Abstract Besov Space Approach to the Nonstationary Navier-Stokes Equations

小 林 孝 行 村 松 壽延 Takayuki KOBAYASHI and Tosinobu MURAMATU Institute of Math., University of Tsukuba, Tsukuba, Japan

0. Introduction

The Navier-Stokes equations arising from viscous incompressible fluid dynamics has been investigated in depth. We consider the initial value problem of the Navier-Stokes equations

	$u_{t}(x,t) + (u,\nabla)u(x,t) - \Delta u(x,t) = f(x,t) - \nabla p(x,t)$	in $\Omega \times (0,T)$,
(I)	$\nabla \cdot \mathbf{u}(\mathbf{x}, \mathbf{t}) = 0$	in $\Omega \times (0,T)$,
	u(x,t) = 0	on $\Gamma \times (0,T)$,
	u(x,0) = a(x)	in Ω.

Here and hereafter $u = \{u_j(x,t)\}_{j=1}^n$ is the velocity field, p = p(x,t)the pressure, $a = \{a_j(x)\}_{j=1}^n$ the initial velocity, $f = \{f_j(x,t)\}_{j=1}^n$ the external force, $u_t = \frac{\partial u}{\partial t}$, $\nabla = \{\frac{\partial}{\partial x_j}\}_{j=1}^n$, and Δ is the Laplacian. uand p are unknown, while f and a are given functions.

We always assume that Ω is a bounded domain in \mathbb{R}^n with $n \ge 2$, a half space of \mathbb{R}^n with $n \ge 2$, or an exterior domain in \mathbb{R}^n with $n \ge 3$, and that the boundary Γ of Ω is smooth.

Fujita and Kato [4], [12] and Sobolevskii [21] established an approach to this Problem by means of fractional powers and semigroups of operators. Later, Giga and Miyakawa [9] developed a good L_r -theory which is a generalization of L_2 -theory of Fujita and Kato. They did not assumed that the initial velocity is regular, which was assumed

before in [4], [10], [23] etc.

However, we found that by making use of abstrct Besov spaces (see § 2 for their definition) in stead of fractional powers we obtain better results. The advantages of this approach are the following: (i) We can prove an estimate of semigroups in abstract Besov spaces (see Lemma 3.1), which is better than the well-known estimate:

 $\|A^{\alpha}T(t)x\| \leq Ct^{-\alpha+\beta}\|A^{\beta}x\| \quad \text{for } x \in \mathfrak{D}(A^{\beta}), t > 0, \alpha > \beta.$ (ii) The nonlinear term $P_{r}(u, \nabla)u$ can be easily estimated (see Lemma 5.1). (iii) We need only know that the negative of the Stokes operator $-A_{r}$ generates an analytic semigroup on X_{r} , and we need not prove the existence of the bounded inverse of A_{r} which is proved only when Ω is a bounded domain, so that we can treat an exterior domain and a half space at the same time. (iv) We need only use the real interpolation theory, hence need not make use of the estimate $\|A_{r}^{it}\|_{\Omega(X_{r})} \leq C_{g}e^{\varepsilon|t|}$ for any $t \in \mathbb{R}$, which is hard to be proven (cf.[6], [7], [8]).

To eliminate the term ∇p we make use of $P_r^{},$ a continuous operator from $\mathbb{L}_r^{}(\Omega)$ to

$$\begin{split} X_r &:= \text{ the closure of the space } \{u \in (C_0^\infty(\Omega))^n; \ \nabla \cdot u = 0\} \text{ in } \mathbb{L}_r(\Omega) \\ \text{which is identical on } X_r \text{ and } P_r \nabla p = 0. (\text{The existence of } P_r \text{ is proved} \\ \text{in [2], [5], [16].) The Stokes operator } A_r \text{ is defined by } A_r = -P_r \Delta \\ \text{with domain } \mathcal{D}(A_r) = X_r \cap \{u \in W_r^2(\Omega); u = 0 \text{ on } \Gamma\}, \text{ then } -A_r \text{ generates} \\ \text{an analytic semigroup } \{T(t); t \ge 0\} \text{ in } X_r ([2], [3], [6], [7]). \text{ Here} \\ W_r^m(\Omega) = \{W_r^m(\Omega)\}^n \text{ is the Sobolev space and } \mathbb{L}_r(\Omega) = \{L_r(\Omega)\}^n. \end{split}$$

Applying P_r to (I), we get an abstract ordinary differential equation in X_r :

(I)
$$u_{+} + A_{-}u = F(u,u) + P_{-}f + t > 0, u(0) = a,$$

where $F(u,v) = -P_r(u,v)v$, whose integral form is the equation

$$(II) u(t) = T(t)a + \int_0^t T(t-s) \{F(u(s), u(s)) + P_r f(s)\} ds, t > 0.$$

To solve (I) or (I), we extend T(t) and F(u,v) by continuity (see Lemma 3.1 and Lemma 5.1).

