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Let $R$ and $I=[0,1]$ be the space of the real line and the closed unit

interval respectively. For a space $X$ let $C(X)$ denote the space of all

continuous, real valued functions of $X$ equipped with the compact-open

topology, and C’(X) be the set of $aU$ bounded, continuous, real-valued

functions of $X$ .
In 1957, Kolmogorov [2] proved a superposition theorem for continious

functions in I“ giving a solution to Hilbert’s Problem 13 (Kolmogorov’s

superposition theorem) : For each integer $n\geq 2$ there are $2n+1$ many

functions $\varphi_{1},$
$\ldots,$

$\varphi_{2\tau\iota+1}\in C(I^{n})$ of the form

$\varphi_{\dot{*}}(x_{1}, x_{2}, \ldots, x_{n})=\sum_{j=1}^{n}\varphi i,j(ae_{i}),$ $(x_{1}, x_{2}, \ldots ae_{n})\in I^{n}$ ,

$\varphi:,j\in C(I),$ $1\leq i\leq 2n+1,1\leq j\leq n$ ,

such that each $f\in C(\Gamma)$ is representable as

$f(x)= \sum_{i=1}^{2n+1}g:(\varphi_{i}(x)),$ $x=(x_{1}, x_{2}, \ldots, x_{n})\in\Gamma$ ,
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where $g;\in C(R),$ $i=1,$ $\ldots 2n+1$ .

Definition ([8]). Let $X$ be a space and $\varphi;\in C(X),i=1,$
$\ldots,$

$k$ . Then,
$\{\varphi;\}^{k_{=1}}$: is said to be a basic family on $X$ if each $f\in C^{*}(X)$ is repre-

sentable in the form

$f(x)= \sum_{:=1}^{k}g_{i}(\varphi_{i}(x)),$ $x\in X$ ,

where $g:\in C(R),$ $i=1,$ $\ldots,$

$k$ .

In compact metric spaces, it is known that the existence of such $\varphi_{i}’ s$

essentially depends on dimension of a space. In fact, Ostrand [6] proved

that for every compact metric space $X$ with $\dim X\leq n(n\geq 1)$ there

are $2n+1$ many functions $\varphi_{1},$
$\ldots,$

$\varphi_{2n+1}\in C(X)$ such that $\{\varphi_{i}\}_{i=1}^{2n+1}$

is a basic family on $X$ . On the other hand, Sternfeld [7] proved the

converse of the Ostrand’s theorem: For a compact metric space $X$ and

$n\geq 1$ if there are $2n+1$ many functions $\varphi_{1},$
$\ldots,$

$\varphi_{2n+1}\in C(X)$ such

that $\{\varphi:\}_{i=1}^{2n+1}$ is a basic family on $X$ , then $\dim X\leq n$ . (We notice

that a simpler proof of the theorem is recently presented by Levin [3].)

Hence, a superposition of continuous functions characterizes dimension

of a compact metric space.

In non-compact spaces, a few results on superposition of continuous

functions are known. Demko [1] proved a superposition theorem for

bounded continuous functions on $R^{n}$ : For each integer $n\geq 2$ there are

$2n+1$ many functions $\varphi_{1},$
$\ldots,$

$\varphi_{2n+1}\in C(R^{n})$ such that $\{\varphi_{i}\}_{i=1}^{2n+1}$ is a

basic family on $R^{n}$ . This generalized the Kolmogorov’s superposition

theorem. In connection with the Demko’s theorem and the Ostrand’s

one, Sternfeld posed the following problem ([8, Problem 6.12]): Does the

Demko’s theorem extend to every n-dimensional separable metric space?
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In particular, does it extend to every n-dimensional, locally compact,

separable metric space?

We shall prove that the Demko’s theorem extends to n-dimensional,

locally compact, separable metric spaces, which gives a solution to the

second part of the Sternfeld’s problem. However, the general problem

of Sternfeld stilI remains open.

For a subset $A$ of a space $X$ we denote by Int $A$ and Bd $A$ the interior

and the boundary of $A$ in $X$ respectively. For a mapping $f$ of a space $X$

to a space $Y$ and a subspace $A$ of $X$ we denote by $f|A$ the restriction of $f$

to $A$ . By dimension we mean covering dimension of a space. (However,

since we shall consider only separable metric spaces, three fundamental

dimensions ind, $Ind$ and $\dim$ coincide.) We refer the reader to [5] for

dimension theory. We also refer the reader to [8] for the relations between

dimension and superposition of continuous functions in compact metric

spaces.

