Fock space representations of twisted affine Lie algebras

東北大学理学部数学教室 黒木 玄 (Gen Kuroki)

0. 序論

Affine Lie algebra の Fock space representations は、最初に、N. Wakimoto [W] によって $\mathfrak{g}(A_1^{(1)})$ の場合が構成された。この表現の面白い応用の一つは、P. Christe と R. Flüme による [CF] における $\mathfrak{g}=sl_2$ に対する Knizhinik-Zamolodchikov equations (以下、KZ eqations と略) の解の積分表示式の構成であろう。Fock space representations の立場から見ると、A. V. Marshakov [Mar] が構成した screening operator を用いることによって、[CF] の結果の一般化が全て機械的に得られるのである。さらには、B. Feigin と E. Frenkel による一連のすばらしい研究 [FeFr1,2] によって、任意の non-twisted affine Lie algebra の Fock space representations および screening operators の構成の仕方が明らかにされた。Kuroki [Kur] においては、任意の non-twisted affine Lie algebra に対する screening operators を構成することによって、KZ equations に対する積分表示式の証明が得られている。この論説では、twisted の場合も含めた任意の affine Lie algebra の Fock space representations の構成について解説する。

1. 諸定義と記号の準備

1.1. g は C 上の simple Lie algebra であるとし、g の三角分解 $\mathfrak{g}=\mathfrak{n}_-\oplus\mathfrak{h}\oplus\mathfrak{n}_+$ を固定する。ここで、 \mathfrak{h} は \mathfrak{g} の Cartan subalgebra であり、 \mathfrak{n}_\pm は \mathfrak{g} の maximal nilpotent subalgebras である。 σ は finite order N を持つ \mathfrak{g} の diagram automorphism であるとする。N は 1, 2, 3 のいずれかになる。 σ に関する \mathfrak{g} の固有空間分解を $\mathfrak{g}=\bigoplus_{i=0}^{N-1}\mathfrak{g}_i$ と書く。ここで、

$$g_i := \{X \in g \mid \sigma(X) = \exp(\frac{2\pi\sqrt{-1}}{N}i)X\} \text{ for } i \in \mathbb{Z}$$

とおいた。 $\mathfrak g$ の任意の subspace V に対して、 $V_i := V \cap \mathfrak g_i$ とおく。例えば、 $\mathfrak n_{\pm,i} = \mathfrak n_{\pm} \cap \mathfrak g_i$, $\mathfrak h_i = \mathfrak h \cap \mathfrak g_i$ である。このとき、 $\mathfrak g_0$ は simple Lie algebra になり、 $\mathfrak h_0$ は $\mathfrak g_0$ の Cartan subalgebra になることが知られている。対 $(\mathfrak g,\sigma)$ に付随する affine Lie algebra $\widehat{\mathfrak g}$ を定義しよう。N=1 のとき non-twisted affine Lie algebra と呼び、N=2,3 のとき twisted affine Lie algebra と呼ぶ。 $K_i := t^{i/N}\mathbb C[t,t^{-1}]$ とおく。Loop algebra $\mathfrak g \otimes \mathbb C[t^{1/N},t^{-1/N}]$ の subalgebra $L\mathfrak g$ を次のように定める:

$$L\mathfrak{g}:=\bigoplus_{i=0}^{N-1}\mathfrak{g}_i\otimes K_i.$$

より一般に、 σ で保たれる $\mathfrak g$ の subalgebra $\mathfrak a$ に対して、 $L\mathfrak g$ の subalgebra $L\mathfrak a$ を $L\mathfrak a$:= $\bigoplus_{i=0}^{N-1}\mathfrak a_i\otimes K_i$ と定める。 $\widehat{\mathfrak g}$ は $L\mathfrak g$ に derivation $d=t\frac{d}{dt}$ を付け加えて中心拡大したものとして定義される。すなわち、vector space として $\widehat{\mathfrak g}$ は、

$$\widehat{\mathfrak{g}} := L\mathfrak{g} \oplus \mathbb{C}K \oplus \mathbb{C}d$$

と定義され、Lie algebra structure は以下によって定義される:

$$[X \otimes t^m, Y \otimes t^n] := [X, Y] \otimes t^{m+n} + (X|Y)m\delta_{m+n,0}K,$$

$$[d, X \otimes t^m] = mX \otimes t^m,$$

 $K \in \text{center of } \hat{\mathfrak{g}}.$

ここで、(.|.) は次によって定められた g の non-degenerate invariant symmetric bilinear form であるとする:

$$\operatorname{trace}_{\mathfrak{g}}(\operatorname{ad} X \operatorname{ad} Y) = 2g^{*}(X|Y) \text{ for } X, Y \in \mathfrak{g}.$$