Our main results are the following:

Theorem A. If $a \in D^{\gamma}_{\infty-}(A_r)$, $P_r f(s) \in C_{1-\gamma-\delta}((0,T]; D^{-\delta}_{\infty}(A_r))$, $\frac{n}{2r} - \frac{1}{2} \leq \gamma < 1$, $0 < \gamma+\delta < 1$, and $\delta < 1$, then there exist a positive number T_0 and a non-negative number $\alpha > \gamma$ such that there is a unique solution $u \in C([0,T_0]; D^{\gamma}_{\infty-}(A_r)) \cap C_{\alpha-\gamma}((0,T_0]; D^{\alpha}_1(A_r))$ of (\mathbb{I}) .

Any solution u of (II) satisfying

 $u \in C([0,T_0]; D^{\gamma}_{\infty-}(A_r)) \cap C_{\sigma-\gamma}((0,T_0], D^{\sigma}_{\infty}(A_r))$ for some $\sigma > \gamma^+$ is unique. Here $\gamma^+ = \max\{\gamma, 0\}, D^{\alpha}_q(A)$ denotes the abstract Besov space defined in § 2, C(I;Y) denotes the space of Y-valued continuous functions on an interval I, and

 $C_{\gamma}((0,T];Y) := \{u \in C((0,T];Y); \|u(t)\|_{Y} = o(t^{-\gamma}) \text{ as } t \to 0\}.$

Theorem B. Under the assumptions of Theorem A, let u be a solution of (II) belonging to $C((0,T];D_1^{\sigma}(A_r))$ for some non-negative number σ with $\sigma > \gamma$. Then

(i) $u \in C^{1-\alpha-\delta}((0,T];D_1^{\alpha}(A_r))$ for any $0 \le \alpha < 1 - \delta$.

(ii) Furthermore, if $P_r f \in C^{\nu}((0,T];X_r)$, $\nu > 0$, then u is a solution of (I), namely, u(t) is differentiable in 0 < t < T, u(t) $\in \mathcal{Q}(A_r)$ for 0 < t < T and satisfies (I).

Here $C^{\mu}(I;Y)$ denotes the space of Y-valued (locally) $\mu\text{-H\"older}$ continuous functions on I.

Theorem C. Under the assumptions of Theorem A, assume that $P_r f \in$

 $\{C^{\infty}(\overline{\Omega}\times(0,T])\}^{n}$. Then, any solution u of (II) in $C((0,T];D_{1}^{\sigma}(A_{r}))$ for some non-negative number σ with $\sigma > \gamma$ belongs to $\{C^{\infty}(\overline{\Omega}\times(0,T])\}^{n}$, where $C^{\infty}(\Omega)$ denotes the space of infinitely differentiable functions on an open set Ω .

These results are improvements of those in Fujita and Kato [4], and in Giga and Miyakawa [9]. For instance,

Result in Fujita and Kato [4]. Let Ω be a bounded domain with smooth boundary in \mathbb{R}^n and let $1/4 < \gamma < 1/2$. Assume that a $\in \mathcal{D}(A_2^{\gamma})$ and that $\|P_r f(t)\|_2 = o(t^{-1+\gamma})$ as $t \to 0$. Then there exists a unique solution u of (II) such that (i) $u \in C([0,T_*];X_2)$, (ii) $u \in C((0,T_*];\mathcal{D}(A_2^{\alpha}))$ for any $3/4 < \alpha < \gamma + 1/2$, and that (iii) $\|A_2^{\alpha}u(t)\|_2 = o(t^{\gamma-\alpha})$ as $t \to 0$, where we simply denote the norm of $\mathbb{L}_r(\Omega)$ by $\|\cdot\|_r$. Here T_* is a positive number depending on γ , α , $\|A_2^{\gamma}a\|_2$ and $\sup_{0 \le s \le T} s^{1-\gamma} \|P_2 f(s)\|_2$.

