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In the present notes we shall show that affine Lie algebras appear as infinites-
imal automorphism groups of the determinant bundles of a family of associated
vector bundles of the versal family of principal bundles over a Riemann surface
$R$. More natural but shophistcated approach can be found in [BS] and [T]. In
the following we fix a Riemann surface $R$ .

\S 1 Infinitesimal deformations of principal bundles.

The arguments in this section are valid for all complex manifolds. Let $G$ be a
simply connected complex simple algebraic group realized as a closed subgroup
of $GL(N, C)$ for a sufficiently large integer $N$ . Let $\pi$ : $Parrow R$ be a holomorphic
principal G-bundle. Let $R= \bigcup_{\lambda\in\Lambda}U_{\lambda}$ be an open covering of the Riemann
surface such that the principal bundle $\pi$ : $Parrow R$ is trivialized on each $U_{\lambda}$ .
Then the principal bundle can be determined by transition functions $\{g_{\lambda\mu}\}$ with
$g_{\lambda\mu}\in\Gamma(U_{\lambda\mu}, \mathcal{G})$ where $\mathcal{G}$ is the sheaf of germs of holomorphic sections of $R$ to
$G$. The transition functions $g_{\lambda\mu}$ satisfy the relation

$g_{\lambda\mu}g_{\mu\nu}=g_{\lambda\nu}$ on $U_{\lambda\mu\nu}$ .
Let $\epsilon$ be the dual number, that is $\epsilon\equiv zmod (z^{2})$ in $C[z]/(z^{2})$ . To change

the structure of the principal bundle $\pi$ : $Parrow R$ infinitesimally put

$\hat{g}_{\lambda\mu}$ $:=g_{\lambda\mu}(I+\epsilon h_{\lambda\mu})$

where $I$ is the identity matrix and $h_{\lambda\mu}\in\Gamma(U_{\lambda\mu},\underline{\mathfrak{g}})$. Here, $\mathfrak{g}$ is the Lie algebra
of the Lie group $G$ realized as a Lie subalgebra of the $N\cross\cdot N$ matrix algebra
$M(N, C)$ and $\underline{\mathfrak{g}}$ is the sheaf of germs of holomorphic sections of $R$ to $g$ . These
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new transition functions satisfy the compatibility condition

$\hat{g}_{\lambda\mu}\hat{g}_{\mu\nu}=\hat{g}_{\lambda\nu}$ on $U_{\lambda\mu\nu}$ .

The condition can be rewritten in the form

(1) $h_{\lambda\nu}=g_{\mu\nu}^{-1}h_{\lambda\mu}g_{\mu\nu}+h_{\mu\nu}$

on $U_{\lambda\nu\mu}$ . Let $\underline{ad}(P)$ be the associated vector bundle (adjoint bundle) P
$G\cross \mathfrak{g}$

associated with the adjoint representation of $G$ . Then, the condition (1) means
that a Chech cocycle $\{h_{\lambda\mu}\}$ defines an element in $H^{1}(R,\underline{ad}(P))$ .
Theorem 1. There is a on$e$ to one correspondence between the set of infinites-
imd deformations of the principal bundle $\pi$ : $Parrow R$ and $H^{1}(R,\underline{ad}(P))$ .

\S 2 Principal G-bundles with trivializations.

Let us choose a point $Q$ of the Riemann surface $R$ and a local coordinate $\xi$

of $R$ with center $Q$ . In the following we fix the data $(R;Q;\xi)$ . We let $(P;\eta^{(k)})$

be a holomorphic principal G-bundle with k-th infinitesimal trivialization at the
point $Q$ :

$\eta^{(k)}$ : $O_{R}(P)\otimes \mathcal{O}_{R,Q}/\mathfrak{m}_{Q}^{k+1}\simeq G(C[\xi]/(\xi^{k+1}))$ .
For $karrow+\infty$ we have a formal trivialization at $Q$ :

$\hat{\eta}$ : $\mathcal{O}_{R}(P)\otimes\hat{\mathcal{O}}_{R,Q}\simeq G(C[[\xi]])$.

Theorem 1 can be generalized in the following form.

Theorem 2. For $e$ach positive integer $k$ here is a one to one correspondence be-
tween th$e$ set ofinfinitesimal deformation$s$ of th$e$ data $(P;\eta^{(k)})$ and by $H^{1}(R,\underline{ad}(P)(-(k+$

$1)Q)$ .

