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An inverse problem for 1-dimensional
heat equations

B K-¥2  Tetsuya Hattori
(AR 3P )

1 Introduction

In this note we study the uniqueness in an inverse problem for 1-dimensional

heat equations.
For p € C'[0,1] and a € L?(0,1), both of which are real-valued, let (E,,)

be the heat equation

Ju 0?
(1.1) E-F(p(z)—-a?)u:O 0<z<1,0<t<00),

with the Dirichlet boundary condition

(1.2) Ulz=0 = Ulz=1 =0 (0 < t < oo),
and the initial condition

(1.3) ule=0 = a(z) 0<z<1).

Let v = u(t,z) be a unique solution of (E,,). Fix zo € (0,1] and T1, T
such that 0 < T} < T, < 00. Our problem is to study to what extent the
“observation” {(u(t,0),us(t,20)); Ty <t < T,} determines the potential p

and the initial data a. To formulate this problem, we define the map x,, by
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(1.4) Xzo : (Pr@) ¥ {(ua(t,0), us(t, 20)); Th < t < T},

and the set M, , ,, by

(18)  Myas ={(g,b) € C'[0,1] x L*(0,1); Xzo(4, ) = Xxo (P, a)}-
Then the observation determines uniquely (p, a) if and only if

19) My = (2,0

Remark 1.1.  We can replace the time interval [Ty, T3] by (0, 00) in (1.4)
because of the analyticity of u(t,z) with respect to ¢t € (0, 00). |

Let A, denote the self-adjoint realization in L*(0,1) of p(z)— 8?/8z? with
the Dirichlet boundary condition. The eigenvalues and the eigenfunctions of

A, are denoted by {A.} and {¢.}, respectively, the latter being normalized

as ||@nllL2(01) = 1.

Definition 1.1.  For a € L?(0,1), the number

(1.7) Npo = §{n;(a,¢n)1200,1) = 0}

is called the degenerate number of a with respect to A,.

The problem of uniqueness (1.6) is closely related to the degenerate num-

ber. In fact, Murayama [1] obtained the following result.

Theorem 0.1. (Murayama) If zo = 1, the observation determines (p,a)



uniquely if and only if N,, = 0.

One can also study the inverse problem for (1.1) with the Robin boundary
condition:
Ou Ou

-a—:-c- - hu|,=o = E + Hulx:l =0.

In this case, we aim at determining p,h, H and a through the observation
{u(t,0),u(t,z0); Ty £t < T,}. Then Suzuki [4] obtained the following result.
Theorem 0.2. (Suzuki) In the case of the Robin boundary condition,
the observation determines p, h, H and a uniquely if and only if o = 1 and

the degenerate number is equal to 0.

The above two theorems suggest that the uniqueness depends on not only
N,,,a'but also the position of zo. The aim of this paper is to show that, in
the case of the Dirichlet boundary condition, generically, the uniqueness does
not hold if 0 < z¢ < 1.

A reduction is necessary before going into the details. By the same ar-
gument as in Suzuki [4], one can show that , if (¢,b) € M, , 4, b is uniquely

determined by q. So, if we let
(1.8) M, .., = {q € CY[0,1]; there ezists some be L*(0,1)

such that (q,b) € Mpaz,},

(1.6) is equivalent to

(1.9) Mp.a.xo = {p}.
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2 Main results

Our results are summarized in the following two theorems.

Theorem 1.  For each zo € (0,1), there exists an open dense set U,, C
C'[0,1] such that p € U,, implies M, ., # {p} for any a € L*(0,1). In

particular, when z € (0, 1), we can choose U, = C'[0,1].

Remark 2.1. Let H = {5;2%, k € N}. For zo € (0,1) \ H, U, con-

tains all the constant functions. In other words, if zo € (0,1)\ H and pis a

constant function, then M, , ., # {p} for any a € L*(0,1).

Theorem 2.  Let p be constant and N, , = 0.
(1) In the case of zo € (3,1), let

(2.1) Ry = {q € C'[0,1]; ¢'(z0) + ¢'(1) < 0}.

Then R1 N Mp,a,xo = {p}‘

(ii) In the case of zo = 1, let
(22) R, = {q € C'[0,1};¢'(z0) + ¢'(0) > 0}.

Then R, N M,, ., = {p}.
(iii) In the case of zo € (0, ), let

(2.3) R3s = Ry N { the real analytic functions on (0,1)}.

Then Ry N M, , ., = {p}.



By Theorem 1, the uniqueness does not hold generically if 0 < zo < 1.
And, by the above theorems, it follows that there exists a potential which
has the same observation in C[0,1] \ Ry if p is constant, N,, = 0, and
zo € (3,1) \ H. In the case of 2o = } or zo € (0,1), the above statement

holds for R, or Rj instead of R;, respectively.