Result in Giga and Miyakawa [9]. Let Ω be a bounded domain with smooth boundary in \mathbb{R}^n , and let $n/2r - 1/2 \leq \gamma < 1$, $-\gamma < \delta < 1 - |\gamma|$ and $\delta \geq 0$. Assume that a $\in \mathcal{D}(A_r^{\gamma})$ and $\|A_r^{-\delta}P_rf(t)\|_r$ is continuous on (0,T) and satisfies $\|A_r^{-\delta}P_rf(t)\|_r = o(t^{\gamma+\delta-1})$ as $t \to 0$. Then for any $\gamma < \alpha < 1-\delta$ there is a solution $u \in C([0,T_*];\mathcal{D}(A_r^{\gamma})) \cap C_{\alpha-\gamma}((0,T_*];\mathcal{D}(A_r^{\alpha}))$ of (ID). Here T_{*} depends on γ , δ , α , a and P_rf .

The conditions required to the initial velocity and the external force in Theorem A are weaker than those in [9] and more precise information about solutions are contained in this theorem.

Notations. We will use the following notations: For an open set Ω in R^n and $1\,\le\,p\,<\,\infty$ we define

 $\|f\|_{L_{p}(\Omega)} := \{ \int_{\Omega} |f(x)|^{p} dx \}^{1/p}, \|f\|_{L_{p}^{*}(\Omega)} := \{ \int_{\Omega} |f(x)|^{p} |x|^{-n} dx \}^{1/p},$

and for $p = \infty$ make the usual modification. $L_p(\Omega)$ (or $L_p^*(\Omega)$) denotes the space of all measurable functions f with $\|f\|_{L_p(\Omega)} < \infty$ (or $\|f\|_{L_p^*(\Omega)} < \infty$). For a Banach space X we denote by $L_p(\Omega; X)$ (or $L_p^*(\Omega; X)$) the set of all strongly measurable X-valued functions with $\|f(x)\|_X \in L_p(\Omega)$ (or $L_p^*(\Omega)$). We also consider the spaces with the exponent ∞ -. Namely,

$$\begin{split} & L_{\infty-}(\Omega;X) \ (\ = \ L_{\infty-}^{*}(\Omega;X) \) := \ \{ \ f \ \in \ L_{\infty}(\Omega;X); \ \|f(x)\|_{X} \to 0 \ \text{as} \ |x| \to \infty \ \}, \\ & \text{and its norm is that of } L_{\infty}. \ \text{We define } p \ < \ \infty- \ < \ \infty \ \text{for real number } p. \end{split}$$

$$\begin{split} & \mathbb{W}_p^m(\Omega) := \; \{ \mathbf{f} \in \mathbf{L}_p(\Omega) \; ; \; \partial^{\alpha} \mathbf{f} \; \in \; \mathbf{L}_p(\Omega) \; \text{for any multi-index with} \; |\alpha| \leq m \} \, , \\ & \text{where } \partial^{\alpha} \mathbf{f} \; \text{denotes the weak derivative of } \mathbf{f} \, , \; |\alpha| \; = \; \alpha_1 + \alpha_2 + \cdots + \alpha_n \, , \\ & \text{and its norm is given by } \| \mathbf{f} \|_{\mathbf{W}_p^m(\Omega)} \; := \; \sum_{|\alpha| \leq m} \| \partial^{\alpha} \mathbf{f} \|_{\mathbf{L}_p(\Omega)} \, . \end{split}$$

 $\mathfrak{L}(X,Y)$ denotes the space of all continuous linear operators from X to Y, $\mathfrak{L}(X) := \mathfrak{L}(X,X)$, and $\mathfrak{D}(A)$ denotes the domain of an operator A. 1. Besov spaces

Here we describe the definition and some properties of Besov spaces, which are one of our main tools.

When $\sigma > 1$, by expressing $\sigma = k + \theta$, $k \in \mathbb{N}$, $0 < \theta \leq 1$, we define

(1.6)
$$\|f\|_{B_{p,q}^{\sigma}(\Omega)} := \|f\|_{B_{p,q}^{\sigma}(\Omega)} + \|f\|_{W_{p}^{m}(\Omega)}.$$

It is easy to see that $B_{p,q}^{\sigma}(\Omega)$ are all Banach spaces.

