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1 Introduction
The compressible Euler equation for an isentropic gas in R™ is given by

Pt+v'(pﬁ)=0,

1.1 S o,

(1) (p))e + V- (pi ® i+ p) =0,
with the equation of state

(1.2) p=dp,

where density p, velocity @ and pressure p are functions of £ € R™ and ¢ > 0,
while @ > 0 and v > 1 are given constants.

For one dimensional case ( n=1 ), the Cauchy problem for (1.1) with (1.2)
has been studied by many authors. Nishida [10] established the existence of
global weak solutions, for the first time, for the case v = 1 with arbitrary
initial data, and Nishida and Smoller [11] for 4 > 1 but with small initial
data, both using Glimm’s method. DiPerna [3] extended the latter result to
the case of large initial data, using the theory of compensated compactness
under the restriction v = 1 + 2/(2m + 1), m > 2 integers. Ding et al
[1], [2] removed this restriction and established the existence of global weak
solutions for 1 < v < 5/3.



On the other hand, little is known for the case n > 2. No global solutions
have been known to exist, but only local classical solutions ( [5], [6], [8] and
[9]).

In this paper, we will present global weak solutions first for the case
n > 2. We will do this, however, only for the case of spherically symmetry
with v+ = 1. As will be seen below, our proof does not work without these
restrictions.

Thus, we look for solutions of the form

'z

(13) p=pltlel), 7= ult el
Then, denoting r = |z|, (1.1) becomes

1 n—1
(L4) Pt g (7 pw) = 0,

plu +uu, ) +p, =0,

This equation has a singularity at r=0. To avoid the difficulty caused by
this singularity, we simply deal with the boundary value problem for (1.4)
in the domain 1 < r < oo ( the exterior of a sphere) with the boundary
condition u(t,1) = 0, which is identical, under the assumption (1.3), to the
usual boundary condition 7 - % = 0 for (1.1) where 7 is the unit normal to
the boundary.

Put 3 = r"~! p. Then we get from (1.4)

o+ (pu) =0,

1.5 25 2(n — 1)
(1.5) v + wu, 4 — TP _ dy(n-1)p

52‘71'(71—1)(’7—1) rn. 1‘(“—1)(“]—2) .

Introduce the Lagrangean mass coordinates

(1.6) | r=t, €= /1 B(t,r) dr .

Then { > 0 as long as p > 0 for 7 > 1, and (1.5) is reformulated as
fr + Pue =0,

1.7 a’yp a’y(n~1)p"""

(1.7) 4 2P _ aiy(n—1)p

Cptrt=2 T pnp(n=1)(r-2)




Put v = 1/p and note that the inverse transformation to (1.6) is given
by
¢
(1.8) t=7,r=1 +/ v(¢,t)dC.
0
Then after changing 7 to t and £ to x, (1.7) is written as

v — uz = 0,

(1.9) v + (az) 1 ay(n—1p'7

oY . C p-1(-1) oo p(n-1)0-2)

where 1 is now defined by r = 1 + [ v(¢,¢)d(.
Now we restrict ourseves to the case 4 = 1. Then (1.7) becomes

v — Uy = 0,

2
(1.10) w4 <%) _ K

1+ fyo(t,¢)d¢”

where K = a*(n — 1).
Let us consider the initial boundary value problrm for (1.10) in
t > 0,z > 0 with the following boundary and initial conditions.

(1.11) u(0,z) = uo(z), v(0,z) = wvo(z), for z >0,
(1.12) u(t,0) = 0, fort > 0.

Let BV(R,) denote the space of functions of bounded variation on
R, = (0,00). Our main result is as follows.

Theorem ( Main Result ) Suppose that ug(z), vo(z) € BV(R,) , and that
vo(z) 2 89 > 0 for all z > 0 with some positive constant 6g. Then (1.10),
(1.11) and (1.12) have a global weak solution which belongs to the class

u, v € L=(0,T; BV(Ry)) N Lip((0,T); Lbo(Ry)

loc
for any T > 0.

The definition of the weak solution will be given in section 4. This the-
orem can be proved by following Nishida’s argument [10] based on Glimm’s



method. Indeed this can be seen from the following two simple observations.
First, the homogeneous equation corresponding to (1.10),

v — u, = 0,
2
(1.13) u 4 (%) — 0,

is just the same equation as solved by Nishida [10] using Glimm’s method
both on the Cauchy problem and the initial boundary value problem. Note
that if 4 > 1, the homogeneous equation for (1.9) has a variable coefficient
and hence does not coincide with the one dimensional Euler equation.