Let $\mathfrak{M}_{R}^{(k)}(G)$ be the coarse moduli scheme of stable pairs $(P;\eta^{(k)})$ . At a point
$\mathfrak{X}=(P;\eta^{(k)})$ of $\mathfrak{M}_{R}^{(k)}(G)$ we have a canonical isomorphismof the tangent space
at SC to the first cohomology group:

$T_{X}\mathfrak{M}_{R}^{(k)}(G)\simeq H^{1}(R,\underline{ad}(P)(-(k+1)Q))$ .
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Let us consider an exact sequence

$0arrow\underline{ad}(P)(-(k+1)Q)arrow\underline{ad}(P)((m-(k+1))Q)$

$arrow\bigoplus_{\ell=-m+k+1}^{k}\mathfrak{g}\otimes\xi^{\ell}arrow 0$ .

If $m\gg O$ , we have

$H^{1}(R,\underline{ad}(P)((m-(k+1))Q))=0$.

Hence, there is an isomorphism

$\bigoplus_{\ell=-m+k+1}^{k}\mathfrak{g}\otimes\xi^{\ell}/H^{0}(R,\underline{ad}(P)((m-(k+1))Q))\simeq H^{1}(R,\underline{ad}(P)(-(k+1)Q))$ .

Taking $marrow\infty$ , we have

(2) $\mathfrak{g}\otimes(C[\xi,\xi^{-1}]/(\xi^{k+1}))H^{0}(R,\underline{ad}(P)(*Q)\simeq H^{1}(R,\underline{ad}(P)(-(k+1)Q))$ .

Note that for every principal G-bundle $P$ over $R$, there is a positive integer
$\ell$ such that $(P;\eta^{(k)}),$ $k\geq\ell$ is always stable. Therefore, if we take $karrow\infty$ , the
corse moduli scheme $\mathfrak{M}_{R}(G)$ of pairs $(P;\hat{\eta})$ of principal G-bundle with formal
triviaJization at the point $Q$ contains all the pair $(P;\hat{\eta})$ of principal G-bundle
with formal trivialization at $Q$ . Moreover, the coarse moduli scheme is fine and
there is a universal family $\varpi$ : $\mathcal{P}arrow R\cross \mathfrak{M}_{R}(G)$ of principal G-bundles with
formal trivialization.

Now by virtue of (2), the tangent space of $M_{R}(G)$ at a point $\hat{\mathfrak{X}}=(P;\hat{\eta})$ is
given by

$\mathfrak{g}\otimes C((\xi))/H^{0}(R,\underline{ad}(P)(*Q))$ .
This means that the affine Lie algebra $g\otimes C((\xi))$ without centre operates on
$M_{R}(G)$ infinitesimally and the action is infinitesimally homogeneous.

\S 3 Determinant bundles.

Let $V$ be a G-module and $\rho$ : $Garrow Aut(V)$ be the corresponding representa-
tion. Let di : $\mathcal{P}\cross VGarrow R\cross \mathfrak{M}_{R}(G)$ be the associated family of vector bundles
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with the universal family zz : $\mathcal{V}=\mathcal{P}arrow R\cross M_{R}(G)$ of principal G-bundles with
formal trivializations. For each principal G-bundle on $R$ put

$V(P)$ $:=P\cross VG$

For the second projection $q$ : $R\cross \mathfrak{M}_{R}(G)arrow \mathfrak{M}_{R}(G)$ we let $\det \mathbb{R}q_{*}\mathcal{V}$ be the
determinant bundle of the family of vector bundles $\mathcal{V}$ . For a point $\hat{\mathfrak{X}}=(P;\hat{\eta})\in$

$M_{R}(G)$ the fibre of the determinant bundle $\det \mathbb{R}q_{*}\mathcal{V}$ at $\hat{\mathfrak{X}}$ is given by

$( \max\wedge H^{0}(R, V(P)))\otimes(\wedge H^{1}max(R, V(P)))^{-1}$

The determinant bundle can be easily described by using the universal Grass-
mann manifold (UGM) due to Sato and the fermion Fock space. (See, for example
[KNTY].) At a point $\hat{X}=(P;\hat{\eta})$ , by taking the Laurent expansion at the point
$Q$ , we have a natural inclusion

$t$ : $H^{1}(R, V(P)(*Q))-V \bigotimes_{C}C((\xi))$ .

This embedding determines a point of $UGM(V)$ and gives an embedding

$\tau:\mathfrak{M}_{R}(G)arrow UGM(V)$ .

Now $UGM(V)$ can be embedded into $P(\mathcal{F})$ by the Pl\"ucker embedding where we
may regard $\mathcal{F}$ to be a fermion Fock space. Thus we have a projective embedding

$\hat{\tau}$ : $\mathfrak{M}_{R}(G)arrow P(\mathcal{F})$ .

