An inverse problem for 1-dimensional heat equations

版大·理 Tetsuya Hattori (服部 哲也)

1 Introduction

In this note we study the uniqueness in an inverse problem for 1-dimensional heat equations.

For $p \in C^1[0,1]$ and $a \in L^2(0,1)$, both of which are real-valued, let $(E_{p,a})$ be the heat equation

(1.1)
$$\frac{\partial u}{\partial t} + (p(x) - \frac{\partial^2}{\partial x^2})u = 0$$
 (0 < x < 1, 0 < t < ∞),

with the Dirichlet boundary condition

(1.2)
$$u|_{x=0} = u|_{x=1} = 0$$
 $(0 < t < \infty),$

and the initial condition

(1.3)
$$u|_{t=0} = a(x)$$
 $(0 < x < 1).$

Let u = u(t, x) be a unique solution of $(E_{p,a})$. Fix $x_0 \in (0, 1]$ and T_1, T_2 such that $0 \leq T_1 < T_2 < \infty$. Our problem is to study to what extent the "observation" $\{(u_x(t, 0), u_x(t, x_0)); T_1 \leq t \leq T_2\}$ determines the potential pand the initial data a. To formulate this problem, we define the map χ_{x_0} by

(1.4)
$$\chi_{x_0}: (p,a) \longmapsto \{(u_x(t,0), u_x(t,x_0)); T_1 \leq t \leq T_2\},\$$

and the set M_{p,a,x_0} by

(1.5)
$$M_{p,a,x_0} = \{(q,b) \in C^1[0,1] \times L^2(0,1); \chi_{x_0}(q,b) = \chi_{x_0}(p,a)\}.$$

Then the observation determines uniquely (p, a) if and only if

(1.6)
$$M_{p,a,x_0} = \{(p,a)\}.$$

Remark 1.1. We can replace the time interval $[T_1, T_2]$ by $(0, \infty)$ in (1.4) because of the analyticity of u(t, x) with respect to $t \in (0, \infty)$.

Let A_p denote the self-adjoint realization in $L^2(0,1)$ of $p(x) - \partial^2/\partial x^2$ with the Dirichlet boundary condition. The eigenvalues and the eigenfunctions of A_p are denoted by $\{\lambda_n\}$ and $\{\varphi_n\}$, respectively, the latter being normalized as $\|\varphi_n\|_{L^2(0,1)} = 1$.

Definition 1.1. For $a \in L^2(0,1)$, the number

(1.7)
$$N_{p,a} = \#\{n; (a, \varphi_n)_{L^2(0,1)} = 0\}$$

is called the degenerate number of a with respect to A_p .

The problem of uniqueness (1.6) is closely related to the degenerate number. In fact, Murayama [1] obtained the following result.

Theorem 0.1. (Murayama) If $x_0 = 1$, the observation determines (p, a)

124

uniquely if and only if $N_{p,a} = 0$.

One can also study the inverse problem for (1.1) with the Robin boundary condition:

$$\frac{\partial u}{\partial x} - hu|_{x=0} = \frac{\partial u}{\partial x} + Hu|_{x=1} = 0.$$

In this case, we aim at determining p, h, H and a through the observation $\{u(t,0), u(t,x_0); T_1 \leq t \leq T_2\}$. Then Suzuki [4] obtained the following result. **Theorem 0.2.** (Suzuki) In the case of the Robin boundary condition, the observation determines p, h, H and a uniquely if and only if $x_0 = 1$ and the degenerate number is equal to 0.

The above two theorems suggest that the uniqueness depends on not only $N_{p,a}$ but also the position of x_0 . The aim of this paper is to show that, in the case of the Dirichlet boundary condition, generically, the uniqueness does not hold if $0 < x_0 < 1$.

A reduction is necessary before going into the details. By the same argument as in Suzuki [4], one can show that , if $(q, b) \in M_{p,a,x_0}$, b is uniquely determined by q. So, if we let

(1.8)
$$\tilde{M}_{p,a,x_0} = \{q \in C^1[0,1]; \text{ there exists some } b \in L^2(0,1)\}$$

such that
$$(q,b) \in M_{p,a,x_0}$$
,

(1.6) is equivalent to

(1.9)
$$\tilde{M}_{p,a,x_0} = \{p\}.$$

2 Main results

Our results are summarized in the following two theorems.

