot C)$ by the decomposition theorem.

The following in straightforward:

Lemma 2.5 Let a finite fan $\Delta’$ be $a$ simplicial subdivision of a fan $\Delta$ for N. Then the
corresponding equivanant morphism $f$ : $X’$ $:=T_{N}emb(\Delta’)arrow X$ $:=T_{N}emb(\Delta)$ of tonc
varieties is small (that is,

$co\dim_{C}\{x\in X|\dim_{C}f^{-1}(x)\geq l\}>2l$

holds for all $l>0$) if and only if the following holds for all those $\sigma$ in $\Delta$ which are actually
subdivided in $\triangle^{J}$ :

$\min\{\dim\sigma’|\sigma’\in\triangle’, \sigma’\subset\sigma,\sigma’\cap relint\sigma\neq\emptyset\}>\frac{1}{2}\dim\sigma$ .

In this case, $\triangle’$ is said to be $a$ small simplicial subdivision of $\Delta$ .

2.2 Isolated toric singularities

Let us look at the intersection cohomology and the intersection complex in the simplest
nontrivial case.

Let $\pi$ be a strongly convex rational polyhedral cone in $N_{R}\cong R^{f}$ with $\dim\pi=r$ such
that $\pi$ itself is not simplicial but all the proper faces of $\pi$ are simplicial. Let us denote

$\Gamma_{\pi}$ $:=$ {the faces of $\pi$ }, $\partial\pi$ $:=$ {all the proper faces of $\pi$ }.

Then
$U_{\pi}$ $:=T_{N}emb(\Gamma_{\pi})=Spec(C[M\cap\pi^{\vee}])$

is a toric variety with a unique isolated non-quotient singular point $P$ $:=orb(\pi)$ . By
assumption, $\partial\pi$ is simplicial so that $U_{\pi}\backslash \{P\}=T_{N}emb(\partial\pi)$ has at worst quotient singu-
larities.

Let us denote $\mathcal{U}$ $:=(U_{\pi})^{an}$ and study $\mathcal{I}C_{\mathcal{U}}$ , $IH(\mathcal{U}, C)$ and $IH_{c}(\mathcal{U}, C)$ .

Lemma 2.6 (cf. Denef and Loeser [9, Cor. 6.6 and Lemma 6.7]) In the notation above, the
stalk of $\mathcal{H}^{\cdot}(\mathcal{I}C_{\mathcal{U}}[-2r])$ at $P$ satisfies $\mathcal{H}^{\cdot}(\mathcal{I}C_{\mathcal{U}}[-2r])_{P}=IH(\mathcal{U}, C)$ . In particular, we have
$IH^{l}(\mathcal{U}, C)=0$ for $l\geq r$ in view of the unique chamcterization in Theorem 2.1. Moreover,
the inclusion $\mathcal{U}\backslash \{P\}arrow \mathcal{U}$ induces isomerphisms

$IH^{l}(\mathcal{U}, C)arrow^{\sim}H^{l}(\mathcal{U}\backslash \{P\}, C)$ for all $l<r$ .
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Let us now consider a simplicial subdivision $\Delta’$ of $\pi$ which subdivides none of the proper
faces cf $\pi$ . Namely, $\triangle’$ is a simplicial fan for $N$ such that $|\triangle’|=\pi$ and $\Delta’\supset\partial\pi$ . We denote

$(\triangle’)^{o}$ $:=\triangle’\backslash \partial\pi=\{\sigma’\in\triangle’|\sigma’\cap int\pi\neq\emptyset\}$ .

By definition, $\triangle$ ‘ is a small simplicial subdivision of $\pi$ if and only if $\dim\sigma’>r/2$ holds for
all $\sigma’\in(\triangle’)^{o}$ .

Let $f$ : $X’$ $:=T_{N}emb(\triangle’)arrow U_{\pi}$ be the corresponding equivariant proper birational
morphism, and denote by $f^{an}$ : $\mathcal{X}’$ $:=(X’)^{an}arrow \mathcal{U}$ $:=(U_{\pi})^{an}$ the corresponding morphism
of analytic spaces.

