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ON THE EXISTENCE OF HETEROCLINIC SOLUTIONS FOR
SEMILINEAR ELLIPTIC EQUATIONS
ON A STRIP-LIKE DOMAIN

- Norimichi Hirano .
Faculty of Engineering, YOKOHAMA NATIONAL UNIVERSITY

1. Introduction. In this note, we consider the existence of heteroclinic
solutions of semilinear elliptic equations on a strip-like domain. Let S be a
strip-like domain, i.e., $ = R x Q where Q C R" is a bounded domain with
smooth boundary 9€2. We study the existence of $olutions of the problem:

—Au = g(u) in S
(Fo) { u=0 on 0S5

where g € C(L?(§2), L*(2)) with ¢'(-) € C(L*(Q), L*(%)) .

The problem (Fp) appears in several problems in mechanics and physics.
For example, the problem (Fp) describes waves in density-stratified chan-
nels[8]. It also considered as a model equation for viscous fluid flow between
concentric cylinders(cf.[3],[7],[9]). The problem (Pp) can be rewritten as

(P) { —uy — Azu = g(u) in Rx

u(t,z) =0 forze N andt € R

The t-stationally solutions of problem (P) is the solutions of the problem:

—Au = g(u in )
(P) = 9w)
u=20 on 0f2

The problem (P;) is variational. That is the solutions of (P;) are critical
points of the functional

Flu) = /Q (-;- | Vou |* —~G(u))dz  for u € HL(Q) (1.1)

where G(t) = f; g(s)ds.
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We are interested in the existence of heteroclinic solutions of (P). Exis-
tence of heteroclinic solutions is deeply related to the critical points(critical
levels) of the functional F. Our purpose in this note is to show the exis-
tence of heteroclinic solutions of the problem (P). More precisely, we seak
for a solution of (P) which converges to critical points of F' as ¢ tends to
+00. The existence of non-periodic solutions for (P) has been proved by
Amick[3], Bona et al[4], Kirchgassner[7] and Turner[9] for the case that g
is odd. In [6], Esteban have shown the existence of non-periodic solutions
without assuming oddness of g. In [5], Cannino have shown that if g is
odd and (P,) has a positive(negative) solution v*(v™) which is a_global
minimum of F, there is a heteroclinic orbit of (P)(cf. also Kirchgassner[7]).
We prove that if F' has two global minumums, there exists a heteroclinic
solution connecting the two points. |

In the following, we denote by || - || and | - |2 the norms of the Sobolev
space H}(Q) and L%(Q), respectively. For each z, y € L*(Q), < z,y >
denotes the inner product of z, y in L?(£2). We denote by A1 < )\2
the eigenvalues of the problem

—Au=XAy, inQ, u=0 ondQ. (1.4)

Let E()A) denote the finite dimensional subspace of Hj(2) spanned by the
eigenfunctions of the problem (1.4) corresponding to the eigenvalues smaller
than or equal to \. We denote by Mjo.(My) the set of local(global) mini-
mums of F in H}(Q). We impose the following conditions on F:

(F1) There exist a,as > 0 such that
<VF(u),u>>ay||ul|® forall u with |u |3> as; (1.2)
(F2) there exists A > 0, a3 > 0 and a; > 0 satisfying that
< VF(@u)—-VF@),u—v>>—a; |Ju—v|? (1.3)
for each u,v € H}(2), and
<VF(w+2z1)~VF(u+2z),z21—22>> 03 || 21 — 22 || (1.4)

for each v € H} () and 21,20 € E(\)L;
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(F3) M, consists of finite number of points vg,v1," -+ ,vn: Moreover, F’
is nondegenerate at each v;, 0 <1 < n.

The condition (F1) is imposed for the functional J to satisfy Palais-
Smale condition(hereafter refered by P-S). That is we may replace (F1)
by :

(F1’) ForeachT >0,J samsﬁes P-S in Hr.

It is easy to see that if g satisfies that

limsup g(t)/t < A1, (1.5)

[t} =00

b & e e

then (F1) holds. The condition (F2) is fulfilled if g satisfies that for some
A>0.
supg'(t) < A : (1.6)
1€ER
We give an existence result for the case that the set My, consists of
exactly two points. In this case, we can find a heteroclinical solution(orbit)
without assuming any condition on critical points whose critical level are
greater than the global minimal value.

Theorem 1. Suppose that (F1) holds and that F has exact two global
minimal points vy which are nondegenerate. Then there exists a solution

u of (P) such that

| hm u(t) = vy in L*(Q).

t—Zoo
Moreover, there exist sequences {ti} with lim, . t= = +oo such that

lim u(tX) = vy in Hy ().

n—o0

By imposing (F2) and (F3), we can remove that condition that F has
exactly two local minimals. That is we have

Theorem 2. Suppose that (F1)-(F3) hold. Moreover suppose that There
exists at least two global minimals of F. Then there exists a solution u of
(1.1) such that |
\ lim u(t) =wvy in L*(Q),

i—
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where vy € H} () such that F(vy) = min{F(v) : v € H}()}.