The second observation is that, as long as v > 0, the right hand side of
(1.10),

K
1+ fgo(t,Q)d¢’

is monotone decreasing in x and has an a priori estimate

(1.14)

K

1+ Joo(t, Q)d¢
independent of v. The one dimensional inhomogeneous Euler equation has
been studied in [12]. However, the conditions imposed therein on the inho-
mogeneous term are not applicable to our (1.14).

These observations allow us to use Nishida’s argument [10] to construct
global weak solutions to (1.10), (1.11) and (1.12). More precisely, we will
first construct, in section 2, approximate solutions of the form

(1.15) T.V.(

) < K,

{solution of Riemann problem for (1.13)} + {nonhomogeneous term} x t.

This is the main idea of [12]. Then in section 3, we will estimate the total
variation of the approximate solutions. Thanks to (1.15), this can be done
with a slight modification of Nishida’s argument [10]. In section 4, we will
show that there exists a subsequence of approximate solutions which con-
vereges strongly in L},_ for any finite time interval. Finally, for the sake of
completeness, we give in Appendix a detailed proof of two lemmas used in
section 3. These lemmas are due to Nishida [10], but their proofs are not
found in the literature.



2 The Difference Scheme

To construct the approximate solutions, we shall use the difference scheme
developed in [10]. For I,k > 0, define

Y={(n)m); n=1,2,3,""m:1’3157"'}7
21) A= I [{rk} x ((m=11L (m+1)))] ,

(m,n)eYy

where [/h will be determined later. Choose a point { anm } € A randomly,
and write a,, = (nh,cym). For n = 0, we put cp,, = ml. We denote
approximate solutions by u' and v'. Mesh lengths [ and A are chosen so that
I/h > a/(infv'), for any given T > 0. We shall show later that there exists
a 6 > 0 such that inf o' > 6§ > 0.

For0 <t < h,ml <z < (m+2)l, m: odd, we define

d(t,z) = uh(t,a) + U'(t,a)t,

(22) Mtz) = ob(t,2),

where u'o and v(', are the solutions of

v — Uy = 0,

23 ws () <

with initial data

_ | uo(ml), z < (m+1)l,
24 uS(O,w) - { uo((m + 2)1), > (m + 1)1,
( . ) 1 0 . Uo(ml), Tz < (m +1)l’
(0, ) = vo((m +2)I), = > (m+ 1),

and I p

i .
1+ 3,2 vo((27 —1)I)-21

For 0 <t < h, 0 <z < I, we define v/ and ot by (2.2) where u} and v}
are the solutions of (2.3) with initial boundary data

(2.6) uh(0,2) = uo(), v(0,2) = w(l), = > 0,



2.7) | u(t,0) = 0, t > 0,

and

(2.8) U't,z) = K.

Suppose that u' and v' are defined for 0 < ¢t < nh. Fornh <t < (n+1)h,
ml <z < (m+2)l, m: odd, we define

u(t,z) = ul(t,z) + U'(t,z)- (t — nh),

(29) W(tz) = ui(t,),

where u), and v} are the solutions of (2.3) with initial data (t=nh)

u(nh —0,chm), =< (m+1),

I =
(2 10) R 'u,l(nh —0,¢am+2), > (m+ 1),
' Unh. o) — v'(nh —0,c0m), < (m+1)l,
vo(nh, ) = v'(nh —0,cpme2), > (m+1)],
and %
(2.11) Ult,z) = T

1+ ijll vi(nh = 0,cp25-1) - 21 .

For nh <t < (n+1)h, 0 < z < I, we define u' and v' as (2.9) where u
and v}, are the solutions of (2.3) with initial (t=nh) boundary data

(2.12)uf(nh,z) = u'(nh —0,cn1), vh(nh,z) = v'(nh —0,cn), z >0,
(2.13) u(t,0) = 0, t > nh,

and U'(t,z) is as (2.8).