ただし、 g^* は $\mathfrak g$ の dual Coxeter number である。このとき、V. G. Kac の教科書 [Kac] などで知られているように、 $\mathfrak g$ を X_r 型の simple Lie algebra としたとき、 $\widehat{\mathfrak g}$ は $X_r^{(N)}$ 型の Kac-Moody Lie algebra に同型になる。この論説の目標は、boson による $\widehat{\mathfrak g}$ の Fock space representations を構成することである。

1.2. $\mathfrak{b}_- := \mathfrak{n}_- \oplus \mathfrak{h}$ とおく。 \mathfrak{b}_- は \mathfrak{g} の Borel subalgebra である。G は Lie algebra \mathfrak{g} を持つ connected and simply connected \mathfrak{a} algebraic Lie group であるとし、 B_- , U_+ はそれぞれ \mathfrak{b}_- , \mathfrak{n}_+ に対応する G の Lie subgroups であるとする。 \mathfrak{g} の flag variety F を $F := B_- \backslash G$ と定め、F の原点 o を $o := B_- \mod B_-$ と定める。このとき、 oU_+ は F の Zariski open cell になり、right U_+ -space として U_+ と同型になる。さらに、 U_+ は exponential map を通じて、 \mathfrak{n}_+ と algebraic variety として同型になる。 \mathfrak{d} は \mathfrak{h} の dual space の要素とし、 \mathfrak{d} を \mathfrak{b}_- 上に trivial に拡張しておく。すなわち、 \mathfrak{d} は \mathfrak{b}_- の Lie algebra character であるとする。 $\mathfrak{d}_ \mathfrak{d}_-$ の structure ring $\mathbb{C}[B_-U_+]$ に対する \mathfrak{g} の作用 L, R を次のように定義する:

$$(L(X)f)(g) := \frac{d}{ds} \Big|_{s=0} f(\exp(-sX)g)$$

$$(R(X)f)(g) := \frac{d}{ds} \Big|_{s=0} f(g\exp(sX)) \quad \text{for } g \in B_-U_+ \text{ and } X \in \mathfrak{g}.$$

この準備のもとで、 M_{λ}^{*} を

$$M_{\lambda}^* := \{ f \in \mathbb{C}[B_-U_+] \mid L(Y)f = -\lambda(Y)f \text{ for } Y \in \mathfrak{b}_- \}$$

と定めると、 $X \in \mathfrak{g}$ に対して R(X) は M_{λ}^* に作用し、その作用によって M_{λ}^* は left \mathfrak{g} -module をなす。 \mathfrak{g} の M_{λ}^* への作用を R_{λ} と書くことにする。 M_{λ}^* に属す函数で U_+ 上一定の値 1 をとるものを v_{λ} と書くと、 v_{λ} は weight λ の highest weight vector になる。さらに、定義より、 M_{λ}^* は v_{λ} から生成される free $\mathbb{C}[oU_+]$ -module をなすことがわかる。(実は M_{λ}^* は lowest weight Verma module の dual に同型になることが簡単に示せる。) したがって、 $X \in \mathfrak{g}$ に対して $R_{\lambda}(X)$ は、 $\mathbb{C}[oU_+]$ ($\simeq \mathbb{C}[\mathfrak{n}_+]$ これは多項式環に同型)に作用する多項式係数の 1 階の微分作用素とみなすことができる。 $\widehat{\mathfrak{g}}$ の Fock space representations は $R_{\lambda}(X)$ の微分作用素としての表示を用いて構成される。

1.3. 任意の $\alpha \in \mathfrak{h}_0^*$ に対して、 $\mathfrak{n}_{+,i,\alpha} := \{X \in \mathfrak{n}_{+,i,\alpha} \mid [H,X] = \alpha(H)X \text{ for } H \in \mathfrak{h}_0\}$ と おき、 $\Delta_{+,i} := \{\alpha \in \mathfrak{h}_0^* \mid \mathfrak{n}_{+,i,\alpha} \neq 0\}$ とおく。このとき、 $\alpha \in \Delta_{+,i}$ に対して $\dim \mathfrak{n}_{+,i,\alpha} = 1$ となることが知られているので、 $\mathfrak{n}_{+,i,\alpha} = \mathbb{C}e_{i,\alpha}$ と書いて良い。このとき、 $\{e_{i,\alpha} \mid i = 0, \cdots, N-1 \text{ and } \alpha \in \Delta_{+,i}\}$ は \mathfrak{n}_+ の basis をなす。この basis によって \mathfrak{n}_+ に座標系 $\{x_{i,\alpha}\}$ を

$$X = \sum_{i=0}^{N-1} \sum_{\alpha \in \Delta_{+,i}} x_{i,\alpha}(X) e_{i,\alpha} \quad \text{for } X \in \mathfrak{n}_{+}$$