Theorem 1. For each $x_0 \in (0,1)$, there exists an open dense set $U_{x_0} \subseteq C^1[0,1]$ such that $p \in U_{x_0}$ implies $\tilde{M}_{p,a,x_0} \neq \{p\}$ for any $a \in L^2(0,1)$. In particular, when $x_0 \in (0, \frac{1}{2})$, we can choose $U_{x_0} = C^1[0,1]$.

Remark 2.1. Let $H = \{\frac{2k}{2k+1}; k \in \mathbb{N}\}$. For $x_0 \in (0,1) \setminus H$, U_{x_0} contains all the constant functions. In other words, if $x_0 \in (0,1) \setminus H$ and p is a constant function, then $\tilde{M}_{p,a,x_0} \neq \{p\}$ for any $a \in L^2(0,1)$.

Theorem 2. Let p be constant and $N_{p,a} = 0$. (i) In the case of $x_0 \in (\frac{1}{2}, 1)$, let

(2.1)
$$R_1 = \{q \in C^1[0,1]; q'(x_0) + q'(1) \le 0\}.$$

Then $R_1 \cap \tilde{M}_{p,a,x_0} = \{p\}.$

(ii) In the case of $x_0 = \frac{1}{2}$, let

(2.2)
$$R_2 = \{q \in C^1[0,1]; q'(x_0) + q'(0) \ge 0\}.$$

Then $R_2 \cap \tilde{M}_{p,a,x_0} = \{p\}$. (iii) In the case of $x_0 \in (0, \frac{1}{2})$, let (2.3) $R_3 = R_2 \cap \{ \text{ the real analytic functions on } (0,1) \}$. Then $R_3 \cap \tilde{M}_{p,a,x_0} = \{p\}$. By Theorem 1, the uniqueness does not hold generically if $0 < x_0 < 1$. And, by the above theorems, it follows that there exists a potential which has the same observation in $C^1[0,1] \setminus R_1$ if p is constant, $N_{p,a} = 0$, and $x_0 \in (\frac{1}{2}, 1) \setminus H$. In the case of $x_0 = \frac{1}{2}$ or $x_0 \in (0, \frac{1}{2})$, the above statement holds for R_2 or R_3 instead of R_1 , respectively.

3 A hyperbolic equation

The following propositions, which arise from Suzuki's deformation formula ([3] or [4]), are the key points of the proof of Theorems 1 and 2.

Let $D = \{(x,y) \in \mathbb{R}^2; 0 < y < x < 1\}$, and consider the following equations :

$$(E) \begin{cases} (3.1) & K_{xx} - K_{yy} + (p(y) - q(x))K = 0 \quad on \ D, \\ (3.2) & K(x, x) = \frac{1}{2} \int_0^x (q(s) - p(s)) ds \quad (0 \le x \le 1), \\ (3.3) & K(x, 0) = 0 \quad (0 \le x \le 1), \\ (3.4) & K(1, y) = 0 \quad (0 \le y \le 1), \\ (3.5) & K_x(x_0, y) = 0 \quad (0 \le y \le x_0), \\ (3.6) & K(x_0, x_0) = 0. \end{cases}$$

Proposition 1. If there exist $q \in C^1[0,1]$ and $K \in C^2(\overline{D})$ such that K does not vanish identically on \overline{D} and satisfies the equation (E), then $\tilde{M}_{p,a,x_0} \neq \{p\}$ for any $a \in L^2(0,1)$.

Remark 3.1. For $q \in C^1[0,1]$ in Proposition 1, $q \in \tilde{M}_{p,a,x_0}$ and $q \neq p$ holds.

Proposition 2. When $N_{p,a} = 0$, $q \in \tilde{M}_{p,a,x_0}$ if and only if there exists $K \in C^2(\bar{D})$ satisfying (E).

We can show these propositions in the same way as in [4].

4 **Proof of theorems**

Sketch of proof of Theorem 2.

