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An inverse problem for 1-dimensional
heat equations

阪大・理 Tetsuya Hattori
(服部 哲也)

1 Introduction

In this note we study the uniqueness in an inverse problem for l-dimensional

heat equations.

For $p\in C^{1}[0,1]$ and $a\in L^{2}(0,1)$ , both of which are real-valued, let $(E_{p,a})$

be the heat equation

(1.1) $\frac{\partial u}{\partial t}+(p(x)-\frac{\partial^{2}}{\partial x^{2}})u=0$ $(0<x<1,0<t<\infty)$ ,

with the Dirichlet boundary condition

(12) $u|_{x=0}=u|_{x=1}=0$ $(0<t<\infty)$ ,

and the initial condition

(1.3) $u|_{t=0}=a(x)$ $(0<x<1)$ .

Let $u=u(t, x)$ be a unique solution of $(E_{p,a})$ . Fix $x_{0}\in(0,1$ ] and $T_{1},$ $T_{2}$

such that $0\leq T_{1}<T_{2}<\infty$ . Our problem is to study to what extent the
(observation’ $\{(u_{x}(t,0),u_{x}(t, x_{0}));T_{1}\leq t\leq T_{2}\}$ determines the potential $p$

and the initial data $a$ . To formulate this problem, we define the map $\chi_{x_{0}}$ by
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(1.4) $\chi_{x_{0}}$ : $(p,a)\{(u_{x}(t,0),u_{x}(t,x_{0}));T_{1}\leq t\leq T_{2}\}$ ,

and the set $M_{p,a,x_{0}}$ by

(1.5) $M_{p,a,x_{0}}=\{(q, b)\in C^{1}[0,1]\cross L^{2}(0,1);\chi_{x_{0}}(q, b)=\chi_{x_{0}}(p,a)\}$ .

Then the observation determines uniquely $(p, a)$ if and only if

(1.6) $M_{p,a,xo}=\{(p,a)\}$ .

Remark 1.1. We can replace the time interval $[T_{1}, T_{2}]$ by $(0, \infty)$ in (1.4)

because of the analyticity of $u(t,x)$ with respect to $t\in(O, \infty)$ .

Let $A_{p}$ denote the self-adjoint realization in $L^{2}(0,1)$ of $p(x)-\partial^{2}/\partial x^{2}$ with

the Dirichlet boundary condition. The eigenvalues and the eigenfunctions of

$A_{p}$ are denoted by $\{\lambda_{n}\}$ and $\{\varphi_{n}\}$ , respectively, the latter being normalized

as $||\varphi_{n}||_{L^{2}(0,1)}=1$ .
Definition 1.1. For $a\in L^{2}(0,1)$ , the number

(1.7) $N_{p,a}=\#\{n;(a,\varphi_{n})_{L^{2}(0,1)}=0\}$

is called the degenerate number of $a$ with respect to $A_{p}$ .

The problem of uniqueness (1.6) is closely related to the degenerate num-

ber. In fact, Murayama [1] obtained the following result.

Theorem 0.1. (Murayama) If $x_{0}=1$ , the observation determines $(p, a)$
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uniquely if and only if $N_{p,a}=0$ .

One can also study the inverse problem for (1.1) with the Robin boundary

condition:
$\frac{\partial u}{\partial x}-hu|_{x=0}=\frac{\partial u}{\partial x}+Hu|_{x=1}=0$.

In this case, we aim at determining $p,$ $h,$ $H$ and $a$ through the observation

$\{u(t,0), u(t,x_{0});T_{1}\leq t\leq T_{2}\}$ . Then Suzuki [4] obtained the following result.

Theorem 0.2. (Suzuki) In the case of the Robin boundary condition,

the observation determines $p,$ $h,$ $H$ and $a$ uniquely if and only if $x_{0}=1$ and

the degenerate number is equal to $0$ .

The above two theorems suggest that the uniqueness depends on not only

$N_{p,a}$ but also the position of $x_{0}$ . The aim of this paper is to show that, in

the case of the Dirichlet boundary condition, generically, the uniqueness does

not hold if $0<x_{0}<1$ .

A reduction is necessary before going into the details. By the same ar-

gument as in Suzuki [4], one can show that, if $(q, b)\in M_{p,a,x_{0)}}b$ is uniquely

determined by $q$ . So, if we let

(1.8) $\tilde{M}_{p,a,x_{0}}=\{q\in C^{1}[0,1]$ ; there exists some $b\in L^{2}(0,1)$

such that $(q,b)\in M_{p,a,x_{0}}$ })

(1.6) is equivalent to

(1.9) $\tilde{M}_{p,a,x_{0}}=\{p\}$ .
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2 Main results

Our results are summarized in the following two theorems.