Then, the pull-back of the dual of hyperplane bundle of $P(\mathcal{F})$ to $\mathfrak{M}_{R}(G)$ is
nothing but the determinant bundle $\det \mathbb{R}q_{*}\mathcal{V}$.

The projective embedding can be described in the following way. Let us choose
and fix a basis $\{e_{1}, e_{2}, \ldots e_{n}\}$ of the vector space $V$ . Put

$V_{j}=(e_{1},$ $e_{2}$ , $\ldots$
$e_{j}\rangle_{C}$

$H_{jk}$ $:=t^{-1}(V_{j}\otimes C((\xi))$ .

Then, $\{H_{jk}\}$ is a increasing filtration and we choose a normalized basis $\{h_{1}, h_{2}, \ldots\}$

of $H^{0}(R, V(P)(*Q))$ by lexicographic ordering with respect to the filtration with
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normalization at thecoefficient of the first leading term. Then, the infinite exte-
rior product

$h_{1}\wedge h_{2}\wedge\cdots$

gives the point $\hat{\tau}(\hat{\mathfrak{X}})$ in $P(\mathcal{F})$ .
Now let us consider the action $of\otimes C((\xi))$ on $\det \mathbb{R}q_{*}\mathcal{V}$ which is the lift of

the one on $\mathfrak{M}_{R}(G)$ . For an element $A$ of $\mathfrak{g}\otimes C((\xi))$ this is very easy, since $A$

acts on $\mathfrak{M}_{R}(G)$ as infinitesimal change of formal trivializations. That is, $A(h_{j})$

is well-defined and the infinite product

$A(h_{1})\wedge A(h_{2})\wedge\cdots$

is also well-defined. This gives the desired action. Let us define the action of an
element $A$ of $g\otimes C((\xi))$ . Let $R= \bigcup_{\lambda\in\Lambda}U_{\lambda}$ be a small open covering of $R$ such
that a principal G-bundle is given by transition functions $\{g_{\lambda\mu}\}$ . The section $h_{j}$

is given by V-valued holomorphic functions $f_{\lambda}$ on $U_{\lambda}’ s$ with

$f_{\lambda}=\rho(g_{\lambda\mu})f_{\mu}$ .

We define the action of $A$ on $h_{j}$ in such a way that

$A(f_{\lambda})=f_{\lambda}+\epsilon\eta_{\lambda}$

for each $\lambda$ . By the isomorphism (2), the element $A$ defines an element $\{h_{\lambda\mu}\}\in$

$H^{1}(R,\underline{ad}(P)(-(k+1)Q)$ for a suitable $k$ . Then, we need to have

$A(f_{\lambda})=\rho(g_{\lambda\mu}+\epsilon_{\lambda\mu})A(f_{\mu})$ .

This is equivalent to saying that

(3) $\eta_{\lambda\mu}=\rho(h_{\lambda\mu})f_{\mu}+\rho(g_{\lambda\mu})\eta_{\mu}$ .
Since $\rho(h_{\lambda\mu})f_{\mu}$ defines an element of $H^{1}(R, V(P)(mQ))$ for a certain integer $m$

and we have
$H^{1}(R, V(P)(*Q))=0$

we can always find $\{\eta_{\lambda}\}\in\Gamma(U_{\lambda}, V(P)(*Q))$ which satisfy (3). $\{\eta_{\lambda}\}$ is uniquely
determined up to the addition of an element in $H^{0}(R, V(P)(*Q))$ . Therefore, we
may choose $\{\eta_{\lambda}\}$ in such a way that

$\eta_{\lambda}\in\Gamma(U_{\lambda}, V(P)(\ell Q))$
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with
$\ell\gg order$ of pole of $h_{j}$ at $Q$ .

Then, the infinite wedge product

$A(h_{1})\wedge A(h_{2})\wedge\cdots$

is well-defined. Since the above argument does not determine $A(h_{j})$ uniquely,
the action of $A$ does not necessarily defines the action of $\mathfrak{g}\otimes C((\xi))$ on the
determinant bundle $\det \mathbb{R}q_{*}\mathcal{V}$ . There is a canonical way to define the action of
$\mathfrak{g}\otimes C((\xi))$ on the determinant bundle $\det \mathbb{R}q_{*}\mathcal{V}$ by using the second quantization
(or renormalization) of operators acting on the fermion Fock space $\mathcal{F}$ . (See
[KNTY].) The process shows that we need to take a central extension

$\mathfrak{g}\otimes C((\xi))\oplus C\cdot c$

of the Lie algebra $g\otimes C((\xi))$ to lift the operation of $g\otimes C((\xi))$ on $M_{R}(G)$ to
$\det \mathbb{R}q_{*}\mathcal{V}$.
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