3 Bounds for Approximate Solutions

System (1.6) is hyperbolic provided v > 0, with the characteristic roots
and Riemann invariants given by

A= i r=u + alogv,
v

-

(3.1)
, S8 =u—alogv.

el

/j:



It is well-known, [10], that all shock wave curves in the (r,s)-plane have the
same figure. ( See Figure 1.) The 1-shock wave curve S, starting from
(7o, S0) can be expressed in the form

(3.2) s — s = f(r —m) forr < 1o,
and the 2-shock wave curve S; can also be expressed in the form
(3.3) r—1o= f(s = 8) for s < s,

where
0< =) <1, £'() <0, Jim_['(a) = 1.
/N

s (a=1)

Ry

(7’0, 30)

Ra

S

Figure.l



The l-rarefaction wave curve R; can be expressed in the form
(3.4) § — 8 =0 forr > rp,
and the corresponding expression for the 2-rarefaction ‘Wave curve R, is
(3.5) ‘ r—1ro =20 fors > s

Now we must prepare some lemmas to estimate Riemann invariants.
First, let us consider (2.3) with following initial data

59 @)= { 2w = {2 250

T Ur,

Lemma 3.1 Let u and v are the solutions of (2.3) and (3.6). Then,

r(t,z) = r(u(t,z),v(t,z)) = ro=min (r(u,,v,),r(u,v)),
(3.7) { s(t,z) = s (u(t,z),v(t,z)) < so=maz (s(ur,v,), s(u,v1)) .

Next consider (2.3) in t > 0, £ > 0 with following initial and boundary
conditions

(3.8) u(0,z) = uf, v(0,2) = v}, forz >0,

(3.9) u(t,0) = 0, fort > 0.

Lemma 3.2 Let u and v are the solutions of (2.3), (3.8) and (3.9). Then,

r(t,z) = r (u(t,z),s(t, ) > r(uaf,vg'),
(&m){SUwﬁzdwtﬂwaDSnwwvww&whwwaﬂﬂ-

The above two lemmas were proved in [10]. Using these two lemmas, we can
get the following lemma.

Lemma 3.3 Let u' and v' be the approzimate solutions defined in section 2
and put ro = min r(uo(z),ve(z)) and so = maz s(uo(x),vo(z)). Then, for
0<t<T,

(3.11) {“@ﬂzrfmw»wwgzm

sl(t,z) = s (v!(t,x),s'(t,z)) < maz (—ro,s0) + KT



Let us consider Riemann problem (2.3) and (3.6). Denote by Ar
(resp As) the absolute value of the variation of the Riemann invariant r
(resp s) in the first (resp second) schock wave.

Definition 3.4 We denote
P(uj, v, uryv,) = Ar + As.
Then we have the following lemma.
Lemma 3.5
(3.12) P(uy,v1,uz,v3) < Puy,vy,us,v) + P(uy, vy, us,vs),

where uy, uz and uz are arbitrary constants and vy, v, and vz are arbitrary
positive costants.

We shall prove Lemma 3.5 in the Appendix A.

Denote by ig* the straight line segments joining the points (0, (n £ 1)k)
and a;,. Let F(i3%) be the absolute value of the variation of the Riemann
invariants for all shocks on #7*. Then we also have the following Lemma.

Lemma 3.6
(3.13) F(z'(,‘*”) < F(i57).

This lemma 3.6 will be proved in the Appendix B.

We denote

Zy = {1=0,140,31—0,---,(2m — 1) =0, (2m — 1) +0,---},
Zy = {21, 41, 6l---2ml,---}.

Let Z(ny = Z1 U Z3 U {cam} and line up the elements z,; of Z(n) so that
Zni < Znip1. ( Weregard (2m — 1)l — 0 < (2m — 1)l + 0 for m : integer. )

Let

F(nh —0,u!,9") = %F(ig‘

+ > PU(nh=0,2,:), v (nk = 0,2,;),u (nh — 0, 2, 541),v' (nh — 0, 2, 141)),
Zn,i€Z(p)



1._,. - 2N /
F(nh+0,u’,vl) = -Z'F(7'8+)+ Z P‘(ul(anm)’vl(anm)’ul(anm+2,‘)avl(amm+2))r
) m:odd

Using Lemma 3.5 and Lemma 3.6, we get
(3.14) F((n+1)h+0,u',v") < F((n+1)h —0,d',4").
The following equality is obvious from thé definition of F, u' and '
(3.15) F((n+1)h —0,ul,v)) = F(nh+0,u',v").
We also get

F((n+1)h—0,u,v") = F((n+1)h—0,u},v})
+ 3 P(u((n+ 1)k — 0,ml—0),v'(n + 1)k — 0,ml — 0),
m:odd .
u'(n+ 1)k — 0,ml+0),v'((n + 1)k — 0,ml + 0)).
Lemma 3.7

P(u!((n + 1)k — 0,ml — 0),v'((n + 1)k — 0,ml — 0),
(3.16) u'((n 4+ 1)k — 0,ml+ 0),v'((n + 1)k — 0,ml 4+ 0)
< 2h{ U'(nh,(m — 1)1) — U'(nh,(m+1)l) }, m : odd.

