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Asymptotic Completeness for

3-Particle Stark Hamiltonian

茨城大学理学部 田村 英男 (HIDEO TAMURA)

In the present note we make a brief review on the asymptotic completeness for

three-particle Stark Hamiltonian, which has recently been proved by the author

[11].

Consider a system of three particles moving in a uniform electric field $\mathcal{E}\in R^{3}$ .
The total energy Hamiltonian (Schr\"odinger operator) for such a system takes

the following form:

$H_{tot}=- \sum_{j=1}^{3}(\Delta/2m_{j}+e_{j}\langle \mathcal{E}, r_{j}\rangle)+\sum_{1\leq j<k\leq 3}V_{jk}(r_{j}-r_{k})$,

where $m_{j},$ $e_{j}$ and $r_{j}\in R^{3},1\leq j\leq 3$ , denote the mass, charge and position

vector of the $j$-th particle respectively, while $-e_{j}\langle \mathcal{E},$
$r_{j}$ ), $\langle, \rangle$ being the usual

scalar product, is the energy of interaction with the electric field and the real

function $V_{jk}$ is the potential interaction between the $j$-th and $k$-th particles.

During the last decade, many remarkable works [2, 3, 4, 7, 9, 10] have made

major progress in the scattering theory of many particles in the absence of elec-

tric fields. Among these works, Sigal-Soffer [10] first proved the asymptotic

completeness of wave operators for $N$-body scattering systems with a large class

of short-range pair potentials, and now much attention is paid to the long-range

scattering cases, including the Coulomb scattering system. On the other hand,

the spectral and scattering theory of one(two)-particle systems in the presence of

electric field has also been studied by many authors [1, 5, 8, 13]. However, there

seems to be only a few works for the case of many-particle systems. Korotyaev

[6] has proved the asymptotic completeness for three-particle scattering systems

by making use of the Faddeev equation method. We here present a different

proof, which is based on the local commutator method and on the propagation
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estimate showing that the relative motion of particles is asymptotically concen-

trated on classical trajectories. We do not necessarily assume that a two-particle

subsystem Hamiltonian with zero reduced charge does not have a zero energy

resonance. This improves the results obtained by [6], although we have to impose

a somewhat restrictive smoothness assumption on the pair potentials $V_{jk}$ .

\S 1. Asymptotic completeness

We proceed to the precise formulation of the obtained results. We start by

making the assumption on the pair potentials $V_{jk}$ .
$(V)_{\rho}V_{jk}(y),$ $y\in R^{3}$ , is a real $C^{2}$-smooth function with the following decay

properties as $|y|arrow\infty$ :
$(VO)$ $V_{jk}(y)=O(|y|^{-\rho})$ for some $\rho>1/2$ ;

(V.1) $\partial_{y}^{\alpha}V_{jk}(y)=o(1)$, I $\alpha|=1$ ;

(V.2) $\partial_{y}^{\alpha}V_{jk}(y)=O(1)$ , $|\alpha|=2$ .
Next we remove the $center-of-mass$ motion. For notational brevity, we here

assume that the masses of all the three particles equal and take the value one;

$m_{j}=1$ , $1\leq j\leq 3$ .

For such a system, the configuration space $X$ in the $center-of$-mass frame is

given as

$X= \{r=(r_{1}, r_{2}, r_{3})\in R^{3\cross 3} : \sum_{j=1}^{3}r_{j}=0\}$

and the energy Hamiltonian $H$ takes the form

$H=- \frac{1}{2}\Delta-\langle E_{X}, r\rangle+V$ on $L^{2}(X)$ ,

where $E_{X}$ denotes the projection onto $X$ of $E=(e_{1}\mathcal{E}, e_{2}\mathcal{E}, e_{3}\mathcal{E})\in R^{3\cross 3}$ . We

also assume that
$E_{X}\neq 0$ .

Under assumption $(V)_{\rho}$ , the operator $H$ formally defined above admits a unique

self-adjoint realization in $L^{2}(X)$ . We denote by the same notation $H$ this self-

adjoint realization.
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Let $P_{H}$ : $L^{2}(X)arrow L^{2}(X)$ be the eigenprojection associated with $H$ . Roughly

speaking, the problem of asymptotic completeness is to determine completely

the asymptotic states as $tarrow\pm\infty$ of solutions to the Schr\"odinger equation

$i\partial_{t}u=Hu$ , $u(O)=\psi\in Range(Id-P_{H})$ .

