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Abstract

The main object is the Laplace operator A on the
Sierpinski gasket which is a well-known example of fractal. It
will be defined as a limit of natural difference operators on the
Sierpinski pre-gaskets. Also, harmonic functions, Green function
and Dirichlet form are defined constructively and some ordinary
relations expected from these concepts are obtained including the
"Gauss-Green's formula", "maximum principle" for harmonic
functions and so on. Especially, the Dirichlet problem of
Poisson's equation is shown to be equivalent to an infinite
system of finite difference equations. And so in the simple
cases, for example Af = 0 or Af = 1, the solutions are

explicitly calculated.
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Introduction

The concept of fractals has been born as a new geometry of
nature. And so, discussing physical phenomena in nature,
diffusion, waves and so on, we should study not only the
geometry of fractals but also various kinds of analysis on
fractals. Especially, one of the most important objects must be
a natural definition of "Laplace operator"”.

In this direction, Kusuoka[l1l2] and Barlow-Perkins{4] have
constructed and investigated Brownian motion on the Sierpinski
gasket as a limit of simple random works on the pre-gaskets. In
their viewpoint, the Laplace operator is formulated as the
infinitesimal generator of Brownian motion.

On the other hand, in [10]}, we have found the direct and
natural definition of "Laplace operator" on the Sierpinski
gasket as a limit of difference operators on the pre-gaskets.
The present paper reviews [10] with an explicit formulation of
Green function and Dirichlet form which are not in [10].

In 81, we define the N-Sierpinski space and introduce a
sequence of difference operators. We then define harmonic
functions as the kernel of the difference operators and discuss
the Dirichlet problem of harmonic functions and also show the
"maximum principle”" for harmonic functions.

In §2, we construct the theory of Laplace operator, Green
function and Dirichlet form on the pre-Sierpinski spaces. And
in 8§83, we consider these concepts on the Sierpinski space as the

limits of those defined on the pre-Sierpinski spaces. We then
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discuss the Dirichlet problem of Poisson’s equation and see that

it is equivalent to an infinite system of finite difference

equations. This fact has been pointed out by Hata-Yamaguti{8]
and Yamaguti-Kigami(18] in the simplest case N = 2. We remark
that if N = 2, then our theory becomes a reconstruction of the

ordinary calculus on the interval [0,1].

Now we mention some related works. In [11], we have
established the theory as in the present paper on a class of
self-similar sets called p.c.f. self-similar sets, which is
almost the same concept as finitely ramified fractals and
includes nested fractals studied by Lindstr¢m{14]. An example
of p.c.f. self-similar sets is seen in Figure 1.

Shima[16] and Fukushima-Shima[6] have studied the
eigenvalue problem of the Laplace operator given in this paper.
They apply '"decimation method" and determine the eigenvalues and
eigen vectors explicitly. By their results, let denote by p(x)
the number of eigen values of -(Laplace operator), taking the

multiplicities into account, not exceed x, then if N > 2,

-dS/Z o —dS/Z
0 < l1lim p(x)x < lim p(x)x < o,
X X= oo

2(log N)/(log N+2) is called the spectral dimension.

where d

s

Barlow et al{1]1,[2],I3] have constructed and investigated

Brownian motion on the Sierpinski carpet which is not finitely
ramified fractal.

Lindstr¢m{14] has constructed Brownian motion on nested

fractals by a probabilistic method.

Kusuoka{13] has given an explicit expression of Dirichlet
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forms on a class of self-similar sets by using products of
random matrices, which correspond to the matrices given in
Theorem 1.7 in the present paper.

Finally we remark (1) The Laplace operator in this paper,

let denote it by A, is a little different from that in [10],

let denote it by A. The relation is given by A = gz. of

course, this difference is not essential.

(2) There are no proofs of theorems, propositions and lemmas in

the present paper. Readers may refer to {10] or [11].

-

Hata's tree-like Set(Hata[7])
Sierpinski Gasket

an example of p.c.f. self-similar set
Figure 1

§ 1. Sierpinski Spaces and Harmonic Functions

In this section, we first define the N-Sierpinski Space KN
as a self-similar set studied by Hutchinson{9] and Hata[7].