Proof. From the definition,

u((n+ 1)k —0,ml—0) = ul(nk,ml) + U'(nh,(m —1)I)- &,
' ((n+ 1Dk —0,ml+0) = uh(nh,ml) + U'(nk,(m +1)I)-h,
v ((n+ 1Dk —=0,ml —0) = v'((n+1)h—=0,ml+0) = v(nh,ml).

Therefore we get

r'((n+ 1)k —0,ml —0) — r'((n + 1)k —0,ml +0)
(3.17) = s'((n+1)h—0,ml —0) — s'((n+1)h —0,ml+0) |
= h x {U(nh,(m = 1)) = U'(nh,(m+1))) } > 0

Thus the following inequality holds.

(318)Ar, As < h{U'(nh, (m —1)l) — U'(nh,(m +1)))} < Ar + As.



From (3.18), we get (3.16). o

Using Lemma 3.7, we get

F((n+1)h = 0,u’,v) — F((n+1)h - 0,u,v)

(3.19) < on 3 {U'(nh,(m - 1)) — U'(nh,(m+1))) } < 2Kh
m:odd

From (3.14), (3.15) and (3.19), we get
(3.20) F((n+1)h+0,u,v") < F(nh+0,u,v") + 2Kh
Thus we obtain the following lemma.

Lemma 3.8
(321) F(nh+0,4',v") < F(40,u',v") + 2KT = F, + 2KT

Denote by G(7) the absolute value of the sum of negative variation of r! and
s! for t = 7. Then for nh < 7 < (n + 1)k, we get

G(t) < G(nh) +2h Y { U'(nh, (m — 1)1) — U'(nh, (m + 1)) }
(322) m:odd
< G(nh) + 2Kh.

Lemma 3.9

(3.23) G(nh) < 2F(nh 4 0,u’,0").

Proof. Denote by s ( resp ér ) the absolute value of the Riemann invariant
s ( resp r ) in the first ( resp second ) shock wave. By (3.2) and (3.3),
Ar + 8s < 2Ar on the first shock and 6r + As < 2As on the second shock.
So from (3.17), (3.18) and above arguements, we get (3.23). 0

From (3.23), (3.24) and (3.25), for any 7 (nh < 7 < (n+1)h ),

G(1) < G(nh) 4+ 2Kh < 2F(nh+0,u',v") + 2Kh

(3.24) < 2F, + 6KT = M,.

Now we can establish a priori estimates of u' and . Denote by T.V.u
the total variation of u.

]
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Theorem 3.10 For any T > 0, the variation of u' and v' is bounded uni-
formly for h and {a.}. Their upper bound and lower bound, especially the
positive lower bound of v', are also uniformly bounded.

Proof. Denote by T.V*+.u ( resp T.V~.u ) the absolute value of the positive
( resp negative ) variation of u. Put f' = 2u! = r' + s!. Then 0 < f!(¢,0) <
Kh. Without loss of generality, we assume that ug(z) and vo(z) are constant
outside a bounded interval. Let

(3.25) | fl(t,00) = rl(t,00) + s'(t,00) = M,.
Then from the definition,
Fi(@t,0) + T.VH.f' — T.V-.fl = fl(t,00).
Since T.V~.f!(t,-) < G(t) for any t, (3.24) yields
TV = fl(t,00) + T.V-.f' — f(t,0) < My + M,.

Thus we get
(3.26) TV.fl = TV2d < 2M;, + M,.

From (3.26), we get

Therefore we get
(3.27) lw| < M.

Using Lemma 3.2, we get
2alogv' =1 — & > rg — (maz(—ro, s0) + KT).

Thus we get

ro — (maz(—rg,80) + KT) 1
2a - M5.