によって定める。同型 $oU_+\cong U_+\cong \mathfrak{n}_+$ によって、 oU_+ に座標系 $\{x_{i,\alpha}\}$ が入る。この座標系のもとで、 $X\in\mathfrak{g}$ に対して、 $R_\lambda(X)$ は次の様に表わされる:

$$R_{\lambda}(X) = \sum_{i,\alpha} R_{i,\alpha}(X; x) \frac{\partial}{\partial x_{i,\alpha}} + \sum_{i,a} \rho_{i,a}(X; x) \lambda(H_{i,a}).$$

ただし、 $\{H_{i,a} \mid a=1,\cdots,\dim\mathfrak{h}_i\}$ は \mathfrak{h}_i の basis であり、 $\sum_{i,\alpha},\sum_{i,a}$ は、それぞれ、 $\sum_{i=0}^{N-1}\sum_{\alpha\in\Delta_{+,i}}$ の略記号である。そして、 $R(X,x)_{i,\alpha},\,\rho(X;x)_{i,a}$ は、 λ によらない $x=\{x_{i,\alpha}\}$

1=0 4=1 の多項式になる。

2. ボゾンとそのフォック表現

2.1. 以下において、 $\kappa \in \mathbb{C}$ を固定して話を進める。 $\kappa = 0$ の場合が level $-g^*$ (= -dual Coxeter number) の場合に対応する。 \mathbb{C} 上の associative algebra A を以下の条件によって定める:

(1) A は次の集合から生成される:

$$A := \{x_{i,\alpha}[-m], \delta_{i,\alpha}[m], p_{i,a}[m] \mid i = 0, \dots, N, \ \alpha \in \Delta_{+,i}, \ a = 1, \dots, \dim \mathfrak{h}_i, \ m \in \mathbb{Z} + \frac{i}{N}\}.$$

(2) A は A から生成される tensor algebra を以下の commutation relataions で割った ものに等しい:

$$egin{aligned} \left[\delta_{i,lpha}[m],x_{j,eta}[n]
ight] &= \delta_{i,j}\delta_{lpha,eta}\delta_{m+n,0}, \ \left[p_{i,a}[m],p_{j,b}[n]
ight] &= \kappa(H_{i,a}|H_{j,b})m\delta_{m+n,0}, \ (他の組み合わせの \ {
m commutator}) &= 0. \end{aligned}$$

 \mathcal{O} によって、 $x_{i,\alpha}[m]$ の全体から生成される \mathcal{A} の subalgebra を表わす。

Remark. $\kappa \neq 0$ のとき \mathcal{A} の center は $\{p_{0,a}[0] \mid a=1,\cdots,\dim\mathfrak{h}_0\}$ から生成されるが、 $\kappa=0$ のときは \mathcal{A} の center は大きくなって $p_{i,a}[m]$ の全体から生成される。

2.2. A の三角分解を定義しよう。A の subsets A_{\pm} , A_0 を次のように定める:

$$A_{+} := \{x_{i,\alpha}[m], \delta_{i,\alpha}[n], p_{i,a}[m] \in \mathcal{A} \mid m > 0, n \geq 0\},$$

$$A_{-} := \{x_{i,\alpha}[m], \delta_{i,\alpha}[n], p_{i,a}[n] \in \mathcal{A} \mid m \leq 0, n < 0\},$$

$$A_{0} := \{p_{0,a}[0] \mid a = 1, \dots, \dim \mathfrak{h}_{0}\}.$$

 A_{\pm} , A_0 から生成される A の subalgebras をそれぞれ A_{\pm} , A_0 と書く。これらは、それぞれ A_{\pm} , A_0 から生成される多項式環に同型であるから、 $A_{-}\otimes A_0\otimes A_{+}$ は、A から生成される多項式環 $\mathbb{C}[A]$ に自然に同型である。そして、以下の写像は vector spaces の間の同型写像である:

$$A_- \otimes A_0 \otimes A_+ \longrightarrow A$$
, $a_- \otimes a_0 \otimes a_+ \mapsto a_- a_0 a_+$.

