DIMENSION AND SUPERPOSITION OF BOUNDED CONTINUOUS FUCTIONS ON LOCALLY COMPACT, SEPARABLE METRIC SPACES

YASUNAO HATTORI (服部秦直)

Dept. of Math. Faculty of Education, Yamaguchi University

Let **R** and I = [0,1] be the space of the real line and the closed unit interval respectively. For a space X let C(X) denote the space of all continuous, real valued functions of X equipped with the compact-open topology, and $C^*(X)$ be the set of all bounded, continuous, real-valued functions of X.

In 1957, Kolmogorov [2] proved a superposition theorem for continious functions in \mathbf{I}^n giving a solution to Hilbert's Problem 13 (Kolmogorov's superposition theorem) : For each integer $n \ge 2$ there are 2n + 1 many functions $\varphi_1, ..., \varphi_{2n+1} \in C(\mathbf{I}^n)$ of the form

$$arphi_i(m{x}_1,m{x}_2,...,m{x}_n) = \sum_{j=1}^n arphi_{i,j}(m{x}_j), \ (m{x}_1,m{x}_2,\ldots,m{x}_n) \in \mathbf{I}^n, \ arphi_{i,j} \in C(\mathbf{I}), \ 1 \leq i \leq 2n+1, \ 1 \leq j \leq n,$$

such that each $f \in C(\mathbf{I}^n)$ is representable as

$$f(oldsymbol{x}) = \sum_{i=1}^{2n+1} g_i(arphi_i(oldsymbol{x})), \hspace{0.2cm} oldsymbol{x} = (oldsymbol{x}_1, oldsymbol{x}_2, ..., oldsymbol{x}_n) \in \mathbf{I}^n,$$

where $g_i \in C(\mathbf{R}), i = 1, ..., 2n + 1$.

Definition ([8]). Let X be a space and $\varphi_i \in C(X), i = 1, ..., k$. Then, $\{\varphi_i\}_{i=1}^k$ is said to be a *basic family* on X if each $f \in C^*(X)$ is representable in the form

$$f(\boldsymbol{x}) = \sum_{i=1}^{\boldsymbol{k}} g_i(\varphi_i(\boldsymbol{x})), \boldsymbol{x} \in X,$$

where $g_i \in C(\mathbf{R}), i = 1, ..., k$.

In compact metric spaces, it is known that the existence of such φ_i 's essentially depends on dimension of a space. In fact, Ostrand [6] proved that for every compact metric space X with dim $X \leq n$ $(n \geq 1)$ there are 2n+1 many functions $\varphi_1, ..., \varphi_{2n+1} \in C(X)$ such that $\{\varphi_i\}_{i=1}^{2n+1}$ is a basic family on X. On the other hand, Sternfeld [7] proved the converse of the Ostrand's theorem: For a compact metric space X and $n \geq 1$ if there are 2n + 1 many functions $\varphi_1, ..., \varphi_{2n+1} \in C(X)$ such that $\{\varphi_i\}_{i=1}^{2n+1}$ is a basic family on X, then dim $X \leq n$. (We notice that a simpler proof of the theorem is recently presented by Levin [3].) Hence, a superposition of continuous functions characterizes dimension of a compact metric space.

In non-compact spaces, a few results on superposition of continuous functions are known. Demko [1] proved a superposition theorem for bounded continuous functions on \mathbf{R}^n : For each integer $n \ge 2$ there are 2n + 1 many functions $\varphi_1, ..., \varphi_{2n+1} \in C(\mathbf{R}^n)$ such that $\{\varphi_i\}_{i=1}^{2n+1}$ is a basic family on \mathbf{R}^n . This generalized the Kolmogorov's superposition theorem. In connection with the Demko's theorem and the Ostrand's one, Sternfeld posed the following problem ([8, Problem 6.12]): Does the Demko's theorem extend to every n-dimensional separable metric space? In particular, does it extend to every n-dimensional, locally compact, separable metric space?

We shall prove that the Demko's theorem extends to n-dimensional, locally compact, separable metric spaces, which gives a solution to the second part of the Sternfeld's problem. However, the general problem of Sternfeld still remains open.

For a subset A of a space X we denote by Int A and Bd A the interior and the boundary of A in X respectively. For a mapping f of a space X to a space Y and a subspace A of X we denote by f|A the restriction of fto A. By dimension we mean covering dimension of a space. (However, since we shall consider only separable metric spaces, three fundamental dimensions ind, Ind and dim coincide.) We refer the reader to [5] for dimension theory. We also refer the reader to [8] for the relations between dimension and superposition of continuous functions in compact metric spaces.