(3.28) o' > exp
From the definition,

rl(t,0) + T.Vre! — T.V-orl = ¢l(t,00).
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Using Lemma 3.3 and (3.24),
(3.29) T.Vtorl= —r(0) + T.V—.r! 4 r(t,00) < —1p + My + r(2, 00).
In view of (3.27) and (3.29), there exists a positive constant Mg such that

(3.30) v < M,

Theorem 3.11 For any interval [z;, 2] C [0.00), we get

(3.31) /:2 | ul(t?’x) - u'(tl,x)} + 'vl(tz, z) — vl(tl,m) | dz

1

S M-(|tg —ta|+h), 0L Ut < T,
where M depends on T, =, and x4, but not on | and h.
Proof. Without loss of generality, we assume that
nh<ti<(n+lh<---<(n+kh<ty;<(n+k+1)h
Let

/:2 | ul(ty, z) — ul(ty, ) |dz

1

<L+IL+ - lu'(ts, z) — u'(n + k)b 4+ 0,2)| + |u'(t1,2) — w'((n+ 1)k —0,2)|dz

1

where

T2 k
I, = le Y 1u((n+ i)k +0,2) — u!((n+1i)h —0,2) |dz

i=1

o k=1
L= [ Y 1w +i+1)h=0,2) — w!((n+i)h+0,2) |ds

1 §=1
and t ;
e — 14y
k=[]
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Denote by 1,5 the characteristic function of the interval [, B].
We regard T.V._jcz<i = T.V.o<z<i- Then,

5L
k+1

T2
Z Z / T-V-2m1<z<(2m+2)lul((n + i)h - 0,33) . 1[2ml,(2m+2)1] dz,

i=0 m:integer ¥ 1

< ([tz—;—t—l] + 2) . ( sup T.V.ul(t,-)) - 21.

IA

0<t<T
L
k za
< Z Z/ (T-V'(2m—1)l<z<(2m+l)lu£)((n +i+1)h-0,2)- Li@m-1)1,em+1) + Kh) dz,
i=0 m Y%
k
<Y 2-TVay((n+i+1)h—0,-) + K(z3 — z1)h,
i=0
ty — 1 !
< ([ ] + 1) . (21 sup T.V.ug(t,:) + K(z2 — :z:l)h) .
h 0<t<T

The remaining terms can be evaluated similarly. For
w2 1
/ | v'(ts,2) — v!(ts, @) |dz,
)

we also have a similar estimate. Combining these results gives (3.31). O

4 Convergence of The Approximate Solution

Let h, = T/n and h,/l, = § < 6= 1/Ms. Consider the sequence
(ul», o) (n = 1,2,---). Then from Theorem 3.9 and Theorem 3.10, there
exists a subsequence which converges in L}, to functions (u,v) uniformly for
t € [0,T]. Now we shall prove that u(x,t) and v(x,t) are the weak solutions
of initial boundary value problem (1.6), (1.7) and (1.8) provided {a,m} is
suitably chosen, namely, they satisfy the integral identity

T foo a? K
(4.1) J /000 ubt (7) S B TN P
+/0 uo(2)#(0,z)dz = 0,

(4.2) /OT /Ooo vy — uh, dzdt + /Ooo vo(z)¥(0,z)dz = 0,
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for any smooth functions ¢ and 3 with compact support in the region .

{(t,z): 0<t<T,0<z< oo} and ¢(¢,0) = 0. Now we know that u} and

v} are weak solutions in each time strip nh < t < (n + 1)k so that for each

test function ¢ satisfying ¢(¢,0) = 0,

(n+1)h

h A”u%r+(§)¢z+uku@-¢wﬂt
(4.3) + /oo u!'(nh + 0,z)p(nh, z)
_ 0°° @((n + 1)k = 0,2)¢((n + 1)k, z)dz = 0

If we sum this over n, we get

ATﬂmu%r+(§>¢I+U%nﬂ-¢@dr+ﬂm“““”“mx)

(4.4) N .o
- _ Z'/o {u’(’kh+0,a¢) - ul(kh—O,:L')} - $(kh,z)dz

where N=T/h. When N — oo, the right-hand side of the above equality
tends to 0 for almost every {a,m} € A ( see [4] ). It is immediate to see that

/Ooo u'(0,2)4(0,z)de — /Ooo uo(z)$(0,z)de (N — oo).