1. Results

Our main result is the following.

Theorem. Let $n$ be an integer with $n\geq 1$ and $X$ be a locally compact,

sepamble metmc space with $\dim X\leq n$ . Then, there are $2n+1$ functions
$\varphi_{1},$

$\ldots,$
$\varphi_{2n+1}\in C(X)$ such that $\{\varphi_{i}\}_{i=1}^{2n+1}$ is a basic family on $X$ .

As suggested in [8], the theorem is proved by combining an argument

due to Demko [1] with the Ostrand’s covering theorem.
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Ostrand’s covering theorem ([6] or see [5]). A metric space $X$ is

of dimension $\leq n$ if and only if for each open cover $\mathcal{U}$ of $X$ and each

integer $k\geq n+1$ there are $k$ many discrete families $\mathcal{V}_{1},$

$\ldots$ , $\mathcal{V}_{k}$ of open

sets $ofX$ such that the union of any $n+1$ of $\mathcal{V}$; ‘
$s$ is a cover $ofX$ and

refines $\mathcal{U}$ .

Now, let $X$ be a space, $\{\varphi;\}^{h_{=1}}:\subset C(X)$ be a basic family on $X$ and

$A$ a closed subspace of $X$ . It is clear that $\{\varphi;|A\}_{i=1}^{k}$ is a basic family on

$A$ . Hence, by our theorem and the Sternfeld’s theorem above, we have

the following characterization theorem.

Corollary. Let $n$ be an integer with $n\geq 1$ and $X$ be a locally compact,

separablet metric space. Then $\dim X\leq n$ if and only if there are $2n+1$

many functions $\varphi_{1},$ $\ldots$ , $\varphi_{2n+1}\in C(X)$ such that $\{\varphi:\}^{2n+1}:=\iota$ is a basic

family on $X$ .

2. Proof of the theorem.

We shall sketch an outline of the proof of Theorem. As mentioned

above, a framework of our proof is due to Demko [1]. Our main task is

to extend Lemmas 2 and 3 in [1] to an n-dimensional, locally compact,

separable metric space.

Let $X$ be a locally compact, separable, metric space with $\dim X\leq$

$n$ . Let $\{K_{m} : m\in\omega\}$ be a countable cover of $X$ by compact sets such

that $K_{0}=\emptyset$ and $K_{m}C$ Int $K_{m+1}$ for each $m$ . For each $m\in\omega$ we put

$L_{m}=K_{m}$ -Int $K_{m-1}$ ,



49

and

$U_{m}=\{\begin{array}{l}IntK_{1},ifm=0IntK_{m+1}-K_{m-1},ifm\geq 1\end{array}$

We notice that $t=m$ or $m+1$ if $U_{m}\cap U_{l}\neq\emptyset$ . By the Ostrand’s

covering theorem, for each integer $k\geq 1$ there are $2n+1$ many families
$C_{k}^{1},$

$\ldots,$
$C_{k}^{2n+1}$ of compact subsets of $X$ satisfying the following conditions.

(1) Each $C_{k}^{i}$ is discrete in $X$ .

(2) For each $k\geq 1$ and each $x \in X|\{C\in\bigcup_{i=1}^{2n+1}c_{k}^{:}$ : $x\in C\}|\geq n+1$ .

(3) mesh $c_{k}^{:}(= \sup\{diamC:C\in C_{k}^{:}\})<1/k$ for each $i$ and $k$ .

(4) $\bigcup_{i=1}^{2n+1}C_{k}^{i}$ refines $\{U_{m} : m=1,2, \ldots\}$ .

Lemma 1. There are $2n+1$ many functions $\varphi_{1},$
$\ldots,$

$\varphi_{2n+1}\in C(X)$ such

that

(5) for each $i$ and each $m\varphi_{i}(L_{m})\subset[m, m+2]$ , where $[a, b]$ is a closed

interval $\{t : a\leq t\leq b\}$ ,

(6) for each pair $N,$ $m\geq 1$ of integers there is $k\geq N$ such that

{ $\varphi_{i}(C):C\in c_{k}^{:}$ and $C\subset K_{m}$ } is mutually disjoint for each $i$ .