Theorem 1. For each $x_{0}\in(0,1)$ , there exists an open dense set $U_{x_{0}}\subseteq$

$C$ ‘ $[0,1]$ such that $p\in U_{x_{0}}$ implies $\tilde{M}_{p,a,x_{0}}\neq\{p\}$ for any $a\in L^{2}(0,1)$ . In

particular, when $x_{0}\in$ $(0$ , } $)$ , we can choose $U_{xo}=C^{1}[0,1]$ .

Remark 2.1. Let $H= \{\frac{2k}{2k+1};k\in N\}$ . For $x_{0}\in(0,1)\backslash H,$ $U_{x_{0}}$ con-

tains all the constant functions. In other words, if $x_{0}\in(0,1)\backslash H$ and $p$ is a

constant function, then $\tilde{M}_{p,a,x_{0}}\neq\{p\}$ for any $a\in L^{2}(0,1)$ .

Theorem 2. Let $p$ be constant and $N_{p,a}=0$ .
(i) In the case of $x_{0} \in(\frac{1}{2},1)$ , let

(2.1) $R_{1}=\{q\in C^{1}[0,1];q’(x_{0})+q’(1)\leq 0\}$ .

Then $R_{1}\cap\tilde{M}_{p,a,x_{0}}=\{p\}$ .
(ii) In the case of $x_{0}= \frac{1}{2}$ , let

(2.2) $R_{2}=\{q\in C^{1}[0,1];q’(x_{0})+q’(0)\geq 0\}$ .

Then $R_{2}\cap\tilde{M}_{p,a,x_{0}}=\{p\}$ .
(iii) In the case of $x_{0} \in(0, \frac{1}{2}))$ let

(2.3) $R_{3}=R_{2}\cap$ { $the$ real analytic functions on $(0,1)$ }.

Then $R_{3}\cap\tilde{M}_{p,a,x_{0}}=\{p\}$ .
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By Theorem 1, the uniqueness does not hold generically if $0<x_{0}<1$ .

And, by the above theorems, it follows that there exists a potential which

has the same observation in $C^{1}[0,1]\backslash R_{1}$ if $p$ is constant, $N_{p,a}=0$ , and

$x_{0}\in$ $($ }, $1)\backslash H$ . In the case of $x_{0}= \frac{1}{2}$ or $x_{0} \in(0, \frac{1}{2})$ , the above statement

holds for $R_{2}$ or $R_{3}$ instead of $R_{1}$ , respectively.

3 A hyperbolic equation

The following propositions, which arise from Suzuki’s deformation for-

mula ([3] or [4]), are the key points of the proof of Theorems 1 and 2.

Let $D=\{(x, y)\in R^{2};0<y<x<1\})$ and consider the following

equations:

$(E)\{\begin{array}{l}(3.l)K_{xx}-K_{yy}+(p(y)-q(x))If=0onD(32)K(x,x)=\frac{1}{2}\int_{0}^{x}(q(s)-p(s))ds(0\leq x\leq 1)(33)K(x,0)=0(0\leq x\leq 1)(34)K(1,y)=0(0\leq y\leq 1)(35)K_{x}(x_{0},y)=0(0\leq y\leq x_{0})(36)K(x_{0},x_{0})=0\end{array}$

Proposition 1. If there exist $q\in C^{1}[0,1]$ and $K\in C^{2}(\overline{D})$ such that

$K$ does not vanish identically on $\overline{D}$ and satisfies the equation $(E)$ , then
$\tilde{M}_{p,a,x_{0}}\neq\{p\}$ for any $a\in L^{2}(0,1)$ .

Remark 3.1. For $q\in C^{1}[0,1]$ in Proposition 1, $q\in\tilde{M}_{p,a,x_{0}}$ and $q\neq p$

holds.
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Proposition 2. When $N_{p,a}=0,$ $q\in\tilde{M}_{p,a,x_{0}}$ if and only if there exists

$K\in C^{2}(\overline{D})$ satisfying $(E)$ .

We can show these propositions in the same way as in [4].

4 Proof of theorems

Sketch of proof of Theorem 2.