これらの写像を合成してできる $\mathbb{C}[A]$ から A への vector spaces としての同型写像を normal product と呼び、 $a \in \mathbb{C}[A]$ に対応する A の要素を :a: と表わす。

2.3. $\lambda \in \mathfrak{h}_0^*$ に対して、 I_λ は A_+ と $\{p_{0,a} - \lambda(H_{0,a})1 \mid a = 1, \cdots, \dim \mathfrak{h}_0\}$ から生成される A の left ideal であるとする。A の highest weight λ の Fock representation は $\mathcal{F}_\lambda := \mathcal{A}/I_\lambda$ によって定義される。 $1 \operatorname{mod} I_\lambda$ を $|\lambda\rangle$ と書くと、定義より、

$$\mathcal{F}_{\lambda} = \mathcal{A}|\lambda\rangle, \quad A_{+}|\lambda\rangle = 0, \quad p_{0,a}[0]|\lambda\rangle = \lambda(H_{0,a})|\lambda\rangle$$

が成立する。

2.4. \mathcal{A} に作用する derivation Θ を $a=x_{i,\alpha}$, $\delta_{i,\alpha}$, $p_{i,a}$ に対して、 $\Theta a[m]:=ma[m]$ と 定める。 Θ は $x_{i,\alpha}[m]$ 達から生成される \mathcal{A} の subalgebra \mathcal{O} を保つ。 \mathcal{A} の gradation $\mathcal{A}=\bigoplus_{m\in \frac{1}{N\mathbb{Z}}}\mathcal{A}[m]$ を

$$\mathcal{A}[m] := \{ a \in \mathcal{A} \mid \Theta a = ma \}$$

によって定める。一般に、 \mathcal{A} の任意の subspace V に対して、 $V[m]:=V\cap\mathcal{A}[m]$ と書くことにする。 $\mathcal{A}[m]$ の filtration を

$$\mathcal{A}^n[m] := \bigoplus_{l \geq n} \mathcal{A}_-[m-l] \mathcal{A}_0 \mathcal{A}_+[l] \quad \text{for } n \in \frac{1}{N} \mathbb{Z}$$

によって定め、この filtration による completion を $\widehat{\mathcal{A}}[m]$ と書く:

$$\widehat{\mathcal{A}}[m] := \underset{n \to \infty}{\operatorname{proj}} \lim_{m \to \infty} \mathcal{A}[m] / \mathcal{A}^n[m].$$

このとき、 $\widehat{A}:=\bigoplus_m \widehat{A}[m]$ は A を dense に含み、A の algebra structure は \widehat{A} 上に連続的に一意に拡張される。 $\widehat{A}[\theta]$ によって、 \widehat{A} と θ から生成される tensor algebra を以下の commutation relation で割ったものを表わす:

$$[\theta, a] = ma$$
 for $a \in \widehat{\mathcal{A}}[m]$.

A の \mathcal{F}_{λ} への作用は、 \widehat{A} 上連続的に一意に拡張される。ただし、 \mathcal{F}_{λ} には離散位相を入れておくことにする。任意の $c\in\mathbb{C}$ に対して、 \mathcal{F}_{λ} への \widehat{A} の作用の $\widehat{A}[\theta]$ の上への拡張で $\theta|\lambda\rangle=c|\lambda\rangle$ を満たすものが唯一存在する。このとき、 $\xi=(\lambda,c)$ とおき、 $\widehat{A}[\theta]$ -module としての \mathcal{F}_{λ} を \mathcal{F}_{ξ} と書き、highest weight vector $|\lambda\rangle$ を $|\xi\rangle$ と書く。 \mathcal{O} の \widehat{A} の中での閉包を $\widehat{\mathcal{O}}$ と表わす。あとで、 $\widehat{\mathcal{O}}$ に係数を持つ $L\mathfrak{g}\oplus\mathbb{C}d$ の Lie algebra cohomology の解析が必要になる。

2.5. $x_{i,\alpha}(z)$, $\delta_{i,\alpha}(z)$, $p_{i,a}(z)$ を形式的に以下によって定める:

$$\begin{split} x_{i,\alpha}(z) &:= \sum_{m \in \mathbb{Z} - \frac{i}{N}} z^{-m} x_{i,\alpha}[m], \\ \delta_{i,\alpha}(z) &:= \sum_{m \in \mathbb{Z} + \frac{i}{N}} z^{-m-1} \delta_{i,\alpha}[m], \\ p_{i,a}(z) &:= \sum_{m \in \mathbb{Z} + \frac{i}{N}} z^{-m-1} p_{i,a}[m]. \end{split}$$