Such asymptotic states are characterized by the range of wave operataors.

To formulate presicely the asymptotic states above, we continue to introduce

new notations. Let $a=\{(j, k), l\})j<k$ , be a 2-cluster decomposition of the set

{1, 2, 3}. Then we define the two subspaces of $X$ as follows :

$X^{a}=\{r=(r_{1},r_{2},r_{3})\in X:r_{j}+r_{k}=0\}$ ,

$X_{a}=\{r=(r_{1},r_{2}, r_{3})\in X:r_{j}=r_{k}\}$.

As is easily seen, these two spaces are mutually orthogonal and span the total

space $X$ , so that $L^{2}(X)$ is decomposed as

$L^{2}(X)=L^{2}(X^{a})\otimes L^{2}(X_{a})$ .

Let $\pi^{a}$ : $Xarrow X^{a}$ and $\pi_{a}$ : $Xarrow X_{a}$ be the projection onto $X^{a}$ and $X_{a}$ ,

respectively. For a generic point $x\in X$ , we write $x^{a}=\pi^{a}x$ and $x_{a}=\pi_{a}x$ . We

also write $V_{a}$ for the pair potential $V_{jk}$ . We further define the cluster Hamiltonian
$H_{a}$ as

$H_{a}=- \frac{1}{2}\Delta-\langle E_{X}, r\rangle+V_{a}(r_{j}-r_{k})$ on $L^{2}(X)$ .

According to the tensor product decomposition above, this operator has the

following decomposition :

$H_{a}=H^{a}\otimes Id+Id\otimes T_{a}$ on $L^{2}(X^{a})\otimes L^{2}(X_{a})$ ,

where

$H^{a}=- \frac{1}{2}\Delta-\langle E^{a}, r\rangle+V_{a}$ , $E^{a}=\pi^{a}E_{X}$ ,

$T_{a}=- \frac{1}{2}\Delta-\langle E_{a}, r\rangle$ , $E_{a}=\pi_{a}E_{X}$ .

If $a=\{(1),$(2) $,$(3) $\}$ is a 3-cluster decomposion, the operator $H^{a}$ is defined as

the zero operator acting on $L^{2}(X^{a})=C$ (scalar field), so that $H_{a}$ becomes the

free Stark Hamiltonian

$H_{0}=- \frac{1}{2}\Delta-\langle E_{X}, r\rangle$ on $L^{2}(X)$ .
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If $E^{c}=0$ for some 2-cluster decomposition $c$, then the two-particle subsystem

Hamiltonian $H^{c}$ with zero reduced charge $E^{c}=0$ has in general bound states

and hence scattering channels associated with such bound states may arise even

in a three-particle system with electric field as in the case of the absence of

electric field. Thus the consideration is divided into the following two cases:
Case (i) $E^{a}\neq 0$ for all 2-cluster decompositions ,;

Case (ii) $E^{c}=0$ for some 2-cluster decomposition $c$.
We should note that there exists at most one 2-cluster decomposition $c$ with
$E^{c}=0$ , which follows immediately from the assumption $E_{X}\neq 0$ .

Finally we introduce the wave operators. We define $W_{0}^{\pm}:$ $L^{2}(X)arrow L^{2}(X)$ by

$W_{0}^{\pm}=s- \lim_{tarrow\pm\infty}\exp(itH)\exp(-itH_{0})$.

Let $c$ be as in Case (ii) and let $P^{c}$ : $L^{2}(X^{c})arrow L^{2}(X^{c})$ be the eigenprojection

associated with $H^{c}$ . Then we further define $W_{c}^{\pm}:$ $L^{2}(X)arrow L^{2}(X)$ by

$W_{c}^{\pm}=s- \lim_{\ellarrow\pm\infty}\exp(itH)\exp(-itH_{c})(P^{c}\otimes Id)$ .

If the wave operators $W_{0}^{\pm}$ and $W_{c}^{\pm}$ exist, then these operators can be easily

proved to have the following properties : (i) their ranges are closed in $L^{2}(X)$

and are contained in Range $(Id-P_{H})$ ; (ii) their ranges are orthogonal to each

other; Range $W_{0}^{\pm}\perp RangeW_{c}^{\pm}$ .
With these notations, we are now in a position to formulate the main theorem.