Lemma 1. Let $1 \le p$, $q \le \infty$, $1 \le \xi$, $\eta \le \infty$, $\lambda = n/p - n/q$, $\sigma \in \mathbb{R}$, $\tau \in \mathbb{R}$, and let Ω be an open set with the cone property. (i) (Imbedding). If $p \le q$ and if $\tau > \sigma + \lambda$, then $B_{p,\xi}^{\tau}(\Omega) \subset B_{q,\eta}^{\sigma}(\Omega)$, $B_{p,\xi}^{\tau}(\Omega) \subset W_{q}^{\sigma}(\Omega)$, $W_{p}^{\tau}(\Omega) \subset B_{q,\eta}^{\sigma}(\Omega)$, $W_{p}^{\tau}(\Omega) \subset W_{q}^{\sigma}(\Omega)$. We also have (1.7) $B_{p,\xi}^{\sigma+\lambda}(\Omega) \subset B_{q,\eta}^{\sigma}(\Omega)$ if $\xi \le \eta$, (1.8) $B_{p,\xi}^{\sigma+\lambda}(\Omega) \subset W_{q}^{\sigma}(\Omega)$ if $\xi \le q < \infty$ or $\xi = 1$, (1.9) $W_{p}^{\sigma+\lambda}(\Omega) \subset B_{q,\eta}^{\sigma}(\Omega)$ if $1 , <math>p \le \eta$, (1.10) $W_{p}^{\sigma+\lambda}(\Omega) \subset W_{q}^{\sigma}(\Omega)$ if 1 . $(ii) (Real Interporation). Let <math>0 < \theta < 1$, $\mu = (1-\theta)\sigma + \theta\tau$. Then (1.11) $(B_{p,\xi}^{\sigma}(\Omega), B_{p,\eta}^{\tau}(\Omega))_{\theta,q} = (W_{p}^{\sigma}(\Omega), W_{p}^{\tau}(\Omega))_{\theta,q} = B_{p,q}^{\mu}(\Omega)$. Here $(,)_{\theta,q}$ denotes the real interpolation space.

(iii) (Product in Besov Spaces). Let γ , σ , $\tau > 0$ and assume that $\gamma \leq \min\{\sigma,\tau,\sigma+\tau-n/r\}$. Then, for any $u \in B_{r,q}^{\sigma}(\Omega)$ and $v \in B_{r,q}^{\tau}(\Omega)$ we have (1.12) $\|uv\|_{\substack{\gamma \\ B_{r,q}}} \leq C \|u\|_{\substack{\sigma \\ B_{r,q}}} \cdot \|v\|_{\substack{\beta \\ B_{r,q}}}$.

Proof. cf. Muramatu [17],[18],[19].

2. Abstract Besov Spaces

Abstract Besov spaces have been introduced and precisely investigated by Komatsu [13],[14],[15] for a non-negative operator A in a Banach space X. Our definition of the space $D_p^{\sigma}(A)$ is slightly different from that of Komatsu, which make it possible to treat systematically all the spaces $D_p^{\sigma}(A)$, $-\infty < \sigma < \infty$. Throughout this section and the next section by ||x|| and ||T|| we denote the norm of X and $\mathcal{L}(X)$, respectively.

Definition 2. A closed linear operator A in X is called non-negative if there is a number $c_0 \ge 0$ such that $(-\infty, -c_0)$ is contained in the resolvent set of A and if

(2.1)
$$M:= \sup\{\|\lambda(\lambda+A)^{-1}\|; \lambda > c_0\} < \infty.$$

For simplicity we assume always that $c_0 < 1$ in this paper.