Moreover, there exist sequences {tX} with lim,_,. t= = o0 such that

lim u(t%) = vy in HL(Q).

n—0o0

Remark 1. We may replace (F3) with the following condition which is
slightly weaker than (F3): | “
(F3’) (a): Mi,c consists of finite points ;

(b): each point in Mi,c\Mg is nondegenerate, and for each v €
Mg, there exists a neighborhood U of v such that T

<VF(@w),u—v>>0 foralluel, (1.7)

2. Proof of Theorems . In the following, we assume for simplicity that
min{F(v) : v € H}(Q)} = 0. Let

I'={ue LlX(R;HNQ))NHY(R; L*(Q)) : t_ljinoo u(t) = vy in L2(Q)}

and '
To = {u € T:| uy(t) |3= F(u(t)), for a.e. t € R}.

Joo = / / | wg |2 dedt + / Flu)dt.
—oo J02 —00

Then we have

We also set

Lemma 2.1. m =inf{Joo(u): v €} =inf{Joo(u):u € T} < 0.
where J, is the functional defined in (3.8).

Proof. Since vy are nondegenerate, there exist neighborhoods Uy of vy
and homeomorphisms ¢4 : Uy — H}(Q) satisfying that

Fpx(v)) =llv|* forallv e Uy.
For simplicity, we assume that ¢4 (v) = v — v4. That is

Fv)=||v—vy]|® forallveU,. (2.1)
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We first see that m = inf{J(u) : u € ['} < co. Let u : (—00,00) — Hg ()
be a function defined by

u(t) = (5 - B + (5 + B(E)os

where 8(t) = —t/2(| t | +1) for t € R. Then from the definition of 3, we
have that

[ Quel 4w Py < oo.

Therefore u € T. By (2.1), it is easy to check that Ju(u) < co. Then we

have shown that m < co. Let P, be the set of normalized pathes connecting

v_ and vy. Thatis '
Py = {p(") € C([-1,1]; Hy(Q)) :| p'(s) |= const. in (—1,1),

p(£1) = vy and p(t) ¢ {v-,v4} fort € (-1 1)}
(2.2)
Let V be a set of mappings 7(+) : [-1,1] — (—o0, 00) satisfying that

t(-) is strictly monotone increasing, and hrg 7(s) = too.
§—

We note that if 7(-) € V, 7 is differentiable a.e. in (—1,1). Let 7(-) € V and
p € P,. For simplicity, we assume that | p’(s) |= 1 for all s € (-=1,1). Now
we set u(t) = p(t71(t)) for t € R. Then from the relation that ¢t = T(s) for
s € [-1,1], we have

d_dp .y dp_dp ds
ds ' dt * Mdt ds dt’

Then it follows that

Tutu®) = [ Quc? +F@)a= [ (& + () s
Here we set

Jp(T) = / (——+F(v(s )——-) s fgr eachTeV. (2.3)
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We claim that for each p € P, , there exists 7o € V such that J,(70) =
my = inf{J,(7) : 7 € V}. Let p € P such that m;, < co. Then there exists’
a sequence {7,} C V such that lim,—e Jp(7n) = m,. We may assume
without any loss of generality that 7,,(0) = 0 for all n > 1. We first see
that there exist 7o € V and a subsequence of {7,}(again denoted by {7.})
such that 7,(t) — 7o(t) for all t € [-1,1]. Let t be an arbitrary number
n (—1,1). We may suppose by extracting subsequences that 7,(t) — ¢, as
n — o0o. Since p(s) ¢ {v—,vy} for s € (—1,1), we have »

co = inf{F(p(s)):0<s<|t|}>0. (24)

Then
! drp
Jp(T0) 2| F(v(s))—gs—ds |>co| T(t)| for each n > 1.
o

Then since {J,(7,)} is bounded, we find that {r,,(t)} is also bounded. Thus
we obtain that | ¢ [< oco. Since 7, is monotone increasing, it follows that
Tn(8) is convergent for all s € [0,¢]. Since ¢ is arbitrary, we have by repeating
the argument above that there exists a subsequence of {7,} (denoted by
{rn}) such that lim 7,(s) exists for all s € [~1,1]. Here we put 7o(s) =
lim 7,(s) for all s € [-1,1]. Then 7y is monotone increasing. We next see

that 7 is strictly monotone. Suppose that 7g(a) = 70(b) for some a < b.
By (2.3), we have

1 dr b dr
> —2)1ds > —2)-14s.
J,,(T,,)_/_l(ds) ds_/a(ds ds

Then since lim, o Tn(a) = limp— oo Ta(b), the right hand side of the in-
equality above tends to infinity as n — oo. Since {J,(7,)} is bounded, this
is a contradiction. Therefore we have shown that 7 € V. Since 7, and 7
are monotone increasing, we also obtain that dr,/ds — dr/ds a.e. on R.