THEOREM (ASYMPTOTIC COMPLETENESS). Let the notations be as above.

One has the following two statements.

(1) Consider Case (i). Assume $(V)_{\rho}$ with $\rho>1/2$ . Then the wave operators
$W_{0}^{\pm}$ exist and are aymptotically complete;

Range $W_{0}^{\pm}=Range(Id-P_{H})$ .

(2) Consider Case (ii) and let $c$ be the 2-cluster decomposition as in Case (ii).

Assume $(V)_{\rho}$ with $\rho>1$ . Then the wave operators $W_{0}^{\pm}$ and $W_{c}^{\pm}$ exist and are

asymptotically complete;

Range $W_{0}^{\pm}\oplus RangeW_{c}^{\pm}=Range(Id-P_{H})$ .
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We end the section by making several comments on the main theorem above.

REMARK 1. Under assumption $(V)_{\rho}$ with $\rho>3/4$ , the three-particle Stark

Hamiltonian $H$ can be shown to have no eigenvalues, so that Range $(Id-P_{H})=$

$L^{2}(X)$ ([12]).

REMARK 2. In statement (2), the decay assumption $V_{a}(y)=O(|y|^{-\rho}),$ $\rho>1$ ,

for $a\neq c,$ $c$ being as in Case (ii), is used to prove only the existence of wave
operators $W_{c}^{\pm}$ . If we assume that the zero eigenstate $\varphi\in L^{2}(X^{c})$ of two-particle

subsystem Hamuiltonian $H^{c}$ with zero reduced charge has the decaying property
$(1+|x^{c}|)^{\nu}\varphi(x^{c})\in L^{2}(X^{c})$ for some $\nu>1/2$ , then statement (2) can be proved

to remain true under the weak decay assumption $V_{a}(y)=O(|y|^{-\rho}),$ $\rho>1/2$ , for

$a\neq c$ .

REMARK 3. As stated above, the asymptotic completeness for three-particle

scattering systems in electric fields has been proved in Korotyaev [6] by use of

the Faddeev equation method. In this work, the operator $H^{c}$ with zero reduced

charge is assumed to have no zero energy resonances and also the pair potential
$V_{c}$ is assumed to satisfy the stronger decay assumption $(V)_{\rho}$ with $\rho>2$ . Thus

statement (2) above improves slightly the results obtained by [6], although the

additional smoothness assumptions are imposed on the pair potentials in the

present work.

\S 2. Local commutator method and propagation estimates

Let $\sigma_{p}(H)$ be the set of point spectrum of $H$. One can prove that $\sigma_{p}(H)$

forms a discrete set in $R^{1}$ with possible accumulating $points\pm\infty$ . We now fix

arbitrarily a real function $g\in C_{0}^{\infty}(R^{1})$ with supp $g\cap\sigma_{p}(H)=\emptyset$ . The proof of

the main theorem is done by showing that the scattering state $\exp(-itH)g(H)\psi$ ,
$\psi\in L^{2}(X)$ , is aymptotically concentrated on classical trajectories.

Let $S_{X}$ be the unit sphere in $X$ . We write $E_{X}$ as

$E_{X}=E_{0}\omega$ , $E_{0}=|E_{X}|>0,$ $\omega\in S_{X}$ ,

and also $x\in X$ as
$x=z\omega+z\perp$ , $z\in R^{1},$ $z_{\perp}\in\Pi_{\omega}$ ,
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where $\Pi_{\omega}$ stands for the hyperplane orthogonal to $\omega$ . As is easily seen, charged

classical particles are scattered along the direction $\omega$ of the electric field and the

coordinate $z$ asymptotically takes the value $z\sim E_{0}t^{2}/2$ as $tarrow\pm\infty$ along these

classical trajectories. These facts imply the following two propagation estimates

for the above scattering state $\exp(-itH)g(H)\psi$ :

$\int\Vert\langle x\rangle^{-\nu}\exp(-itH)g(H)\psi\Vert_{L^{2}(X)}^{2}dt\leq C||\acute{\psi}\Vert_{L^{2}(X)}^{2}$ , $\nu>1/4$ ,

$\int||\langle x\rangle^{-1/4}q(x)\exp(-itH)g(H)\psi\Vert_{L^{2}(X)}^{2}dt\leq C||\psi||_{L^{2}(X)}^{2}$ ,

where $q$ is a bounded function vanishing in a conical neighborhood of the di-

rection $\omega$ . These two estimates are derived on the basis of local commutator

method.