If $x_{0} \in(\frac{1}{2},1)$ , we see that $q\in\tilde{M}_{p,a,x_{0}}$ implies $q’(x_{0})+q’(1)= \int_{x^{1_{0}}}(q-p)^{2}dx$

by Proposition 2 and a straightforward calculation. Therefore, $q\in R_{1}\cap$

$\tilde{M}_{p,a,x_{0}}$ implies $q\equiv p$ on $[x_{0},1]$ , i.e. $K(x, x)=0$ for $x\in[x_{0},1]$ . By solving

$(E)$ , we get $K\equiv 0$ on $\overline{D}$ , so $K(x,x)=0$ for $x\in[0,1]$ . From (3.2), $q\equiv p$ on

$[0,1]$ .
If $x_{0}\in(0$ , }], by Proposition 2 we see that $q\in\tilde{M}_{p,a,x_{0}}$ implies $q’(x_{0})+$

$q’( O)=-\int_{0^{\sim}}^{x_{0}}(q-p)^{2}dx$ . We then proceed in the same way as above.

Proof of Theorem 1.

(I) The case of $x_{0} \in[\frac{1}{2},1$ ).

Let $G=\{g\in C^{1}[x_{0},1];g’(x_{0})=g(1)=0\}$ .
$<Step$ $1>$ For $p,q\in C^{1}[0,1]$ and $g\in G$ , we construct $K\in C^{2}(\overline{D})$

satisfying (3.1), (3.3), (3.4), (3.5) and

(4.1) $K_{y}(x,0)=g$ $(x_{0}\leq x\leq 1)$ .

This $K$ is constructed as follows. We devide $D$ into the pieces $D_{0},$ $D_{1}$ , $D_{2m+2},\overline{D}$

(Figure 1) and solve the equation successively. Here, $g’(x_{0})=g(1)=0$ serves
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as a compatibility condition for the $C^{2}$-regularity of K. ([4])

$1>$

Notation. $KinStep1isdenotedbyK_{g}(x,y;q,p)$ . $Inparticular,$ $whenp$

is fixed, $K$ is denoted by $K_{g}(x,y;q)$ .

Remark 4.1.

(1) $K_{g}$ is a $C^{2}(\overline{D})$ -valued analytic function of $q,g$ and $p$ .
(2) $K$ is linear with respect to $g$ .
(3) There exists a monotone increasing continuous function

$\tau$ : $[0, \infty$) $arrow(0,\infty)$ such that

$||K_{g}(\cdot, \cdot;p,q)||_{C^{2}(B)}\leq\tau(||p\Vert_{C^{1}[0,1]}+||q||_{C^{1}[0,1|})||g||_{C^{1}[x_{0},1]}$

$||K_{g}(\cdot, \cdot;p_{1},q_{1})-K_{g}(\cdot, \cdot;p_{2},q_{2})||_{G^{2}(\overline{D})}$

$\leq\tau(||p||_{C^{1}[0,1]}+||q\Vert_{C^{1}[0,1|})(\Vert p_{1}-p_{2}||_{C^{1}[0,1]}+\Vert q_{1}-q_{2}\Vert_{C^{1}[0,1]})||g||_{C^{1}[x_{0},1]}$

for any $p,q\in C^{1}[0,1]$ and any $g\in G$ . ([4])
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$<Step2>$ For fixed $p$ , we consider the map

$T_{g}$ :
$C^{1}[0,1]q$ $rightarrow^{arrow}$ $2 \frac{d}{dx}K_{g}(x’,x;q)+pC^{1}[0,1]$

.

By Remark 4.1 (3), there exists $\delta>0$ such that, if $||g\Vert<\delta,$ $T_{g}$ is a contrac-

tion map on some ball $U_{B}\subset C^{1}[0,1]$ . So, $T_{g}$ has a unique fixed point on $U_{B}$ ,

denoted by $q(g)$ . $K_{g}(x,y;q(g))$ satisfies (3.2).

Remark 4.2. $q(g)$ is analytic in $g$ , so $K_{g}(x, y;q(g))$ is also analytic in

$g$ .
$<Step3>$

Proposition 3. If there exists $\tilde{g}\in G$ such that $K_{\overline{g}}(x_{0}, x_{0};p,p)\neq 0$,

then $\tilde{M}_{p,a,x_{0}}\neq\{p\}$ for any $a\in L^{2}(0,1)$ .

Proof of Proposition 3. Let $\tilde{g}$ be as above. By Remark 4.1 (2), we

can choose Il $\tilde{g}||_{C^{1}[x_{0},1]}$ sufficiently small. We set

$f(t)=K_{t\overline{g}}(x_{0}, x_{0};q(t\tilde{g}))(=tK_{\overline{g}}(x_{0},x_{0};q(t\tilde{g})))$ .