1. Results

Our main result is the following.

Theorem. Let n be an integer with $n \ge 1$ and X be a locally compact, separable metric space with dim $X \le n$. Then, there are 2n + 1 functions $\varphi_1, ..., \varphi_{2n+1} \in C(X)$ such that $\{\varphi_i\}_{i=1}^{2n+1}$ is a basic family on X.

As suggested in [8], the theorem is proved by combining an argument due to Demko [1] with the Ostrand's covering theorem. Ostrand's covering theorem ([6] or see [5]). A metric space X is of dimension $\leq n$ if and only if for each open cover \mathcal{U} of X and each integer $k \geq n+1$ there are k many discrete families $\mathcal{V}_1, \ldots, \mathcal{V}_k$ of open sets of X such that the union of any n+1 of \mathcal{V}_i 's is a cover of X and refines \mathcal{U} .

Now, let X be a space, $\{\varphi_i\}_{i=1}^k \subset C(X)$ be a basic family on X and A a closed subspace of X. It is clear that $\{\varphi_i|A\}_{i=1}^k$ is a basic family on A. Hence, by our theorem and the Sternfeld's theorem above, we have the following characterization theorem.

Corollary. Let n be an integer with $n \ge 1$ and X be a locally compact, separablet metric space. Then dim $X \le n$ if and only if there are 2n + 1many functions $\varphi_1, \ldots, \varphi_{2n+1} \in C(X)$ such that $\{\varphi_i\}_{i=1}^{2n+1}$ is a basic family on X.

2. Proof of the theorem.

We shall sketch an outline of the proof of Theorem. As mentioned above, a framework of our proof is due to Demko [1]. Our main task is to extend Lemmas 2 and 3 in [1] to an n-dimensional, locally compact, separable metric space.

Let X be a locally compact, separable, metric space with dim $X \leq$ n. Let $\{K_m : m \in \omega\}$ be a countable cover of X by compact sets such that $K_0 = \emptyset$ and $K_m \subset$ Int K_{m+1} for each m. For each $m \in \omega$ we put $L_m = K_m - \operatorname{Int} K_{m-1}$, and

$$U_m = \begin{cases} \text{Int } K_1, & \text{if } m = 0, \\ \text{Int } K_{m+1} - K_{m-1}, & \text{if } m \ge 1. \end{cases}$$

We notice that $\ell = m$ or m + 1 if $U_m \cap U_\ell \neq \emptyset$. By the Ostrand's covering theorem, for each integer $k \ge 1$ there are 2n + 1 many families $\mathcal{C}_k^1, \ldots, \mathcal{C}_k^{2n+1}$ of compact subsets of X satisfying the following conditions.

- (1) Each \mathcal{C}_k^i is discrete in X.
- (2) For each $k \ge 1$ and each $x \in X \left| \left\{ C \in \bigcup_{i=1}^{2n+1} \mathcal{C}_k^i : x \in C \right\} \right| \ge n+1.$ (3) mesh $\mathcal{C}_k^i (= \sup\{\operatorname{diam} C : C \in \mathcal{C}_k^i\}) < 1/k$ for each i and k. (4) $\bigcup_{i=1}^{2n+1} \mathcal{C}_k^i$ refines $\{U_m : m = 1, 2, ...\}.$

Lemma 1. There are 2n+1 many functions $\varphi_1, ..., \varphi_{2n+1} \in C(X)$ such that

(5) for each i and each $m \varphi_i(L_m) \subset [m, m+2]$, where [a, b] is a closed interval $\{t : a \leq t \leq b\}$,

(6) for each pair $N, m \ge 1$ of integers there is $k \ge N$ such that $\{\varphi_i(C) : C \in \mathcal{C}_k^i \text{ and } C \subset K_m\}$ is mutually disjoint for each *i*.

Lemma 2. Let $f \in C(X)$ with supp $f \subset \bigcup_{j=0}^{l} L_{m+j}$ and θ be a real number with $n(n+1)^{-1} < \theta < 1$. Then, there are 2n+1 many functions $g_1, ..., g_{2n+1} \in C(\mathbf{R})$ satisfying the following conditions.

(7) $||g_i|| \leq \frac{1}{n+1} ||f||$ for each *i*. (8) $\left| f(x) - \sum_{i=1}^{2n+1} g_i(\varphi_i(x)) \right| < \theta ||f||$ for each $x \in X$. (9) $\sup g_i \subset [m-1, m+\ell+3]$ for each *i*.

The proof of the following lemma is parallel to that of [1, Lemma 4].