Lemma 4.1
K
1+ [§v(¢,)d¢

locally uniformly for t and z.

(4.5) Ult,z) — (N — o0).

Proof. Let nh <t < (n+ 1)k, z € ((m —1)I,(m + 1)), m : odd. Then

- |
T 2

(4.6) | ok, )¢ = 3 vtnh, )| SN0 e
0 st

On the other hand

(4.7) L ot,0dc - [Toit,0de (N = o0).
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locally uniformly for t and x.
We get

'/: (4, ¢)dC — /: ol (nh, ¢)dc|

(4.8) < A > T Vomotyice<man? (mhy +) « Ligno1)t,ime1)d¢
m:odd

< sup T.Vo'-2L.
0<t<T

From (4.6), (4.7) and (4.8), we get (4.5). O

For each test function v, v' also satisfies,

// (' — ') da:dt+/ 10, 2)(0, z)de

(4.9) = — Z/o {v (kh 4+ 0,z) — v'(kh —O,:z:)} - p(kl, z)dz
5, =
where N1 .
L = Z _/(n+ ) Ul(t,(])(t - nh)'(,b(t,())dt
n=0 /nh
and
E ) /("“) {U'(t,ml+0) = U'(t,ml — 0)} (t — nh)p(t, ml)dt.

n=0 m:odd nh

The first term of the the right-hand side of equality (4.9) tends to 0 for
almost every {a.m} € A ( see [4]). It is also immediate to see that

/O°° Y0, 2)9(0,)dz — / w(2)$(0,2)de (N — oo).
We shall show that I;, [, —» 0 as N — oo.

' N-1  (nt1)h
L<ldle Y [ U, 0)(t — k)t

n=0"v"

N-1 .(nt1)h

SNl 3o [ K(t = nb)at
n=0 "M

<) % |loo ha®T.

(4.10)
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(n+1)h
/ {U(t,ml +0) = U'(t,ml — 0)} (t=nh)p(t,mI)dt < K || ¥ ||oo 1.

miodd Y *

Thus we get
N-1

(4.11) L <l ¥l D Kh* < K || |leo AT
n=0

From above arguments, we can conclude that u and v satisfy (4.1) and
(4.2). Thus we obtain our main result.

Theorem 4.2 ( Main Result ) Suppose that uo(z), vo(z) € BV(Ry) , and
that vo(z) > 6o > 0 for all z > 0 with some positive constant &,. Then (1.10),
(1.11) and (1.12) have a global weak solution which belongs to the class

u, v € L“(O_, T; BV (Ry)) N Lip([0, T}; Li.(R+))

for any T > 0.
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Appendix

A  Proof of Lemma 3.5

Let g(z) = —f(—=z), and put
P(uy,vi,u,v2) = Ay + Asy

P(uz,v2,u3,v3) = Ary + As,
P(uy,vy,u3,v3) = Arg + Asy
Then it is obvious that

Ary + g(As3) + Ass + g(Ars)
< Ary + Arz + Asy + Asg + +g(Ar1) + g(Ars) + g(Asy) + g(Ass)

We notice that f” < 0 and hence
< Ary + Arg + Asy + Asy +g(Ary + Arg) + g(Asy + Asy).

Let z + g(z) = h(z), Arz = p', Asz = ¢, Ar; + Ar; = p and As; + Asy = gq.
Then

(A1) h(p) + h(¢) < h(p) + h(9)-

Put K = h(p') + h(¢'). We shall estimate p + ¢ from below under the

restriction (A.1). To do this, as h is monotone increasing function, we must
estimate p + ¢ from below under the restriction

(A.2) h(p) + h(q) = K.

We do this by using Lagrange’s method of indeterminate coefficients.
Put G(p,¢,A) = p + ¢ + A(h(p) + h(q) — K). Then

Gy, =1+ Ah(p) =0,G, =1+ Al(q) = 0.
Because h"(z) > 0, we get p = ¢. So p + ¢ attains its extremum at p = q.

We can show that when p = ¢, p+ ¢ is minimum under the restriction (A2).
Therefore

h(p)=h(4)=l—2{=h_(l_’lj2‘_ﬁ_(ﬂ2h<%q_')'
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Hence it follows that

p+q
= >
P q = 5
Thus we get
(A3) p+qg>2p +4.

which proves Lemma 3.5.