ここで、z は formal variable である。 a_1,\cdots,a_n が $x_{i,\alpha},\,\delta_{i,\alpha},\,p_{i,a}$ のいずれかを表わすとき、a(z) を形式的に $a(z):= :a_1(z)\cdots a_n(z):$ と定めると、a(z) を z について形式的に展開して得られる係数は \widehat{A} の要素として意味を持つ。

3. フォック空間表現

3.1. 以下、 $\frac{1}{N}$ Z-gradation のことを、単に、gradation と呼ぶことにする。 $U=\bigoplus_m U[m]$, $V=\bigoplus_m V[m]$ は graded vector spaces であるとし、

$$\widetilde{\operatorname{Hom}}_{\mathbb{C}}(U,V)[m] := \{ f \in \operatorname{Hom}_{\mathbb{C}}(U,V) \mid f(U[n]) \subseteq V[m+n] \text{ for } n \in \frac{1}{N}\mathbb{Z} \},$$

$$\widetilde{\operatorname{Hom}}_{\mathbb{C}}(U,V) := \bigoplus_{m} \widetilde{\operatorname{Hom}}_{\mathbb{C}}(U,V)[m]$$

とおく。 $\mathfrak{a}=\bigoplus_m\mathfrak{a}[m]$ は graded Lie algebra であるとし、V は graded \mathfrak{a} -module であるとする。外積空間 $\bigwedge^p\mathfrak{a}$ には自然に gradation が入る。このとき、complex $(\widetilde{C}^{\bullet},d)$ を以下の様にして定めることができる:

$$\begin{split} \widetilde{C}^{p} &:= \widetilde{\mathrm{Hom}}_{\mathbb{C}}(\bigwedge^{p} \mathfrak{a}, V), \\ (df)(l_{1}, \cdots, l_{p+1}) &:= \sum_{1 \leq i \leq p+1} (-1)^{i-1} l_{i} \big(f(l_{1}, \cdots, \widehat{l_{i}}, \cdots, l_{p+1}) \big) \\ &+ \sum_{1 \leq i < j \leq p+1} (-1)^{i+j} f([l_{i}, l_{j}], l_{1}, \cdots, \widehat{l_{i}}, \cdots, \widehat{l_{j}}, \cdots, l_{p+1}) \end{split}$$

ここで、 $f \in \widetilde{C}$, $l_i \in \mathfrak{a}$ である。この complex の p-th coboundary, cocycle, cohomology groups をそれぞれ $\widetilde{B}^p(\mathfrak{a},V)$, $\widetilde{Z}^p(\mathfrak{a},V)$, $\widetilde{H}^p(\mathfrak{a},V)$ と書くことにする。

Remark. \widetilde{C}^p を $C^p:=\mathrm{Hom}_{\mathbb{C}}(\bigwedge^p\mathfrak{a},V)$ で置き換えると、これは、通常の Lie algebra cohomology の定義と一致する。

3.2. $X \in \mathfrak{g}_i$ に対する $\widetilde{X}(z)$ を、 $R_{\lambda}(X)$ の中の $x_{i,\alpha}$, $\frac{\partial}{\partial x_{i,\alpha}}$, $\lambda(H_{i,a})$ にそれぞれ $x_{i,\alpha}(z)$, $\delta_{i,\alpha}(z)$, $\lambda(H_{i,a})(z)$ を代入し、normal product をとることによって定義する:

$$\widetilde{X}(z) := \sum_{i,\alpha} R_{i,\alpha}(X;x(z)) \delta_{i,\alpha}(z) + \sum_{i,a} \rho_{i,a}(X;x(z)) p_{i,a}(z)$$

 $\widetilde{X}(z)$ の z に関する展開を利用して、 $L\mathfrak{g}$ から $\widehat{\mathcal{A}}[heta]$ への linear map $\widetilde{\pi}$ を次の条件によってに定める:

$$\widetilde{X}(z) = \sum_{m \in \mathbb{Z} + \frac{1}{N}} z^{-m-1} \widetilde{\pi}(X \otimes t^m) \text{ for } X \in \mathfrak{g}_i.$$

さらに、 $\widetilde{\pi}$ を $\mathbb{C}d$ 上に $\widetilde{\pi}(d) := \theta$ と拡張しておく。 ω を次のように定める:

$$\omega(a,b) := [\widetilde{\pi}(a),\widetilde{\pi}(b)] - \widetilde{\pi}([a,b]) \quad \text{for } a,b \in L\mathfrak{g} \oplus \mathbb{C}d.$$