And next we introduce a sequence of difference operators Hm p’
)
whose limit will give the Laplace operator A on KN.
ey s N-1 . .
Definition 1.1 Let Py1Pgs " ,Py € R satisfying lpi—pji

= 1 for each pair (i,j) with i = j and let
_ 1 -
Fo(x) = z(x - p;) P;

for i =1,2,--,N. Then by the result in [9], there exists a
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unique compact set

KN

KN is called the

For example,

is the Sierpinski

kN ¢ &Nl with

B N N . N
= Fl(K )y U FZ(K y u--u FN(K ).
N-Sierpinski Space.
K2 = [0,1] i f = 0 and
- ] 1 pl - p2

Gasket found by Sierpinski[l17].
N

1, and K3

See Figure 1.

For ease of notation, we drop N of K hereafter.

We next give a sequence {Vm}m20 of finite sets in K
which is a natural process of approximation of K. Vm is
called pre-Sierpinski space.

Definition 1.2. For w = i1i2~-im € {1,2,~-,N}m, let
F.. = F. «F. o--oF. .
W i, i, i
Then we define Vm c K for m=>= 0 by
VO = {Pl’Pza")PN}
and, for m > 1, V= U F (V,)
m ge{1,2,--,N3® W O
Also we let V; = Vﬁ ~ VO and V, = n¥o Vm‘ Further, for p €
> . . N 7 - . . -
Vm, the nearest neighbors of p 1in \m, Vm’p is defined by
-m
Vv = - = 2 .
m,p {al Ip - 4l }
P
p: Ps
Vo Vi vV,

the pre-Sierpinski Spaces for N=3

Figure 2
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Remark. (1) K 1is the closure of Vi
( J 2(N-1) if p € V;
2) #(V ) =
m, P \ N-1 if poe Vg,
where #(-) denotes the number of the elements.
Notation. Let V and U be sets.
(1) 9(VvV) = {f] f:V > R }. We use (f)p or fp to denote the
value of f € (V) at p e V. For p €V, Xp € 2{V) is
defined by / 1 if q = p,
x (a) =
P \ 0 otherwise.
{(2) Let A:9(V) -» 2(U) be linear, then we use (A)pq or qu
to denote (qu)p for gqe€e V and p € U. Note that
S A f = (Af)_.
qev Pa a P
{3) C(K) = {f] £ 1is a continuous function on K. }
We now define the difference operators on Vm

Definition 1.3 (1) For p €
H f = 3
m,p q€V
(2) For p € VO and f € Q(Vm
D f = 3
m,p q€eV
By the definition of V ,
m,Pp
the arithmetic average of f(q)

teaches us how we can define ha

Definition 1.4 f € C(K) is

V; and f € Q(Vm), we define
f(aq) - 2(N-1)f(p).
m,p
}, we define
f(q) - (N-1)f(p).
m,p
if Hm,pf = 0, then f{p) is
b 7 .
s for q € \m,p' This fact
rmonic functions on K.

said to be harmonic if
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m, p
o

for all m =1 and all p € Vm

For ease of later discussion,

Hm,p using matrices. Let Xm:ﬂ(Vm

operator defined by, for each p a

~2(N-1)
B

(Xm)pq - 1 0

) - Q(V;) be a lin

U .

m’pg \ 0

Then, for p € V and f € Q(Vm),

And let Jm:Q(VO

(J

Hm,pf = (JmflVO

Lemma 1.5 Xm is invertible for
—(X—l 1

SHo <egh

for all p and gq € V; with p =

By Lemma 1.5, if f is harmon
_ -1
f|V° = —Xm Jmfl
m

Also, for each p € Q(VO) and each

-1 _
(—Xm+1Jm+1p)‘Vm -

By using the above facts, we have

Theorem 1.6 For given p € Q(VO)

harmonic function f with f]v =
0

we rewrite the definition of

) - Q(V;) be a linear
nd q € V;,
if P = q,
if q € Vm
otherwise.