We remark that $f(t)$ is an entire function and $q(O)=p$. From the assumption,

we have $f(O)=0$ and $f’(O)=K_{\overline{g}}(x_{0}, x_{0};p,p)\neq 0$ . So, there exist $t_{1},t_{2}\in R$ ,

whose absolute values are very small, such that $f(t_{1})>0$ and $f(t_{2})<0$

by the inverse function theorem. $S(g)=K_{g}(x_{0},x_{0};q(g))$ is continuous with

respect to $g$ . So, there exists $g_{1}\in G$ such that II $t_{1}\tilde{g}-g_{1}\Vert_{C^{1}[xo,1]}$ is very small

and $g_{1}$ is linearly independent of $t_{2}\tilde{g}$ and that $S(g_{1})>0$ . Since $S(g_{1})>0$

and $S(t_{2}\tilde{g})<0$ , there exists $\hat{g}\in G$ such that $S(\hat{g})=0$ , by the continuity

of the function $S(\cdot)$ . We remark that $\hat{g}$ does not vanish identically because

$g_{1}$ is linearly independent of $t_{2}\tilde{g}$ , and that $\Vert\hat{g}\Vert_{C^{1}[x_{0},1]}$ is very small. Hence,
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satisfies $(E)$ , so $\tilde{M}_{p,a,x_{0}}\neq\{p\}$ for any $a\in L^{2}(0,1)$ .

$<Step4>$

Lemma 1. If $x_{0} \in[\frac{1}{2},1$ ) $\backslash H$ and $p$ is a constant function, the assump-

tion of Proposition 3 holds.

Lemma 2. If $x_{0}\in H$, there exists $p_{0}\in C^{1}[0,1]$ such that the assump-

tion of Proposition 3 holds.

Admitting these lemmas for the moment, we continue the proof of Theo-

rem 1.

If $x_{0}\in[$} $, 1$ ) $\backslash H$, there exists $\hat{g}\in G$ such that $K_{\hat{g}}(x_{0}, x_{0};0,0)\neq 0$ by

Lemma 1. Let

$U_{x_{0}}=\{p\in C^{1}[0,1];K_{\hat{g}}(x_{0}, x_{0};p,p)\neq 0\}$ .

Then $U_{xo}$ is an open set. $F(t)=K_{\hat{g}}(x_{0}, x_{0};tp_{0}, tp_{0})$ is an entire function with

respect to $t$ for any $p_{0}\in C^{1}[0,1]$ , so the zeros of $F$ are discrete. Therefore

$U_{x_{0}}$ is dense in C’ $[0,1]$ . And $p\in U_{x_{0}}$ implies that $\tilde{M}_{p,a,x_{0}}\neq\{p\}$ for any

$a\in L^{2}(0,1)$ by Proposition 3 and Lemma 1.

If $x_{0}\in H$ , then we proceed in the same way as above. This completes

the proof of Theorem 1 in the case of $x_{0} \in[\frac{1}{2},1$ ).

We next explain the proof of Lemma 1 and 2. Lemma 1 follows from a

direct calculation, so we consider only Lemma 2.
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Proof of Lemma 2. Let $x_{0}= \frac{2k}{2k+1}$ and devide $D$ as in Figure 2.

$<F_{\dot{\Psi}^{\wedge l}}2>$

We then have

(4.2) $K_{g}(x_{0}, x_{0};p,p)=2 \sum_{j=1}^{k}(-1)^{k+j-1}\iint_{D_{j}}R(p)K_{g}(p)dxdy$,

where $R(p)(x)y)=p(x)-p(y),$ $K_{g}(p)=K_{g}(x,y;p,p)$ . Let $g=x^{2}-2x_{0}x+$

$2x_{0}-1\in G$ , and assume that $K_{g}(x_{0},x_{0};p,p)=0$ for any $p\in C^{1}[0,1]$ . We

differentiate (4.2) at $p=0$ , then we have

(4.3) $\sum_{j=1}^{k}(-1)^{j}\iint_{D_{j}}R(p)K_{g}(0)dxdy=0$

for any $p\in C^{1}[0,1]$ . We now put $p(x)=x$ in the left-hand side of (4.3),

then we have “the left-hand side of (4.3) $= \frac{(x_{0}-1)^{5}(89+61x_{0})}{180}\neq 0$ . This is a

contradiction, so there exists $p_{0}$ such that $K_{g}(x_{0},x_{0};p_{0},p_{0})\neq 0$ .