(注意: ここで、bracket 積 [a,b] は loop algebra の bracket 積である。) このとき、 $a,b \in L\mathfrak{g} \oplus \mathbb{C} d$ に対して $\omega(a,b) \in \widehat{\mathcal{O}}$ が成立することが Wick の定理から導かれる。したがって、Lie algebra $L\mathfrak{g} \oplus \mathbb{C} d$ の $\widehat{\mathcal{O}}$ への作用を、 $b \mapsto [a,b]$ $(a \in L\mathfrak{g} \oplus \mathbb{C} d, b \in \widehat{\mathcal{O}})$ によって定めることができる。この作用によって $\widehat{\mathcal{O}}$ を $(L\mathfrak{g} \oplus \mathbb{C} d)$ -module とみなすと、 $\omega \in \widetilde{Z}^2(L\mathfrak{g} \oplus \mathbb{C} d, \widehat{\mathcal{O}})$ が成立することがわかる。

3.3. ここで、Fock space representations の構成に必要な lemmas を証明抜きにまとめておこう。標準的な 2-cocycle $c_2 \in \widetilde{Z}^2(L\mathfrak{g} \oplus \mathbb{C}d,\widehat{\mathcal{O}})$ を次の様に定義する:

$$c_2(X \otimes t^m, Y \otimes t^n) := (\kappa - g^*)(X|Y)m\delta_{m+n,0},$$

$$c_2(d, X \otimes t^m) := 0.$$

このとき、 $X \in \mathfrak{b}_+$ に対する $R_{\lambda}(X)$ の形を調べることによって、次を示すことができる。

Lemma 1. $\omega \geq c_2$ は $\bigwedge^2(L\mathfrak{b}_+ \oplus \mathbb{C}d)$ の上で一致する。

さらに、Lie algebra cohomology に関して次が成立する。

Lemma 2. 自然な写像 $L\mathfrak{h} \to L\mathfrak{b}_+ \to L\mathfrak{g}$ と $\widehat{\mathcal{O}} \to \mathbb{C}$ は次の同型を induce する:

$$\widetilde{H}^p(L\mathfrak{g}\oplus\mathbb{C}d,\widehat{\mathcal{O}})\simeq\widetilde{H}^p(L\mathfrak{b}_+\oplus\mathbb{C}d,\widehat{\mathcal{O}})\simeq\widetilde{H}^p(L\mathfrak{h}\oplus\mathbb{C}d,\mathbb{C}).$$

 $\xi \in (\mathfrak{h}_0 \oplus \mathbb{C}d)^*$ に対して、 $\widehat{\mathcal{A}}[\theta]$ の algebra automorphism τ_ξ を次によって定めることができる:

$$p_{0,a}[0] \mapsto p_{0,a}[0] + \xi(H_{0,a}), \quad \theta \mapsto \theta + \xi(d).$$

このとき、 $f_{\xi}:= au_{\xi}\circ\widetilde{\pi}-\widetilde{\pi}$ とおくと、 $f_{\xi}\in\widetilde{Z}^{1}(L\mathfrak{g}\oplus\mathbb{C}d,\widehat{\mathcal{O}})$ および次が成立する:

$$f_{\xi}(l) = \xi(l) \quad \text{for } l \in \mathfrak{h}_0 \oplus \mathbb{C}d = \mathfrak{h}_0 \otimes 1 \oplus \mathbb{C}d,$$

$$f_{\xi}(l) = 0 \quad \text{for } l \in (L\mathfrak{b}_+ \oplus \mathbb{C}d)'.$$

ここで、Lie algebra a に対して、その derived subalgebra $[\mathfrak{a},\mathfrak{a}]$ を \mathfrak{a}' と書いた。 $(L\mathfrak{b}_+\oplus\mathbb{C}d)/(L\mathfrak{b}_+\oplus\mathbb{C}d)'\simeq\mathfrak{h}_0\oplus\mathbb{C}d$ となることに注意せよ。 f_ξ の $L\mathfrak{b}_+\oplus\mathbb{C}d$ 上への制限を g_ξ と書き、 $\widetilde{H}^1(L\mathfrak{g}\oplus\mathbb{C}d,\widehat{\mathcal{O}})$, $\widetilde{H}^1(L\mathfrak{b}_+\oplus\mathbb{C}d,\widehat{\mathcal{O}})$ に属す f_ξ , \mathfrak{g}_ξ が定める cohomology classes をそれぞれ $[f_\xi]$, $[g_\xi]$ と書くことにする。