If $x_0 \in (\frac{1}{2}, 1)$, we see that $q \in \tilde{M}_{p,a,x_0}$ implies $q'(x_0) + q'(1) = \int_{x_0}^1 (q-p)^2 dx$ by Proposition 2 and a straightforward calculation. Therefore, $q \in R_1 \cap \tilde{M}_{p,a,x_0}$ implies $q \equiv p$ on $[x_0, 1]$, *i.e.* K(x, x) = 0 for $x \in [x_0, 1]$. By solving (E), we get $K \equiv 0$ on \bar{D} , so K(x, x) = 0 for $x \in [0, 1]$. From (3.2), $q \equiv p$ on [0,1].

If $x_0 \in (0, \frac{1}{2}]$, by Proposition 2 we see that $q \in \tilde{M}_{p,a,x_0}$ implies $q'(x_0) + q'(0) = -\int_0^{\tilde{x}_0} (q-p)^2 dx$. We then proceed in the same way as above.

Proof of Theorem 1.

(I) The case of $x_0 \in [\frac{1}{2}, 1)$.

Let $G = \{g \in C^1[x_0, 1]; g'(x_0) = g(1) = 0\}.$

< Step 1 > For $p, q \in C^{1}[0, 1]$ and $g \in G$, we construct $K \in C^{2}(\bar{D})$ satisfying (3.1), (3.3), (3.4), (3.5) and

(4.1)
$$K_y(x,0) = g \quad (x_0 \le x \le 1).$$

This K is constructed as follows. We devide D into the pieces D_0 , D_1 , ..., D_{2m+2} , \overline{D} (Figure 1) and solve the equation successively. Here, $g'(x_0) = g(1) = 0$ serves as a compatibility condition for the C^2 -regularity of K. ([4])

Notation. K in Step 1 is denoted by $K_g(x, y; q, p)$. In particular, when p is fixed, K is denoted by $K_g(x, y; q)$.

Remark 4.1.

(1) K_g is a $C^2(\overline{D})$ -valued analytic function of q, g and p.

(2) K is linear with respect to g.

(3) There exists a monotone increasing continuous function

 $au:[0,\infty) o (0,\infty)$ such that

 $|| K_g(\cdot, \cdot; p, q) ||_{C^2(\bar{D})} \le \tau(|| p ||_{C^1[0,1]} + || q ||_{C^1[0,1]}) || g ||_{C^1[x_0,1]}$

 $|| K_g(\cdot,\cdot;p_1,q_1) - K_g(\cdot,\cdot;p_2,q_2) ||_{C^2(\bar{D})}$

 $\leq \tau(\|p\|_{C^{1}[0,1]} + \|q\|_{C^{1}[0,1]})(\|p_{1} - p_{2}\|_{C^{1}[0,1]} + \|q_{1} - q_{2}\|_{C^{1}[0,1]}) \|g\|_{C^{1}[x_{0},1]}$ for any $p, q \in C^{1}[0,1]$ and any $g \in G$. ([4]) $\langle Step 2 \rangle$ For fixed p, we consider the map

$$\begin{array}{cccc} T_g: & C^1[0,1] & \longrightarrow & C^1[0,1] \\ & q & \longmapsto & 2\frac{d}{dx}K_g(x,x;q) + p. \end{array}$$

By Remark 4.1 (3), there exists $\delta > 0$ such that , if $||g|| < \delta$, T_g is a contraction map on some ball $U_B \subset C^1[0,1]$. So, T_g has a unique fixed point on U_B , denoted by q(g). $K_g(x,y;q(g))$ satisfies (3.2).

Remark 4.2. q(g) is analytic in g, so $K_g(x, y; q(g))$ is also analytic in g.

< Step 3 >

Proposition 3. If there exists $\tilde{g} \in G$ such that $K_{\tilde{g}}(x_0, x_0; p, p) \neq 0$, then $\tilde{M}_{p,a,x_0} \neq \{p\}$ for any $a \in L^2(0, 1)$.