For a non-negative operator A, real number σ and $1 \le p \le \infty$ (including $p = \infty$ -) we define the space $D_p^{\sigma}(A)$ by the completion of the space { $x \in X$; $\lambda^{\sigma} \lambda^{\ell} A^{n}(\lambda + A)^{-\ell - n} x \in L_p^{*}([1,\infty);X)$ } with respect to the norm $\|\cdot\|_{D_p^{\sigma}(A)}$, where n and ℓ are the least non-negative integers such

that $n > \sigma > -\ell$, and

(2.2)
$$\|x\|_{D_{p}^{\sigma}(A)} := \|x\|_{p}^{\sigma} + \|(1+A)^{-\ell}x\|_{p}^{\sigma}$$

(2.3)
$$|\mathbf{x}|_{\mathbf{D}_{\mathbf{p}}^{\sigma}(\mathbf{A})} := \|\boldsymbol{\lambda}^{\sigma}\boldsymbol{\lambda}^{\boldsymbol{\ell}}\mathbf{A}^{\mathbf{n}}(\boldsymbol{\lambda}+\mathbf{A})^{-\boldsymbol{\ell}-\mathbf{n}}\mathbf{x}\|_{\mathbf{L}_{\mathbf{p}}^{\ast}([1,\infty);\mathbf{X})}$$

For the case $p = \infty$, $\sigma \leq 0$ we have to make some modifications.

Lemma 2.1. Let A be a non-negative operator in X and let k and m be positive integers. Then for any x in $\overline{\mathcal{D}(A)}$ and $\kappa \ge 1$ we have (2.4) $x = c_{m,k} \int_{\kappa}^{\infty} \lambda^{k-1} A^{m} (\lambda + A)^{-k-m} x \, d\lambda + Q_{m,k} (A(\kappa + A)^{-1}) \kappa^{k} (\kappa + A)^{-k} x,$ where $Q_{m,k}(t) = \sum_{j=0}^{m-1} {\binom{k+j-1}{j}} t^{j}$, and $c_{m,k} = m {\binom{m+k-1}{m}}.$

Proof. This follows from the identity (2.5) $\frac{d}{d\mu} \{Q_{m,k}(A(\mu+A)^{-1})\mu^{k}(\mu+A)^{-k}\} = c_{m,k}\mu^{k-1}A^{m}(\mu+A)^{-k-m}$ and the mean ergodic theorem (cf. K.Yosida [24] p.217).

Using this lemma, arguments analogous to those in Komatsu [13], [14],[15], (see also [20]). yield the following

Lemma 2.2. (Basic Properties of Abstract Besov Spaces). Let σ be a real number, m and k integers, and let $1 \le p \le \infty$.

(i) Assume that k and m are non-negative and $-k < \sigma < m$. Then $x \in X$ belongs to $D_p^{\sigma}(A)$ if and only if $\lambda^{\sigma} \lambda^k A^m (\lambda + A)^{-k-m} x \in L_p^*([1,\infty);X)$, and the norm of $D_p^{\sigma}(A)$ is equivalent to the norm

(2.6)
$$\|\lambda^{\sigma}\lambda^{k}A^{m}(\lambda+A)^{-k-m}x\| + \|(1+A)^{-k}x\|.$$

 $L_{p}^{*}([1,\infty);X)$

In particular, if $0 < \sigma < m$, then

$$D_{p}^{\sigma}(A) = \{ x \in X; \lambda^{\sigma} A^{m}(\lambda + A)^{-m} x \in L_{p}^{*}([1, \infty); X) \},\$$

and its norm is equivalent with

(2.7)
$$\|\lambda^{\sigma}A^{m}(\lambda+A)^{-m}x\| + \|x\|, L_{p}^{*}([1,\infty);X)$$

while $D_p^{-\sigma}(A)$, $1 \le p \le \infty$ -, is the completion of X with respect to the norm

(2.8)
$$\|\lambda^{-\sigma}\lambda^{m}(\lambda+A)^{-m}x\| + \|(1+A)^{-m}x\|, L_{p}^{*}([1,\infty);X)$$

and for any $x \in X$ its norm in $D_p^{-\sigma}(A)$ is equivalent with this norm. (ii) If $\sigma > \tau$ or if $\sigma = \tau$ and $p \le q \le \infty$, then

(2.9) $D_p^{\sigma}(A) \subset D_q^{\tau}(A)$ with continuous inclusion.

(iii) Set $D^{0}(A) = X$ and for a positive integer n $D^{n}(A) = \mathcal{D}(A^{n})$ with norm $\|x\|_{D^{n}(A)} = \|A^{n}x\| + \|x\|$, and define $D^{-n}(A)$ by the completion of X with respect to the norm $\|(1+A)^{-n}x\|$. Then

(2.10) $D_1^m(A) \subset D^m(A) \subset D_{\infty}^m(A)$ with continuous inclusions, and if $\mathcal{D}(A)$ is dense in X $D^m(A) \subset D_{\infty}^m(A)$.