3

1P

ear operator defined by
if q € Vm,p’
otherwise.

we see that

+ X flge)_.

m Vm P
each m > 1 and

< 0
Pa

q.

ic on K, then,

m = 1, we can show that

-1

, there exists a unique

P
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Further, for w € {1,2,--,N}m, we can express fIF (V by
W

0)
using a product of random matrices Ai’s as follows.
Theorem 1.7 For each i € {1,2,--,N}, let A. be an N x N

matrix defined by

i
e
1}
.

1 if j .
J 2/(N+2) if J =k =1 or Jj = k = 1,
1/(N+2) if %k = i, j =i and k = 3,
0 otherwise.

n

Then , for each w = ili,)'-im € {1,2,--,N}m,

4

£(F_(pqy)) f{py)

-

£(F,,(py))

-

i i
m “m-1 1
flpy)
Making use of Theorem 1.7, we can show the "maximum
principle” for harmonic functions.
Theorem 1.8 Let f be harmonic on K. If there exists p €
K—VO and a neighborhood of p, U, such that f{(p) = f(q) for

each g € U, then f 1is reduced to a constant on K.

In the rest of §1, we treat piecewise harmonic functions.
Definition 1.9 f € C(K) 1is said to be m-harmonic if, and

only if fon is harmonic for each w € {1,2,-‘,N}m.

As an immediate consequence of Theorem 1.6, we have

Theorem 1.10 For given p € Q(Vm), there exists a unique
m-harmonic function f with f!V = p. Further, for p € Vm,
m
let wg be the unique m-harmonic function satisfying w?lv =
m
X Then f = S p_y°
P pev_ PP
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8 2. Calculus on the pre-Sierpinski Space Vm

In this section, we introduce Laplace operator Am, Green
function Sm and Dirichlet form ém on Vm.

First we define a natural measure u on K. By the
results in Moran[15] and Hutchinson[9], the Hausdorff dimension
of K 1is 1log N/log 2 and 0 < h{K) < =, where h 1is the
(log N/log 2)-dimensional Hausdorff measure. Now let u =
h/h{K), then pu 1is a probabilistic measure on K satisfying

p(F -m

¥,

W(K)) = N

for each w e {1,2,--,N Further, a natural probabilistic

measure u_ on Vm is defined by
m
M = 2 ( I "4 d“)é )
™ pev YK P P
- f o™ (m*1) yr b Vo,
where ‘ I ¥_du = _
K P Uoonmh e poe v
Definition 2.1 (1) A linear operator 4 _:4(V ) - Q(V;) is
defined by, for each p € V;,

_ N m
(apf)y = z(N+2)7H f.

(2) g :Vm X Vm - R 1is defined by

m
m
Qﬁiﬂ (x21) if °
- p and q € V_,
+
gm(piq) = / N+2 m P9 m
0 otherwise.
Note that gm(p,q) = gm(q,p) as km is symmetric.

{(3) A linear operator G :Q(V;) - Q(V

m ) is defined by

m

,for p € Vm’

(Gpf), = ngm<p,q>f(q)um(dq).
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(4) A bilinear form & on Q(Vm) is defined by

ém(u,v) = pgvo(u(p)(—(ﬁ§§)mDm’pf)) - fvou(amv)dum.
m

Immediately, we have
Proposition 2.2 (1) Amon = -identity of Q(Vm).
(2) Amf = 0 if, and only if there exists a harmonic function f
on K with ?IV = f,
m

(3) 6m is non-negative definite and symmetric. And let gi €

Q(Vm) be defined by gi(q) = gm(p,q), then, for each f € Q(Vm)

with fIV = 0, we have
0
P _
6m(gm,f) = f(p).

(4) ém(u,u) = 0 if, and only if u is constant on Vm.

g and & are

By these resﬁlts, we can seé that A o o

m’

well-formulated. The following facts will be helpful in the

next section, where we will consider the limits of Anr En and

as m - o,
‘gm

Lemma 2.3 (1) gm+1|V <V = 8Bpo
m” ' m
(2) For each u € Q(Vm+1),
6m(ulvm,ulvm) < & ().

And the equality holds if, and only if there exists an

m-harmonic function W on K with ﬁIV = u.
m+1
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3.