Lemma 3. $\xi\mapsto [f_{\xi}]$ は $(\mathfrak{h}_0\oplus\mathbb{C}d)^*$ から $\widetilde{H}^1(L\mathfrak{g}\oplus\mathbb{C}d,\widehat{\mathcal{O}})$ への同型写像を定める。

Lemma 4. $\xi\mapsto [g_{\xi}]$ は $(\mathfrak{h}_0\oplus\mathbb{C}d)^*$ から $\widetilde{H}^1(L\mathfrak{b}_+\oplus\mathbb{C}d,\widehat{\mathcal{O}})$ への同型写像を定める。

Lemma 5. $\widetilde{H}^0(L\mathfrak{n}_+,\widehat{\mathcal{O}}) = \widehat{\mathcal{O}}^{L\mathfrak{n}_+} = \mathbb{C}.$

3.4. 次の定理が基本的である。

Theorem. 以下の 2 つの条件をみたすような $\Gamma \in \widetilde{\mathrm{Hom}}_{\mathbb{C}}(L\mathfrak{g} \oplus \mathbb{C}d,\widehat{\mathcal{O}})$ が唯一存在する:

$$c_2 = \omega + d\Gamma,$$

(**)
$$\Gamma = 0 \quad on \ L\mathfrak{b}_+ \oplus \mathbb{C}d.$$

Proof. Existence. Lemmas 1, 2 より、 ω と c_2 は $\widetilde{H}^2(L\mathfrak{g}\oplus\mathbb{C}d,\widehat{\mathcal{O}})$ の中で同じ cohomology class を定めることがわかる。すなわち、ある $\widetilde{\Gamma}\in \mathrm{Hom}_{\mathbb{C}}(L\mathfrak{g}\oplus\mathbb{C}d,\widehat{\mathcal{O}})$ が存在して、 $c_2=\omega+d\widetilde{\Gamma}$ が成立する。ところが、Lemma 1 と c_2 の定義より、 $\bigwedge^2(L\mathfrak{b}_+\oplus\mathbb{C}d)$ 上で $d\widetilde{\Gamma}=0$ であるから、 $\widetilde{\Gamma}$ の $\bigwedge^2(L\mathfrak{b}_+\oplus\mathbb{C}d)$ の上への制限は $\widetilde{Z}^1(L\mathfrak{b}_+\oplus\mathbb{C}d,\widehat{\mathcal{O}})$ に属す。よって、Lemma 4 より、ある $\xi\in(\mathfrak{h}_0\oplus\mathbb{C}d)^*$ と $a\in\widehat{\mathcal{O}}$ が存在して、 $\bigwedge^2(L\mathfrak{b}_+\oplus\mathbb{C}d)$ 上で $\widetilde{\Gamma}=g_{\xi}+da$ が成立する。このとき、 $\Gamma:=\widetilde{\Gamma}-f_{\xi}-da$ とおくと、 Γ は (*) と (**) をみたす。

Uniqueness. $\Gamma' \in \operatorname{Hom}_{\mathbb{C}}(L\mathfrak{g} \oplus \mathbb{C}d,\widehat{\mathcal{O}})$ も (*), (**) と同様の条件をみたすと仮定する。 $u := \Gamma' - \Gamma$ とおくと次が成立する: (i) du = 0, (ii) $L\mathfrak{b}_+ \oplus \mathbb{C}d$ 上で u = 0. この条件のもとで u = 0 を示せばよい。(i) と Lemma 3 より、ある $\xi \in (\mathfrak{h}_0 \oplus \mathbb{C}d)^*$ と $a \in \widehat{\mathcal{O}}$ が存在して、 $u = f_{\xi} + da$ が成立する。(ii) および $L\mathfrak{n}_+$ 上で $f_{\xi} = 0$ となることより、 $L\mathfrak{n}_+$ 上で da = 0. よって、Lemma 5 より $a \in \mathbb{C}$ が出るから、da = 0. ゆえに、(ii) より、 $L\mathfrak{b}_+ \oplus \mathbb{C}d$ 上で $f_{\xi} = 0$. このとき、 $\xi = 0$ すなわち $f_{\xi} = 0$. これで、u = 0 が示せたことになる。 \square

上の Theorem の Γ を用いて linear map $\pi: \widehat{\mathfrak{g}} \to \widehat{\mathcal{A}}[\theta]$ を次のように定める:

$$\pi(l) := \widetilde{\pi}(l) + \Gamma(l) \quad \text{for } l \in L\mathfrak{g} \oplus \mathbb{C}d,$$