Lemma 3. Let $f \in C(X)$ with supp $f \subset L_m \cup L_{m+1}$ and θ be a real number such that $n(n+1)^{-1} < \theta < 1$. Then there are 2n+1 many functions $g_1, ..., g_{2n+1} \in C(\mathbf{R})$ such that

(10) $f(x) = \sum_{i=1}^{2n+1} g_i(\varphi_i(x))$ for each $x \in X$, and (11) $||g_i|[k, k+1]|| \le \frac{||f||}{\theta(1-\theta)} \theta^{\frac{|m-k|}{3}}$ for each $k \ge 1$.

Proof of the theorem. We shall show that the family $\{\varphi_i\}_{i=1}^{2n+1}$ constructed in Lemma 1 is a basic family on X. To do this, let $f \in C^*(X)$. Let U_m and L_m , m = 1, 2, ..., be subsets of X described in the top of this section. Let $\{h_m : m = 1, 2, ...\}$ be a locally finite partition of unity subordinated to $\{U_m : m = 1, 2, ...\}$. For each m we put $f_m(x) = f(x)h_m(x), x \in X$. Then the function f_m is continuous, supp $f_m \subset U_m \subset L_m \cup L_{m+1}, ||f_m|| \leq ||f||$ and $f(x) = \sum_{m=1}^{\infty} f_m(x)$. By Lemma 3, for each m there are 2n + 1 functions $g_1^m, ..., g_{2n+1}^m \in C(\mathbb{R})$ such that

(12)
$$f_m(x) = \sum_{i=1}^{2n+1} g_i^m(\varphi_i(x))$$
, for each $x \in X$, and
(13) $\left\|g_i^m\right| [k, k+1] \right\| \le \frac{1}{\theta^2(1-\theta)} \left\|f_m\right\| \theta^{\frac{|m-k|}{3}}$ for each $k \ge 1$

By (13) and the Weierstrass M-test, $\sum_{m=1}^{\infty} g_i^m | [k, k+1]$ is continuous. Hence, we put $g_i(t) = \sum_{i=1}^{\infty} g_i^m(t), t \in \mathbf{R}$. Then, g_i is continuous and

$$f(\boldsymbol{x}) = \sum_{m=1}^{\infty} \sum_{i=1}^{2n+1} g_i^m(\varphi_i(\boldsymbol{x})) = \sum_{i=1}^{2n+1} g_i(\varphi_i(\boldsymbol{x})),$$

for each $x \in X$ by (12). This completes the proof of the theorem.

3. A remark.

Let X be a σ -compact, metric space. If there are 2n+1 many functions $\varphi_1, ..., \varphi_{2n+1} \in C(X)$ such that $\{\varphi_i\}_{i=1}^{2n+1}$ is a basic family on X, then it follows from the Sternfeld's theorem [7] that dim $X \leq n$. Thus, in connection with our corollary in section 1, we ask the following question, which is a special case of the problem of Sternfeld [8, Problem 6.12].

Question. Let X be an n-dimensional, σ -compact, metric space. Are there 2n+1 functions $\varphi_1, ..., \varphi_{2n+1} \in C(X)$ such that $\{\varphi_i\}_{i=1}^{2n+1}$ is a basic family on X?

References

- S. Demko, A superposition theorem for bounded continuous functions, Proc. Amer. Math. Soc. 66 (1977) 75-78.
- [2] A. N. Kolmogorov, On the representation of continuous functions of many variables by superpositions of continuous functions of one variable and addition, Dokl. Acad. Nauk SSSR 114 (1957) 953-956 (= Amer. Math. Soc. Transl. Ser. 2, 28 (1963) 55-61).
- [3] M. Levin, Dimension and superposition of continuous functions, Israel J. Math. 70 (1990) 205-218.
- [4] G. G. Lorentz, Approximation of Functions (Holt, Rinehart and Winston, New York, 1966).

- [5] J. Nagata, Modern Dimension Theory, revised edition (Heldermann Verlag, Berlin, 1983).
- [6] P. A. Ostrand, Dimension of metric spaces and Hilbert's problem 13, Bull. Amer. Math. Soc. 71 (1965) 619-622.
- [7] Y. Sternfeld, Dimension, superposition of functions and separation of points, in compact metric spaces, Israel J. Math. 50 (1985) 13-53.
- [8] Y. Sternfeld, Hilbert's 13th problem and dimension, in: J. Lindenstrauss and V. D. Millman eds., Geometric Aspects of Functional Analysis, Springer Lecture Notes in Math. 1376 (1989) 1-49.