8 K

Calculus on the Sierpinski Space

In this section, we are concerned with the Lap

A, Green function g and Dirichlet form & on
natural limits of those on _Vm.
First we introduce the Green function g on

Lemma 3.1 Let Em:K x K> R be defined by
EL(xy) = 2 gm(p,q)wg(X)wZ(y)-
P qevm
Then {'é"m}mzl converges uniformly on K as m -
this limit by g.
By Lemma 3.1, g is continuous on K. Also,
§m|mevm = g therefore by Lemma 2.3, g(x,y) = g
all x and vy € K.

Secondly, we introduce the Laplace operator

construct the solution of the Dirichlet problem o

equation by using the Green function g.

Definition 3.2 Let f € C(K). If there exists

satisfying that, as m = e,

maxol(Am(f|V ))p - Q(p)l -» 0,
m

peVm
then we define Af = ¢. The domain of A
Theorem 3.3 For given ¢ € C(K) and given »p
exists a unique f € 2 such that

lace operator

K defined as a

<

We denote

.

obviously
(v,x) = 0 for

A and

f Poisson’s

¢ € C(K)

is denoted by 2.

€ Q(VO), there
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(PD) f af = o,
 PD
\ fly = »o.
0
And this f 1is given by, for each x € K,
£ix) = 3 e wdtx) - [ glx,y)e(yinldy).
peVO PP K
Corollary 3.4 f is harmonic if, and only if Af = 0.
Remark. The Dirichlet problem of Poisson’s equation (PD) is

equivalent to the following infinite system of finite difference

equations, that is,

f flv = P
\ H g = ( N )mf wm d for m>= 0 and e v°
m,p- ~ \N+2 K pw H P m
We can solve this equations inductively from flV to
0
flV , flV ,+++. For example, in the case that N = 3, p = 0
1 2

and ¢ = 3/2, ;et d1:499,493 € Vm .and q € Vm+l be located as in

Figure 3. Then,

£(q) = g(2f(a;) + 2f(ay) + flay)) - 5™
Using this formula, the solution on Vz is given in Figure 3.
q1 2
—-2/25 —2/25
q
(;2 s =225 —1/10 —2/25 0
the solution of
af = 3/2
Figure 3
& \ f.v = 0
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Finally, we define a form & on K as the limit of ém on
vV _. By virtue of Lemma 2.3, for f € Q(V*), we can define
E(f,f) = 1lim ém(flv ,flv )
m- m m
if we allow <« as the value of limit. Now let
7 = {f] f € Q(V*) and &(f,f) < = 1},
then we see that, for each u and v € Q(V,),
&(u,v) = lim ém(ulV ,vIV )
m- e m m

is finite and well-defined.

By Proposition 2.2, & 1is non-negative symmetric form on Z.
Further, &(u,u) = 0 if, and only if u 1is constant on K.
Note that C(K) can be thought as a subset of 2(Vy,) through

the restriction map f - fIV because V, 1is dense in K.
*

Now we show "Gauss-Green's formula”". For f € 9, we define
the "normal derivative", (df)p at p € VO'

Lemma 3.5 For each f € 9 and each p € VO’

m
3 — NLZ = - J‘ 0
lim ( s ) Dy of Do, pf *+ [ wpatan.

m-e

We denote the above limit by (df)p.

Recalling the definition of ém, we can see

Theorem 3.6 2 ¢ ? and for each u and v € 92,
E(u,v) = 3 ulp)(dv)_ - I uavdy .
pGVO p K

Corollary 3.7(Gauss-Green’'s formula) For each u and v € 2,

(1) 2 (u(p)(dv) -v(p)(du)

p) = J’ (uav-vau)du.
peVO K
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(2) 2 |
peVo

dv) = IKAvdu.

At last we collect the results on Dirichlet form. See
Fukushima[5] for the definition and the applications of
Dirichlet forms.

Theorem 3.8 (1) 92 ¢ # ¢ C(K).
{2) (#,&) 1is a regular local Dirichlet space on LZ(K,u).
X

(3) For each x € K, let ¢ be defined by gx(y) = glx,y).

Then gx € ¥ and for each u € &,

s(gF,u) = u(x) - 3 u(p)wg(X).
pEVO
(4) (F,8) 1is the minimal closed extension of . (92,¢&).

(5) 2 is dense in C{(K).
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