 $\pi(K) := \kappa - g^*.$

このとき、(*) より、 π は Lie algebra homomorphism をなすことがただちにわかる。この π を通して \mathcal{F}_{ξ} は left $\widehat{\mathfrak{g}}$ -module とみなせ、さらに、(**) より、 \mathcal{F}_{ξ} は highest weight $(\kappa-g^*,\xi)$ を持つことがわかる。この表現を $\widehat{\mathfrak{g}}$ の Fock space representation と呼ぶ。

Remark. \mathcal{F}_{ξ} の formal character は、 $\hat{\mathfrak{g}}$ の Verma module の formal character に等しい。 $\kappa=0$ のとき、 $\hat{\mathfrak{g}}$ の Fock space representations を $p_{i,a}[m]$ 抜きで構成することができ、 $p_{i,a}[m]$ 抜きで構成された Fock space representations は Kac-Kazhdan conjecture の証明に役に立つ。

以下には、affine Lie algebra の Fock space representation に関する文献と、それと関係の深い Wess-Zumino-Witten model における conformal block の積分表示に関係する文献を集めてある。

References

- [ATY] Awata, H., Tsuchiya A., Yanada Y.: Integral Formulas for WZNW correlation functions. preprint (1991) KEK-TH-286 KEK preprint 91-12 April 1991
- [BF] Bernard, D., Felder, G.: Fock representations and BRST cohomology in SL(2) current algebra. preprint (1989)
- [BMP] Bouwknegt, P., McCarthy, J., Plich, K.: Quantum group structure in the Fock space resolutions of $\widehat{sl}(n)$ representations. Commun. Math. Phys. 131, 125-155 (1990)
- [CF] Christe, P., Flüme, R.: The four point correlations of primary operators of the d=2 conformal invariant SU(2) σ -model with Wess-Zumino term. Nucl. Phys. B **282**, 466-496 (1987)
- [DF1] Dotsenko, Vl. S., Fateev, V. A.: Conformal algebra and multipoint correlation functions in 2D statistical models. Nucl. Phys. B 240 [FS12], 312-348 (1984)
- [DF2] Dotsenko, Vl. S., Fateev, V. A.: Four-point correlation functions and the operator algebra in 2D conformal invariant theories with central charge $c \le 1$. Nucl. Phys. B **251** [FS13], 691-734 (1985)
- [DJMM] Date, E., Jimbo, M., Matsuo, A., Miwa, T.: Hypergeometric type integrals and the $sl(2,\mathbb{C})$ Knizhnik-Zamolodchikov equation. preprint (1990)
- [FeFr1] Feigin, B., Frenkel, E.: Representation of affine Kac-Moody algebras, bosonization and resolutions. In: Brink, L., Friedan, D., Polyakov, A.M. (eds.) Physics and Mathematics of Strings. Memorial volume for Vadim Knizhnik, pp. 271-316. Singapore, New Jersey, London, Hong Kong: World Scientific 1990
- [FeFr2] Feigin, B., Frenkel, E.: Affine Kac-Moody algebras and semi-infinite flag manifolds. Commun. Math. Phys. 128, 161-189 (1990)
- [Fel] Felder, G.: BRST approach to minimal models. Nucl. Phys. B 317, 215-236 (1989)
- [GMMOS] Gerasimov, A., Marshakov, A., Morozov, A., Olshanelsky, M., Shalashvili, S.: Wess-Zumino-Witten model as a theory of free fields. III. The case of arbitrary simple group. preprint (1989)
- [Kac] Kac, V. G.: Infinite dimensional Lie algebras (Second Edition). Cambridge, London, New York, New Rochelle, Melbourne Sydney: Cambridge University Press (1985)
- [Kur] Kuroki, G.: Fock space representations of affine Lie algebras and integral representations in the Wess-Zumino-Witten models. Commun. Math. Phys. 141, 511-542 (1991)
- [Mat] Matsuo, A.: An application of Aomoto-Gelfand hypergeometric functions to the SU(n) Knizhnik-Zamolodchikov equation. Commun. Math. Phys. 134, 65-77 (1990)
- [Mar] Marshakov, A. V.: The Dotsenko-Fateev representation for Wess-Zumino-Witten models. Phys. Lett. B 224, 141-144 (1989)
- [SV] Schechtman, V. V., Varchenko, A. N.: Integral representations of n-point conformal correlators in the WZW model. Preprint Max-Planck-Institute für Mathematik, MPI/89-51, Bonn, August (1989)
- [W] Wakimoto, N.: Fock representations of the affine Lie algebra $A_1^{(1)}$. Commun. Math. Phys. 104, 605-609 (1986)