3 A hyperbolic equation

The following propositions, which arise from Suzuki’s deformation for-
mula ([3] or [4]), are the key points of the proof of Theorems 1 and 2.
Let D = {(z,y) € R%0 < y < z < 1}, and consider the following

equations : »
[ (3.1) Koo — Kyy + (p(y) — g(z))K =0 on D,
(32)  K(z,o)=1f5(as) —p(s))ds (0<z<1),
(3.3) K(z,0)=0 (0<z<1),
(F) <

34)  K(L,y)=0 (0<y<l),

(3.5) K(z0,y) =0 (0 <y < o),

L (36) I((:Eo,:l?o) =0.

Proposition 1.  If there exist ¢ € C[0,1] and K € C*(D) such that
K does not vanish identically on D and satisfies the equation (E), then
M, a4, # {p} for any a € L2(0,1).

Remark 3.1.  For ¢ € C'[0,1] in Proposition 1, ¢ € M, 4, and ¢ # p
holds.
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Proposition 2.  When N,, = 0, ¢ € M, ., if and only if there exists
K € C?*(D) satisfying (E).

We can show these propositions in the same way as in [4].

4 Proof of theorems

Sketch of proof of Theorem 2.

If zo € (1,1), we see that ¢ € M, ., implies ¢'(z0)+¢'(1) = [;,(g—p)*dz
by Proposition 2 and a straightforward calculation. Therefore, ¢ € R; N
M, , ., implies ¢ = p on [zq,1], i.e. K(z,z) = 0 for = € [z0,1]. By solving
(E), weget K =0on D, so K(z,z) =0 for z € [0,1]. From (3.2), g=p on
[0,1].

If zo € (0,3], by Proposition 2 we see that ¢ € M, , ., implies ¢'(zo) +

¢'(0) = — [(g — p)?dz . We then proceed in the same way as above.

Proof of Theorem 1.
(I) The case of zo € [3,1).
Let G = {g € C'[z0,1); ¢'(z0) = g(1) = 0}
< Step 1 > For p,q € C'[0,1] and g € G, we construct K € C*(D)
satisfying (3.1), (3.3), (3.4), (3.5) and

(4.1) K,(z,0)=9 (z0<z<1).

This K is constructed as follows. We devide D into the pieces Dy, Dy, ..., Damy2, D

(Figure 1) and solve the equation successively. Here, g'(zo) = g(1) = 0 serves
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as a compatibility condition for the C?-regularity of K. ([4])
ci.t)

g Dszz
DZWN-I N

Dad
D,

Di
D] < Figure 15

(0.0) (xo,0) Clo0)

N

Notation. K in Stepl is denoted by K,(z,y; q,p). In particular, when p
is fixed, K is denoted by K,(z,y;q).

Remark 4.1.
(1) K, is a C*(D)-valued analytic function of ¢, ¢ and p.
(2) K is linear with respect to g.
(3) There exists a monotone increasing continuous function

7 : [0,00) — (0, 00) such that
| Ko7, 9) llexpy< Tl P licrioy + Il ¢ lleron) Il 9 ety

| Ko(s s p1y@1) = Koy 52, 02) "02(1'))
<7l 2 llerony + 1l @ lleroap)(ll 1= P2 flerpoy + 1| @1 — @2 o) 1 9 llerizon)

for any p,q € C'[0,1] and any g €G. ([4])
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< Step 2 > For fixed p, we consider the map
T,: C0,1] — cio, 1
q — 2%Kg(m,z;q) + p.

By Remark 4.1 (3), there exists § > 0 such that , if ||g|| < é, T} is a contrac-
tion map on some ball Ug C C'[0,1]. So, T, has a unique fixed point on Ug,
denoted by ¢(g). K,(z,y;4(g)) satisfies (3.2).

Remark 4.2. ¢(g) is analytic in g, so K,(z,y;q(g)) is also analytic in
g
< Step 3 >

Proposition 3.  If there exists § € G such that K;j(zo,zo;p,p) # 0,
then M,, ., # {p} for any a € L2(0,1).

Proof of Proposition 3. Let § be as above. By Remark 4.1 (2), we

can choose || § ||c1[z,,1) sufficiently small. We set

f(t) = Ki5(z0, 20; 4(19)) (= tK;5(20,Z0; (29)))-

We remark that f(t) is an entire function and ¢(0) = p. From the assumption,
we have f(0) = 0 and f'(0) = K;(zo, zo; p,p) # 0. So, there exist ¢,,%; € R,
whose absolute values are very small, such that f(¢;) > 0 and f(¢;) < 0
by the inverse function theorem. S(g) = K,(zo,Z0;¢(g)) is continuous with
respect to g. So, there exists g; € G such that || ;6 — g1 ||c1(z 1 is very small
and g, is linearly independent of t;§ and that S(¢:) > 0. Since S(g1) > 0
and S(#,9) < 0, there exists § € G such that S(§) = 0, by the continuity
of the function S(-). We remark that § does not vanish identically because

1 is linearly independent of ¢,§, and that || § ||¢t[c,,1) is very small. Hence,



satisfies (E), so M, , ., # {p} for any a € L2(0,1).