Then recalling that dr,,/ds > 0 for all n > 1, we obtain from Fatou’s lemma,
that

1 ds dtg 1 ds dr,
_ < lim; n
Jp(m0) = _/_1(—d'ro + F(p(s))_ds )ds < lim inf _/_1(—_d7'n + F(p(s) s )ds
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Thus we have shown that Jp(70) = liMp— o0 Jp(Tn) = mo. This implies that
for each o € V,

' ' ! dT do
/_ 1(J,_,(fro)) (0)(s)ds = / (—(5= d;) +F(p(s)))(d3)d320.

-1
Since o € V is arbitrary, it is easy to see that

(CZ:) = F(p(s)) a.e.on(-1,1). .(2,5)

Now we put u(t) = p(r~1(t)) for t € R. Then,

dp dT

l ilz—'l l2 F(u(t)) ae.onR.

Therefore, u(-) € I'y. Thus we have shown that the assertion holds. L

Lemma 2.2. Ifu € T satisfies Joo(u) = m, then u is a solution of (P).

Proof. Let f(t) € C}([0,1]), ¢ € HY(R) and a,b € R with a < b. We
define a function v € I’ by

_ 0 on (—o0,a)U (b,0),
v(t) = { F((t-a)(b-a))p onla,

Then since u + sv € T for s € [0,1], we find that
< J:,o(U),’U >=< uy + Au + g(u),v >_>.. 0.

From the definition of v, we have that

b
<o / (st + A+ g))F((t = a)/(b = a))dt >> 0.

Since ¢ € H3(R), f € CL([0,1]) and the intereval [a,b] are arbitrary , we
find that u is a solution of (P). |

Proof of Theorem 1. Let {u,} C T be a sequence such that
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limy o0 Joo(tn) = m. By Lemma 4.1, we may assume that {un} C To.
Since lim|jy|j— oo F(v) = 00 by (F1), we may assume that for some r> 0,

Jlua(t) |<7r foralln>1landteR (2:6)
Then since {u,} C I'g, we also have that there exists ro > 0 such that
| Uni(t) |[< o foralln>1 and(;',‘t €R (2.7)

Let B(d)s be open balls in L?(£2) centered v4 with radius d > 0. Let do > 0
such that B(dp)- N B(dp)+ = ¢. Since u, € Py, we have {u,(t):t € R} ¢
B(do)- U B(do)4. Then we may assume without any loss of generauty that

ua(0) ¢ B(do)- N B(do)+  foralln>1.

On the other hand, we have from the assumption that for each d > 0, there
exists €(d) > 0 such that |

F(v) > ¢(d) forallv¢ B(d); U B(d)+

Recalling that H}(Q) is compactly embedded in L?(Q), we obtain by (2.6)
and (2.7) that u, converges to u € C(—00,00 : L*(2)) uniformly on each
bounded interval I C R. It also follows that u,; converges to u; weakly
in L?(—00,00; L?()) and that u,(t) converges to u(t) weakly in H}(Q),
for a.e. t € R. Then we obtain from the upper semicontinuity of Jo, that
Joo(8) < limy, 00 Joo(Us). We next show that u € I'. That is we see that
limy—, 400 u(t) = v4 in L2(Q). Let 0 < d < dy. Then since F is greater than
€(d) ouside of B(d)_UB(d)+ and {J(us)} is bounded, we have that there
exists to such that '

un(t) € B(d)x+ foralln>1and |t|> t. (2.8)

Then it follows from (2.8) that lim,_, +, %(t) = v4 in L*(Q). Thus we have
shown that u € I'. Therefore Jo,(u) = m and by Lemma 4.2, u is a solution
of (P). This completes the proof. -1

Sketch of the proof of Theorem 2. The proof of Theorem 2 is long

~and complicated. Here we give a sketch of the proof. For each n > 1, we

out
nT

nw=G[

T
/IWPMﬁ+/ F(u)dt), (2.9)
0 —nT
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for u € L?(0,2nT; H}()). Then we can find a critical point u, of J, such
‘that '

d, = (1/nT)J,(un) = m, as n — o0

where m is the global minimal value of F. It then follows that

lim F(un(:i:nT)) = m.

It also follows that

Then it is not so difficult to see that there exists a subsequence {u,, }of

sup{|| un(t) ||: n > 1,-nT <t < nT} < .

{u,} and u € L%(R; H}(Q)) such that

Un, (1) — u(t) for all t € R.

Therefore u satisfies the assertion of Theorem 2.
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