LEMMA (LOCAL COMMUTATOR ESTIMATE). Let $\lambda\not\in\sigma_{p}(H)$ be fixed and let
$g\in C_{0}^{\infty}(R^{1})$ be a real function supported in a small neighborhood around $\lambda$ .
Then, for any $\delta>0$ small enough, one can take the support of $g$ so small that

$g(H)i[H, A]g(H)\geq(E_{0}-\delta)g(H)^{2}$

in the $fo$ sense, where $[, ]$ denotes the commutator relation and the operator
$A$ is defined as $A= \frac{1}{i}\omega\cdot\nabla_{x}$ .

The lemma above may be intuitively understood as follows. Consider the

quantity

$\langle z\rangle_{t}=(z\exp(-itH)g(H)\psi, \exp(-itH)g(H)\psi)_{L^{2}(X)}$ .

This quantity behaves like ( $z\rangle_{t}\sim E_{0}t^{2}/2$ as $tarrow\pm\infty$ and hence it follows that

$\frac{d^{2}}{dt^{2}}(z\rangle_{\ell}=(g(H)i[H, A]g(H)\exp(-itH)\psi)\exp(-itH)\psi)_{L^{2}(X)}\sim E_{0}$ .

In fact, the relation $i[H_{0}, A]=E_{0}$ exactly holds for the free Stark Hamiltonian
$H_{0}$ . The local commutator method was initiated by Mourre [7] and the com-
mutator estimate as in the lemma above is called the Mourre estimate. This

method has played an important role in the spectral and scattering theory for

many-particle Schr\"odinger operators without electric fields for which the opera-

tor $A$ is taken as $A= \frac{1}{2i}(x\cdot\nabla_{x}+\nabla_{x}\cdot x)$ .
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In general, Stark Hamiltonians take all the real numbers as possible values of

energies. For example, the two-particle subsystem Hamiltonians $H^{a}$ and $T_{a},$ $a$

being a 2-cluster decomposition, can take all the real numbers as energies, even
if the energy of three-particle Hamiltonian $H$ under consideration is localized

in a bounded interval. This is not the case for Hamiltonians without uniform

electric fields, because such Hamiltonians are bounded below. This is one of

main differences between the cases with electric fields and without electric fields,

and also this difference makes it difficult to prove the local commutator estimate

in the lemma above.

We shall explain this difficulty briefly. Now, let $f\in C_{0}^{\infty}(X^{a})$ for 2-cluster

decomposition $a$ . To prove the above lemma, we have to show that

(2.1) $\Vert fg(H_{a})f\Vert_{L^{2}(X)arrow L^{2}(X)}arrow 0$, supp $garrow\{\lambda\}$ .

By use of the spectral representation for the two-particle free Stark Hamiltonian
$T_{a}$ , this operator can be represented as the direct integral;

$fg(H_{a})f= \int\oplus fg(\theta+H^{a})fd\theta$ .

By use of the Stone formula, the integrand is further represented as

$fg( \theta+H^{a})f=\frac{1}{2\pi i}\int g(\theta+\mu)\{R(\mu+i0;H^{a})-R(\mu-iO;H^{a})\}d\mu$,

where $R(\zeta;H^{a})$ denotes the resolvent of $H^{a}$ . If $fR(\mu\pm iO;H^{a})f$ is proved to be

bounded uniformly in $\mu\in R^{1}$ as an operator from $L^{2}(X^{a})$ into itself, then (2.1)

follows at once. Thus we have to study the resolvent estimates at high energies

for the two-particle subsystem Hamiltonians $H^{a}$ .

LEMMA (RESOLVENT ESTIMATE AT HIGH ENERGIES). The two-particle sub-

system Hamiltonian $H^{a}$ with $E^{a}\neq 0$ satisfies the resolvent estimate

$||fR(\mu\pm i0;H^{a})f$ II $L^{2}(X^{a})arrow L^{2}(X^{a})=O(1)$ , $\muarrow\pm\infty$ .

This lemma plays a central role in proving the local commutator estimate. To

prove the asymptotic completeness for $N$-particle scattering systems, we have

to verify the resolvent estimates at high energies as above for all subsystem

Hamiltonians. However, it does not seem to be easy to prove such estimates for

many-particle systems.
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