Proof of Proposition 3. Let \tilde{g} be as above. By Remark 4.1 (2), we can choose $\|\tilde{g}\|_{C^1[x_0,1]}$ sufficiently small. We set

$$f(t) = K_{t\tilde{g}}(x_0, x_0; q(t\tilde{g})) \ \ (= tK_{\tilde{g}}(x_0, x_0; q(t\tilde{g}))).$$

We remark that f(t) is an entire function and q(0) = p. From the assumption, we have f(0) = 0 and $f'(0) = K_{\tilde{g}}(x_0, x_0; p, p) \neq 0$. So, there exist $t_1, t_2 \in \mathbb{R}$, whose absolute values are very small, such that $f(t_1) > 0$ and $f(t_2) < 0$ by the inverse function theorem. $S(g) = K_g(x_0, x_0; q(g))$ is continuous with respect to g. So, there exists $g_1 \in G$ such that $|| t_1 \tilde{g} - g_1 ||_{C^1[x_0,1]}$ is very small and g_1 is linearly independent of $t_2 \tilde{g}$ and that $S(g_1) > 0$. Since $S(g_1) > 0$ and $S(t_2 \tilde{g}) < 0$, there exists $\hat{g} \in G$ such that g does not vanish identically because g_1 is linearly independent of $t_2 \tilde{g}$, and that $|| \hat{g} ||_{C^1[x_0,1]}$ is very small. Hence, satisfies (E), so $\tilde{M}_{p,a,x_0} \neq \{p\}$ for any $a \in L^2(0,1)$.

< Step 4 >

Lemma 1. If $x_0 \in [\frac{1}{2}, 1) \setminus H$ and p is a constant function, the assumption of Proposition 3 holds.

Lemma 2. If $x_0 \in H$, there exists $p_0 \in C^1[0, 1]$ such that the assumption of Proposition 3 holds.

Admitting these lemmas for the moment, we continue the proof of Theorem 1.

If $x_0 \in [\frac{1}{2}, 1) \setminus H$, there exists $\hat{g} \in G$ such that $K_{\hat{g}}(x_0, x_0; 0, 0) \neq 0$ by Lemma 1. Let

$$U_{x_0} = \{ p \in C^1[0,1]; K_{\hat{g}}(x_0, x_0; p, p) \neq 0 \}.$$

Then U_{x_0} is an open set. $F(t) = K_{\hat{g}}(x_0, x_0; tp_0, tp_0)$ is an entire function with respect to t for any $p_0 \in C^1[0, 1]$, so the zeros of F are discrete. Therefore U_{x_0} is dense in $C^1[0, 1]$. And $p \in U_{x_0}$ implies that $\tilde{M}_{p,a,x_0} \neq \{p\}$ for any $a \in L^2(0, 1)$ by Proposition 3 and Lemma 1.

If $x_0 \in H$, then we proceed in the same way as above. This completes the proof of Theorem 1 in the case of $x_0 \in [\frac{1}{2}, 1)$.

We next explain the proof of Lemma 1 and 2. Lemma 1 follows from a direct calculation, so we consider only Lemma 2.

Proof of Lemma 2. Let
$$x_0 = \frac{2k}{2k+1}$$
 and devide D as in Figure 2.

We then have

(4.2)
$$K_g(x_0, x_0; p, p) = 2 \sum_{j=1}^{k} (-1)^{k+j-1} \iint_{D_j} R(p) K_g(p) dx dy,$$

where R(p)(x,y) = p(x) - p(y), $K_g(p) = K_g(x,y;p,p)$. Let $g = x^2 - 2x_0x + 2x_0 - 1 \in G$, and assume that $K_g(x_0, x_0; p, p) = 0$ for any $p \in C^1[0, 1]$. We differentiate (4.2) at p = 0, then we have

(4.3)
$$\sum_{j=1}^{k} (-1)^{j} \iint_{D_{j}} R(p) K_{g}(0) dx dy = 0$$

for any $p \in C^1[0,1]$. We now put p(x) = x in the left-hand side of (4.3), then we have "the left-hand side of $(4.3)^{"} = \frac{(x_0-1)^5(89+61x_0)}{180} \neq 0$. This is a contradiction, so there exists p_0 such that $K_g(x_0, x_0; p_0, p_0) \neq 0$.

(II) The case of $x_0 \in (0, \frac{1}{2})$.