< Step 4 >

Lemma 1. Ifz, € [3,1)\ H and pis a constant function, the assump-
tion of Proposition 3 holds.

Lemma 2. If zo € H, there exists pp € C'[0, 1] such that the assump-
tion of Proposition 3 holds.

Admitting these lemmas for the moment, we continue the proof of Theo-

rem 1.

If zo € [3,1)\ H, there exists § € G such that K;(zo,20;0,0) # 0 by

Lemma 1. Let

Uz, = {p € C'[0,1}; K;(zo,zo;p,p) # 0}.

Then U,, is an open set. F(t) = K;(zo, zo; tpo, tpo) is an entire function with
respect to t for any py € C*[0,1], so the zeros of F are discrete. Therefore
U,, is dense in C'[0,1]. And p € U,, implies that M,,.., # {p} for any
a € L?(0,1) by Proposition 3 and Lemma 1.

If 2o € H, then we proceed in the same way as above. This completes

the proof of Theorem 1 in the case of z¢ € [1,1).

We next explain the proof of Lemma 1 and 2. Lemma 1 follows from a

direct calculation, so we consider only Lemma 2.
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Proof of Lemma 2.  Let zo = ;2+; and devide D as in Figure 2.

(4]

We then have
k »
(42) K, (zo,50p,0) =23 (-1 [[ R(p)K,(p)dzdy,
j=1 D.i
where R(p)(z,y) = p(z) — p(y), K,(p) = K,(2,y;p,p). Let g = 2% — 2202 +
2z9 — 1 € G, and assume that K (zo,z0;p,p) = 0 for any p € C*[0,1]. We
differentiate (4.2) at p = 0, then we have

k
(4.3) S(-1Y [, Re)E(0)dady = 0

for any p € C'[0,1]. We now put p(z) = z in the left-hand side of (4.3),
then we have “the left-hand side of (4.3)”= (eo=1) (8946120) 4 ), This is a

180
contradiction, so there exists py such that K (zo, zo;po, po) # 0.

(II) The case of zo € (0,3).



Let f € C'0,1], f(1) = 0, f = 0 on [0,2z0) and f does not vanish
identically on [0,1]. For p,q € C'0,1] and f, there exists K € C*(D)
satisfying (3.1), (3.3), (3.4) and K,(z,0) = f (0 < z < 1). K is uniquely
determined. We remark that K satisfies (3.5) and (3.6) by the assumptions

on f. We now consider the map
T;:q— 2—K(z,z) +
f:49 ] ) p-

If || f llco,y is sufficiently small, then Ty is a contraction map on some ball

in C'[0,1]. We can then argue as before.

5 Other observations and stability

We briefly explain what occurs when we take different observations. We

first consider:

(1) {uz(t,0),u(t,z0); Ty Lt < T3} (=0 € (0,1]).

~

. . ] .
For this observation, we define M, M’, oz, in the same way as M, 1,

p.a,ro?

-~

M, . z,, respectively. In this case, we have

Theorem 3.  For each z, € (0,1],

{p € C0,1]; M’p,a',o # {p} for any a € L*(0,1)} = C*{0,1].

We next consider:

(2) {uz(t,0),uz(t, zo), u(t,z0); T1 <t < T2} (z0 € (0,1]).
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We define M*

pazer M*pazo in the same way as above. Then we have

Theorem 4.

() M zo=1, M*,, ., = {p} holds if and only if N,, = 0.

(i) If 7o € (1,1) and N, , < +o0, then M*, 42, = {p}-

(iii) If zo = 1, M*, ., = {p} holds if and only if N,, < 1.

(iv) If zo € (0,1), for any p € C'[0,1] and any a € L?*(0,1), we have
M*poz # {P}-

For ¢ € C'[0, 1], we consider a bounded operator

Ayt L20,1) —  C°(1) x C°(1)
a — (ug(2,0),u-(t,1)),

where u = u(t,z) is the solution of (E,,) and I = [T},T,], Ty > 0. By
Theorem 0.1, it is easy to see that A, = A,, implies go = ¢1. So, the map ¢ —
A, is injective. To study the continuity of the inverse map'is an interesting
problem. Using the result of 2], we obtain : |
Theorem 5.  Let {¢;}2, C C*(0,1] and sup; |lg;||z2(01) < 400, then
A, — Ay in B(L*(0,1),C%(I) x C°(I)) if and only if ¢; — go in L?(0,1)
weakly. '
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