B Proof of Lemma 3.6

To prove Lemma 3.6, we must check the following 12 cases:
1) e1n < I,

(1) S; crosses 3™,

(2) Rz crosses g™,

(3) no wave cross i~
2) Cin Z 17

(1) S; and S; cross 5™,

(2) Rz and S cross 15~

(3) Sz and R, cross ig~,

(4) Ry and R; cross i3~

(5) S1 crosses ip

(6) Ry crosses i3,

(7) Sz crosses ig~,

(8) R, crosses i5™,

(9) no wave cross i~
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Put 171 = r(a1n-1), sT71 = s(arnoa)y T

= rl((n e l)h + 0,0), and 6-"_1 = Ul(aln_l).

Put 27 = r!/(n — 1)h +0,20) and 52V = s'((n — 1)h +0,21).

Put A = (r*~1,s7"1), B = (ri7},s2" 1) and B’ = (r2~V,s27V).

Put C = (r}7' + Kh,s}™ 1+ Kh),

( resp = (ri‘l' +6 _lh,s’j_“ll-i- On_1h,) )if c1n < 1 (resp c1n 2 1).

If R, crosses igt, F(ig*) = 0 < F(ig7), so that it is sufficient to consider the
cases when S, crosses ig7.

n—-1 _ n-1

t

(n+ 1)k

it
nh an1 = (nh, cln)
l
9
Sa
(n—=1)h T
Figure.2
1) Cin < l.

(1) S; crosses i~ ( Figure 2 ). Denote by I ( resp II ) the halfspace
{(r,s)l7+s <0} (resp {(r,s)|r+s>0}.)
i)C € 1.
In this case S, crosses i5*. Denote by V(PQ) the absolute value of the
total variation of r and s by the line segment PQ. From Figure.3,

F(izt) = V(A'C) < V(A'C") = V(AB) = F(:3°).



r+s=0 11

Figure.3

i) C e II.

In this case R, crosses igT. Then

(B.1) F(i7) > F(i3*) = 0.

(2) R, crosses 1§~
In this case B € II so that R, crosses i3t. Then

(B.2) F(ix™) = F(ir*) = 0.

(3) no wave crosses 15"

In this case (r}~1,s371) is on the line 7 + s = 0. Hence C € II.

obvious that (B.3) also holds.

It is

21
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2) Cin Z l

(1) Sz and S; cross 75~. ( Figure.4 )

[

(n+1)h

it |
nh an1 = (Cnhnh)
g
Sz ’ Sl
21
(n—1)h

Figure.4



I r+s5=0 II

AII
Al

— .n-=1/ n-1/
r+.s—r+ +s+

Figure.5

i)C e I.

From Figure.5,

F(ig*) = V(A'C) < V(A'C") = V(A"B') = V(AB') = F(it-).

ii) C € II implies that
R; crosses igt. So we get (B2).

NV

23



24

(2) R, and S} cross 15~

A’
I

S1
C

5’2 AII

r+s=0

— =1/
r+s—-rJr

Figure.6
i)C e I

From Figure.6,

F@) =V(A'C) < V(A'D) = V(A"E) = V(A"B")
< V(BB") = V(BB') = I(ig*)

i) C € I1.
Thus R, crosses i3, and we get (B2).
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(3) S; and R, cross 15~.

r+s=0

17

r4s =171+ 87+ 260 1k

F igure.7

Put G = (7‘3"_‘1 + bno1hy s+ 6,_1h) and I = (r(asn), ' (a1n))-
Then H is on the line CG.
i) H € I
Irom Figure.7,

F(iZY) = V(A'H) < V(A"G) < V(AB) = F(i).

iil) H € II, so
R, crosses 13*, and we get (B2).
(4) Rz and R; cross ty”.

In this case, R, crosses igt. So we get (B3).
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(5) S crosses ig™.

r4+s=0

I

S1 S2

C

B’ E
r4s= ri‘l' + 31‘1' + 26,1k

Figure.8

i)C e L

From Figure.8,

F(itt) = V(A'C) = V(AE) = V(AD)

< V(AB) = F(i3~

Thus we get (B1).
i) C € II.

R, crosses igt. So we get (B2).



(6) Ry crosses ig~.

In this case, it is obvious that F(i§t) = 0. Hence we get (B3).

Cases (7), (8) and (9) are almost the same as cases (1), (2) and (3) in 1).
Thus, we obtain Lemma 3.6.
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