(II) The case of $x_{0}\in(0$ , } $)$ .
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Let $f\in C^{1}[0,1],$ $f(1)=0,$ $f=0$ on $[0,2x_{0}]$ and $f$ does not vanish

identically on $[0,1]$ . For $p,q\in C^{1}[0,1]$ and $f$ , there exists $K\in C^{2}(\overline{D})$

satisfying (3.1), (3.3), (3.4) and $K_{y}(x,0)=f(0\leq x\leq 1)$ . $K$ is uniquely

determined. We remark that $K$ satisfies (3.5) and (3.6) by the assumptions

on $f$. We now consider the map

$T_{f}$ : $q 2 \frac{d}{dx}K(x,x)+p$ .

If Il $f||_{C^{1}[0,1]}$ is sufficiently small, then $T_{f}$ is a contraction map on some ball

in $C^{1}[0,1]$ . We can then argue as before.

5 Other observations and stability

We briefly explain what occurs when we take different observations. We

first consider:

(1) $\{u_{x}(t,0),u(t,x_{0});T_{1}\leq t\leq T_{2}\}(x_{0}\in(0,1$ ]).

For this observation, we define $M_{p,a,x_{0}}’,\tilde{M}_{p,a,x_{0}}’$ in the same way as $M_{p,a,x_{0}}$ ,
$\tilde{M}_{p,a,x_{0}}$ , respectively. In this case, we have

Theorem 3. For each $x_{0}\in(0,1$ ],

{ $p\in C^{1}[0,1];\tilde{M}_{p,a,xo}’\neq\{p\}$ for any $a\in L^{2}(0,1)$ } $=C^{1}[0,1]$ .

We next consider:

(2) $\{u_{x}(t, 0), u_{x}(t, x_{0}),u(t, x_{0}); T_{1}\leq t\leq T_{2}\}(x_{0}\in(0,1$]).
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We define $M_{p^{*},a,x_{0}},\tilde{M}_{p,a,x_{0}}^{*}$ in the same way as above. Then we have

Theorem 4.

(i) If $x_{0}=1,\tilde{M}_{p,a,x_{0}}^{t}=\{p\}$ holds if and only if $N_{p,a}=0$ .

(ii) If $x_{0} \in(\frac{1}{2},1)$ and $N_{p,a}<+\infty$ , then $\tilde{M}_{p,a,xo}^{*}=\{p\}$ .
(iii) If $x_{0}= \frac{1}{2},\tilde{M}_{p,a,x_{0}}^{5}=\{p\}$ holds if and only if $N_{p,a}\leq 1$ .

(iv) If $x_{0}\in(0$ , } $)$ , for any $p\in$ C’ $[0,1]$ and any $a\in L^{2}(0,1)$ , we have
$\tilde{M}_{p,a,x_{0}}^{s}\neq\{p\}$ .

For $q\in C^{1}[0,1]$ , we consider a bounded operator

$\Lambda_{q}$ : $L^{2}(0,1)$ $arrow$ $C^{0}(I)\cross C^{0}(I)$

$a$ $\mapsto$ $(u_{x}(t,0),u_{x}(t, 1))$ ,

where $u=u(t, x)$ is the solution of $(E_{q,a})$ and $I=[T_{1}, T_{2}],$ $T_{1}>0$ . By

Theorem 0.1, it is easy to see that $\Lambda_{90}=\Lambda_{q_{1}}$ implies $q_{0}=q_{1}$ . So, the map $qrightarrow$

$\Lambda_{q}$ is injective. To study the continuity of the inverse map is an interesting

problem. Using the result of [2], we obtain:

Theorem 5. Let $\{q_{j}\}_{j=1}^{\infty}\subset C^{1}[0,1]$ and $\sup_{j}||q_{j}||_{L^{2}(0,1)}<+\infty$ , then

$\Lambda_{q_{j}}arrow\Lambda_{q0}$ in $B(L^{2}(0,1),$ $C^{0}(I)\cross C^{0}(I))$ if and only if $q_{j}arrow q_{0}$ in $L^{2}(0,1)$

weakly.

References

[1] R. Murayama, The Gel ‘fand-Levitan theory and certain inverse problems

for the parabolic equation, J. Fac. Sci. Univ. Tokyo Sec. IA 28 (1981),

317-330。

[2] J. P\"oschel and E. Trubowitz, Inverse Spectral Theory, Academic Press



135

(1987).

[3] T. Suzuki, Gel ‘fand-Levitan theory, deformation formula and inverse

problems, J. Fac. Sci. Univ. Tokyo Sec. IA 32 (1985), 223-271.

[4] T. Suzuki, Inverse problems for heat equations on compact intervals and

on circles $I$, J. Math. Sci. Japan 38 (1986), 39-65.

Department of Mathematics
Faculty of Science
Osaka University
Toyonaka, Osaka 560
Japan.