By Theorem 2.3, we have

$\mathcal{I}C_{\mathcal{X}’}[-2r]=C_{\mathcal{X}’}=(\mathcal{L}_{X’})^{an}$ .

Hence by Theorem 2.2 (the decomposition theorem), $\mathcal{I}C_{\mathcal{U}}[-2r]$ is a direct factor of

$Rf_{*}^{an}(C_{\mathcal{X}’})=(Rf_{*}\mathcal{L}_{X’})^{an}$

as objects in $D_{c}^{b}(C_{\ell 1})$ . Moreover, if $\triangle’$ is a small simplicial subdivision, we have the equality

$\mathcal{I}C_{\mathcal{U}}[-2r]=Rf_{*}^{an}(C_{\mathcal{X}’})=(Rf_{*}\mathcal{L}_{X},)^{an}$ .

$(\triangle’)^{o}$ is star-closed in $\triangle’$ and $\partial\pi=\triangle’\backslash (\triangle^{J})^{o}$ . Hence for all $p$ we have a long exact
sequence of Ishida’s complexes

$0arrow C((\Delta’)^{o},\Lambda^{p})arrow C^{\cdot}(\triangle’, \Lambda^{p})arrow C(\partial\pi, \Lambda^{p})arrow 0$ .

In view of the vanishing of Ishida’s cohomology in Corollary 1.7 and Proposition 1.13, the
non-vanishing part of the associated long exact sequence is

$0arrow H^{p-1}(\partial\pi, \Lambda^{p})_{Q}arrow H^{p}((\triangle’)^{o}, \Lambda^{p})_{Q}arrow H^{p}(\triangle^{J}, \Lambda^{p})_{Q}arrow H^{p}(\partial\pi, \Lambda^{p})_{Q}arrow 0$ .

By the decomposition theorem, $IH^{2p}(\mathcal{U}, C)$ is a subspace of

$H^{2p}(\mathcal{U}, Rf_{*}^{an}(C_{\mathcal{X}’}))=H^{2p}(\mathcal{X}’, C)=H^{p}(\Delta’, \Lambda^{p})_{C}=A^{p}(\triangle’)_{C}$.

On the other hand, $U_{\pi}\backslash \{P\}=T_{N}emb(\partial\pi)$ with $\partial\pi$ simplicial. Hence by Theorem 1.4 and
Proposition 1.13, we have

$IH^{2p}(\mathcal{U}\backslash \{P\}, C)$ $=$ $H^{2p}(\mathcal{U}\backslash \{P\},C)=H^{p}(\mathcal{U}\backslash \{P\}, \Lambda^{p})_{C}=A^{p}(\partial\pi)_{C}$

$IH^{2p-1}(\mathcal{U}\backslash \{P\}, C)$ $=$ $H^{2p-1}(\mathcal{U}\backslash \{P\},C)=H^{p-1}(\partial\pi,\Lambda^{p})_{C}$ .
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Proposition 2.7 We have $IH^{l}(\mathcal{U}, C)=0$ for $l$ odd or $l\geq r$ . For $l=2p,$ $IH^{2p}(\mathcal{U}, C)$ is a
subspace of $A^{p}(\Delta’)_{C}$ which splits the canonical surjection

$A^{p}(\triangle’)_{C}arrow A^{p}(\partial\pi)_{C}arrow 0$ .

If $\triangle^{J}$ is small, then the above surjection is an isomorphism, and $IH^{2\rho}(\mathcal{U}, C)=A^{p}(\triangle’)_{C}=$

$A^{p}(\partial\pi)_{C}$ .

In view of Lemma 2.6 due to Denef and Loeser, this proposition follows from the van-
ishing

$A^{p}(\partial\pi)_{C}=0$ for $p>(r-1)/2$ ,

which is equivalent to the strong Lefschetz theorem for projective toric varieties with at
worst quotient singularities, as we now see.