Lemma 2. Let $f\in C(X)$ with $suppf\subset\bigcup_{j=0}^{l}L_{m+j}$ and $\theta$ be a real

number with $n(n+1)^{-1}<\theta<1$ . Then, there are $2n+1$ many functions
$g_{1},$ $\ldots,$

$g_{2n+1}\in C(R)$ satisfying the following conditions.

(7) $||g:|| \leq\frac{1}{n+1}||f||$ for each $i$ .

(8) $|f(x)- \sum_{i=1}^{2n+1}g_{i}(\varphi_{i}(x))|<\theta||f||$ for each $x\in X$ .
(9) $suppg_{i}\subset[m-1,m+t+3]$ for each $i$ .

The proof of the following lemma is parallel to that of [1, Lemma 4].
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Lemuna 3. Let $f\in C(X)$ with $suppf\subset L_{m}\cup L_{m+1}$ and $\theta$ be a $eal$

number such that $n(n+1)^{-1}<\theta<1$ . Then there are $2n+1$ many

functions $g_{1},$ $\ldots,g_{2n+1}\in C(R)$ such that

(10) $f(x)= \sum_{=:1}^{2n+1}g_{i}(\varphi_{i}(x))$ for each $x\in X$ , and

(11) $||g:|[k, k+1]|| \leq\frac{||f||}{\theta(1-\theta)}\theta^{\frac{|m-k|}{s}}$ for each $k\geq 1$ .

Proof of the theorem. We shall show that the family $\{\varphi_{i}\}_{i=1}^{2n+1}$ con-

structed in Lemma 1 is a basic family on $X$ . To do this, let $f\in C^{*}(X)$ .
Let $U_{m}$ and $L_{m},$ $m=1,2,$ $\ldots$ , be subsets of $X$ described in the top

of this section. Let $\{h_{m} : m=1,2, \ldots\}$ be a locally finite partition

of unity subordinated to $\{U_{m} : m=1,2, \ldots\}$ . For each $m$ we put

$f_{m}(x)=f(x)h_{m}(x),$ $x\in X$ . Then the function $f_{m}$ is continuous, $supp$

$f_{m}\subset U_{m}\subset L_{m}\cup L_{m+1},$ $||f_{m}||\leq$ llfll and $f(x)= \sum_{m=1}^{\infty}f_{m}(x)$ . By

Lemma 3, for each $m$ there are $2n+1$ functions $g_{1}^{m},$ $\ldots,g_{2n+1}^{m}\in C(R)$

such that

(12) $f_{m}(x)= \sum_{:=1}^{2n+1}g_{:}^{m}(\varphi;(x))$ , for each $x\in X$ , and

(13) $\Vert g^{m}:\cdot|[k, k+1]\Vert\leq\frac{1}{\theta^{2}(1-\theta)}||f_{m}||\theta^{\frac{|m-k|}{s}}$ for each $k\geq 1$ .

By (13) and the Weierstrass M-test, $\sum_{m=1}^{\infty}g_{:}^{m}|[k, k+1]$ is continuous.

Hence, we put $g:(t)= \sum_{i=1}^{\infty}g_{i}^{m}(t),$ $t\in R$ . Then, $g$: is continuous and

$f(x)= \sum_{m=1}^{\infty}\sum_{:=1}^{2n+1}g^{m}:(\varphi:(x))=\sum_{i=1}^{2n+1}g_{i}(\varphi;(x))$ ,

for each $x\in X$ by (12). This completes the proof of the theorem.
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3. A remark.

Let $X$ be a $\sigma$-compact, metric space. If there are $2n+1$ many functions

$\varphi_{1},$
$\ldots,$

$\varphi_{2n+1}\in C(X)$ such that $\{\varphi;\}^{2_{=1}}$: is a basic family on $X$ , then

it follows from the Sternfeld’s theorem [7] that $\dim X\leq n$ . Thus, in

connection with our corollary in section l,we ask the following question,

which is a special case of the problem of Sternfeld [8, Problem 6.12].

Question. Let $X$ be an n-dimensional, $\sigma$-compact, metric space. Are

there $2n+1$ functions $\varphi_{1},$
$\ldots,$

$\varphi_{2n+1}\in C(X)$ such that $\{\varphi_{i}\}_{i=1}^{2n+1}$ is a basic

family on $X$?
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