Let $f \in C^1[0,1]$, f(1) = 0, f = 0 on $[0,2x_0]$ and f does not vanish identically on [0,1]. For $p,q \in C^1[0,1]$ and f, there exists $K \in C^2(\overline{D})$ satisfying (3.1), (3.3), (3.4) and $K_y(x,0) = f$ ($0 \le x \le 1$). K is uniquely determined. We remark that K satisfies (3.5) and (3.6) by the assumptions on f. We now consider the map

$$T_f: q \longmapsto 2 \frac{d}{dx} K(x, x) + p$$

If $|| f ||_{C^1[0,1]}$ is sufficiently small, then T_f is a contraction map on some ball in $C^1[0,1]$. We can then argue as before.

5 Other observations and stability

We briefly explain what occurs when we take different observations. We first consider:

(1)
$$\{u_x(t,0), u(t,x_0); T_1 \leq t \leq T_2\} \ (x_0 \in (0,1]).$$

For this observation, we define M'_{p,a,x_0} , $\tilde{M'}_{p,a,x_0}$ in the same way as M_{p,a,x_0} , \tilde{M}_{p,a,x_0} , respectively. In this case, we have

Theorem 3. For each $x_0 \in (0, 1]$,

$$\{p \in C^1[0,1]; \ \tilde{M'}_{p,a,x_0} \neq \{p\} \ for \ any \ a \in L^2(0,1)\} = C^1[0,1].$$

We next consider:

(2)
$$\{u_x(t,0), u_x(t,x_0), u(t,x_0); T_1 \leq t \leq T_2\} \ (x_0 \in (0,1]).$$

We define M^*_{p,a,x_0} , \tilde{M}^*_{p,a,x_0} in the same way as above. Then we have **Theorem 4.**

(i) If x₀ = 1, *M*^{*}_{p,a,x₀} = {p} holds if and only if N_{p,a} = 0.
(ii) If x₀ ∈ (¹/₂, 1) and N_{p,a} < +∞, then *M*^{*}_{p,a,x₀} = {p}.
(iii) If x₀ = ¹/₂, *M*^{*}_{p,a,x₀} = {p} holds if and only if N_{p,a} ≤ 1.
(iv) If x₀ ∈ (0, ¹/₂), for any p ∈ C¹[0, 1] and any a ∈ L²(0, 1), we have *M*^{*}_{p,a,x₀} ≠ {p}.

For $q \in C^{1}[0, 1]$, we consider a bounded operator

$$\begin{array}{rcl} \Lambda_q: & L^2(0,1) & \longrightarrow & C^0(I) \times C^0(I) \\ & a & \longmapsto & (u_x(t,0), u_x(t,1)), \end{array}$$

where u = u(t, x) is the solution of $(E_{q,a})$ and $I = [T_1, T_2], T_1 > 0$. By Theorem 0.1, it is easy to see that $\Lambda_{q_0} = \Lambda_{q_1}$ implies $q_0 = q_1$. So, the map $q \mapsto \Lambda_q$ is injective. To study the continuity of the inverse map is an interesting problem. Using the result of [2], we obtain :

Theorem 5. Let $\{q_j\}_{j=1}^{\infty} \subset C^1[0,1]$ and $\sup_j ||q_j||_{L^2(0,1)} < +\infty$, then $\Lambda_{q_j} \to \Lambda_{q_0}$ in $B(L^2(0,1), C^0(I) \times C^0(I))$ if and only if $q_j \to q_0$ in $L^2(0,1)$ weakly.

References

- R. Murayama, The Gel'fand-Levitan theory and certain inverse problems for the parabolic equation, J. Fac. Sci. Univ. Tokyo Sec. IA 28 (1981), 317-330.
- [2] J. Pöschel and E. Trubowitz, Inverse Spectral Theory, Academic Press

(1987).

- [3] T. Suzuki, Gel'fand-Levitan theory, deformation formula and inverse problems, J. Fac. Sci. Univ. Tokyo Sec. IA 32 (1985), 223-271.
- [4] T. Suzuki, Inverse problems for heat equations on compact intervals and on circles I, J. Math. Sci. Japan 38 (1986), 39-65.

Department of Mathematics Faculty of Science Osaka University Toyonaka, Osaka 560 Japan.