Choose a primitive element $n_{0}\in N$ which is contained in the interior of $\pi$ . Then there
certainly exists a decomposition $N=\overline{N}\oplus Zn_{0}$ with $\overline{N}\cong Z^{\tau-1}$ . Since $\pi$ is assumed to
be a strongly convex cone, there exist a complete fan $\Sigma$ for $\overline{N}$ and an R-valued function
$\eta$ : $\overline{N}_{R}arrow R$ which is Z-valued on $\overline{N}$ and is piecewise linear and strictly convex with respect
to $\Sigma$ such that

$\partial\pi=\{g(\overline{\sigma})|\overline{\sigma}\in\Sigma\}=\Phi^{b}$

as in Subsection 1.5, where $g:\overline{N}_{R}arrow N_{R}$ is the graph of $\eta$ defined by $g(\overline{n})$ $:=\overline{n}+\eta(\overline{n})n_{0}$ .
Hence by Proposition 1.13 we have

$A^{p}(\partial\pi)=A^{p}(\Sigma)/\overline{\eta}A^{p-1}(\Sigma)$ with $\overline{\eta}$

$:= \sum_{\overline{\rho}\in\Sigma(1)}\eta(\overline{n}(\overline{\rho}))\overline{v}(\overline{\rho})\in A^{1}(\Sigma)$
.

Its vanishing in degrees $p>(r-1)/2$ is exactly the strong Lefschetz theorem for the
projective toric variety $\Sigma$ with respect to the ample element $\overline{\eta}\in A^{1}(\Sigma)$ by [20, Cor. 4.5].

In the same notation, let

$\Phi$ $:=\Phi^{b}LI\{\tau+R_{\geq 0}n_{0}\}$ ,

which is a simplicial subdivision of $\pi$ not subdividing any of the proper faces of $\pi$ . Thus
we may take this $\Phi$ as $\triangle’$ in Proposition 2.7. Since $A(\Phi)=A(\Sigma)$ by Proposition 1.12, We
have:

Corollary 2.8 For each $p$, the intersection cohomology gmup $IH^{2p}(\mathcal{U}, C)$ is a subspace of
$A^{p}(\Sigma)_{C}$ which gives a splitting of the surjection

$A^{p}(\Sigma)arrow A^{p}(\Sigma)/\overline{\eta}A^{p-1}(\Sigma)$ .
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As to the existence and various possibilities for simplicial subdivisions $\Delta’$ of $\pi$ subdi-
viding none of the proper faces of $\pi$ , we have the following results:

(1) $\Phi$ constructed above is an example. In this case, the set of one-dimensional faces is
$\Phi(1)=(\partial\pi)(1)1]\{R_{\geq 0}n_{0}\}$ (see Figure 1).

Figure 1: $\Phi$

(2) As an application of the Gelfand-Kapranov-Zelevinskij decompositions, we have the
following (see [23, Cor. 3.8] and Park’s account in these proceedings): There exist non-
divisorial $\Delta’$ , namely, those which do not introduce any new one-dimensional cones other
than the one-dimensional faces of $\pi$ so that $\Delta’(1)=(\partial\pi)(1)$ , hence $\dim$ a $>1$ for any
$\sigma\in(\Delta’)^{o}$ . Moreover, any two such non-divisorial simplicial subdivisions can be obtained
from each other by a finite succession of flops.

(3) Some of the non-divisorial $\Delta’$ in (2) are small so that $\dim\sigma>r/2$ for any $\sigma\in(\Delta’)^{o}$ ,
while the others may not be (see Park’s account in these proceedings).

For $r=3$ , all the non-divisorial $\Delta’$ are small (see Figure 2).

Figure 2: $r=3$

In the case $r=4$, suppose the section $\pi\cap H$ of $\pi$ by a hyperplane $H$ not passing through
the origin is a simplicial hexahedron as in Figure 3. Then one of the two non-divisorial
simplicial subdivisions is small, while the other is not.

(4) For some $\pi$ , small simplicial subdivisions may not exist. As an example, let $\pi$ be a
4-dimensional cone such that the section $\pi\cap H$ of $\pi$ by a hyperplane $H$ not passing through
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non-divisorial
but not small

Figure 3: $r=4$ , hexahedral

the origin is a simplicial octahedron as in Figure 4. This $\pi$ has three different non-divisorial
simplicial subdivisions $\triangle_{1}’,$ $\triangle_{2}’,$ $\Delta_{3}’$ which are not small. The coarsest common subdivision
is $\Phi$ for an appropriate choice of $n_{0}$ .

Let us calculate the Chow rings of $\Phi,$ $\triangle_{1}’,$ $\triangle_{2}’,$ $\triangle_{3}’$ for $\pi$ appearing in (4). For simplicity,
we assume that the primitive elements of $N$ corresponding to the central as well as the
three pairs of diametrically opposite vertices of $\pi\cap H$ are $n_{0};n_{1},$ $n_{1}’$ ; $n_{2},$ $n_{2}’;n_{3},$ $n_{3}’$ satisfying

$n_{0}=n_{1}+n_{1}’=n_{2}+n_{2}’=n_{3}+n_{3}’$ ,

where $\{n_{0},n_{1}, n_{2}, n_{3}\}$ is a Z-basis for $N$ . The Chow ring of $\Phi$ turns out to be

$A(\Phi)=Q[v_{1}, v_{2}, v_{3}]$ with $v_{1}^{2}=v_{2}^{2}=v_{3}^{2}=0$,

hence

$A^{0}(\Phi)$ $=$ $Q$

$A^{1}(\Phi)$ $=$ $Qv_{1}\oplus Qv_{2}\oplus Qv_{3}$

$A^{2}(\Phi)$ $=$ $Qv_{1}v_{2}\oplus Qv_{2}v_{3}\oplus Qv_{3}v_{1}$

$A^{3}(\Phi)$ $=$ $Qv_{1}v_{2}v_{3}$

$A^{4}(\Phi)$ $=$ $\{0\}$ .

Moreover, with $v_{0}$ $:=-(v_{1}+v_{2}+v_{3})$ , we have $A(\partial\pi)=A/Av_{0}$ , whose non-vanishing
components are

$A^{0}(\partial\pi)=Q$ , $A^{1}(\partial\pi)=(Qv_{1}\oplus Qv_{2}\oplus Qv_{3})/Qv_{0}\cong Q^{2}$ .
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$\pi\cap H$

Figure 4: $r=4$ , octahedral

Consequently, we have $IH^{2}(\mathcal{U}, C)\cong C^{2}$ .
$\Phi$ is a star subdivision of $\Delta_{1}’$ with respect to $n_{0}\in R_{\geq 0}n_{1}+R_{\geq 0}n_{1}’$ , hence we have a

natural isomorphism

$A(\Delta_{1}’)arrow^{\sim}Q[v_{2}, v_{3}]\subset A(\Phi)=Q[v_{1}, v_{2}, v_{3}]$ .

Similarly, we have

$A(\Delta_{2}’)$
$arrow^{\sim}$ $Q[v_{1},v_{3}]\subset A(\Phi)=Q[v_{1}, v_{2}, v_{3}]$

$A(\Delta_{3}’)$
$arrow^{\sim}$ $Q[v_{1},v_{2}]\subset A(\Phi)=Q[v_{1}, v_{2}, v_{3}]$ .

$IH^{2}(\mathcal{U}, C)$ as a subspace of $A^{1}(\Delta_{1}’)_{C}$ (resp. $A^{1}(\Delta_{2}’)_{C}$ , resp. $A^{1}(\Delta_{3}’)_{C}$ ) coincides with the
whole space, since both are 2-dimensional. However, by the natural isomorphisms above,

it is mapped to three different subspaces

$Cv_{2}\oplus Cv_{3}$ , $Cv_{1}\oplus Cv_{3}$ , $Cv_{1}\oplus Cv_{2}\subset A^{1}(\Phi)_{C}=Cv_{1}\oplus Cv_{2}\oplus Cv_{3}$ .
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