(iv) If
$$\sigma < m$$
, $m > 0$ and $p \leq \infty$ -, then $\mathfrak{D}(A^m)$ is dense in $D_p^{\sigma}(A)$.

(v) If $0 < \theta < 1$ and $k \neq m$, then

(2.11)
$$D^{k(1-\theta)+m\theta}(A) = (D^{k}(A), D^{m}(A))_{\theta, p}$$

Remark 2. For a positive number σ the space $D_p^{\sigma}(A)$ coincides

with that defined by Komatsu [14], and the norm (2.8) is apparently similar to that of the space $R_p^{\sigma}(A)$ introduced by Komatsu [15], but the space $D_p^{-\sigma}(A)$ is different from $R_p^{\sigma}(A)$.

3. Semigroups and abstract Besov spaces

In this section we always assume that -A generates an analytic semigroup $\{T(t);t\geq 0\}$ in X, and estimate the norm of T(t) as an operator acting between abstract Besov spaces relative to A. As stated in Definition 2, $A^{m}T(t)$, t > 0, $m = 0,1,\cdots$, can be extended to a unique linear operator on $\bigcup_{n=0}^{\infty} D^{-n}(A)$ which is bounded on $D^{-k}(A)$ for any k.

Lemma 3.1. If m is a positive integer and if m + $\alpha > \beta$, then $A^{m}T(t)$ maps $D^{\beta}_{\infty}(A)$ into $D^{\alpha}_{1}(A)$ and

(3.1) $\|A^{m}T(t)x\|_{D_{1}^{\alpha}} \leq Ct^{\beta-m-\alpha} \|x\|_{D_{\infty}^{\beta}} \quad \text{for } 0 < t \leq T < \infty.$ Assume moreover that $x \in D_{\infty-}^{\beta}(A)$, then $\|A^{m}T(t)x\|_{D_{1}^{\alpha}} = o(t^{\beta-m-\alpha})$ as $t \rightarrow +0$, and $T(t)x \in C([0,T]; D_{m}^{\beta}(A)).$

Definition 3. For a real number γ , $\sigma = m + \theta \ge 0$, m an integer, $0 \le \theta < 1$, and a Banach space Y the space $C^{\sigma}_{\gamma}((0,T];Y)$ is the space of all functions $g \in C^{m}((0,T];Y)$ such that

(3.5)
$$|g|_{j,\gamma;Y,T} := \sup_{\substack{0 < t \le T}} t^{j+\gamma} ||g^{(j)}(t)||_{Y}, j = 0, 1, \cdots, m, \\ 0 < t \le T$$

(3.6) $|g|_{\sigma,\gamma;Y,T} := \sup_{\substack{h>0 \ 0 \le t \le T-h}} \sup_{\substack{0 < t \le T-h}} t^{\sigma+\gamma} h^{-\theta} ||g^{(m)}(t+h) - g^{(m)}(t)||_{Y},$

are finte, and its norm is defined by

(3.7) $\|g\|_{\sigma,\gamma;Y,T} := \sum_{j=0}^{m} |g|_{j,\gamma;Y,T} + |g|_{\sigma,\gamma;Y,T},$ where $g^{(j)}$ denotes the j-th derivative of g.

Lemma 3.2. Let $T_0 > 0$, Y and Z Banach spaces, and assume that Z $\subset Y \subset D^{-n}(A)$ for some n with continuous inclusions and that

(3.8) $\|A^{m}T(t)\|_{\mathcal{L}(Y,Z)} \leq Ct^{-m-\kappa}$ for any $0 < t \leq T_{0}$ and $m = 0,1,2,\cdots$, where C and $0 \leq \kappa < 1$ are constants. Let $g \in C_{\gamma}^{\sigma}((0,T];Y), \sigma \geq 0, 0 \leq \gamma < 1, 0 < T \leq T_{0}$ and assume that $\sigma - \kappa$ is fractional. Then

(3.9)
$$v(t) = \int_0^t T(t-s)g(s)ds.$$

belongs to $C_{\gamma+\kappa-1}^{\sigma-\kappa+1}((0,T];Z)$ and

$$(3.10) \qquad \|v\|_{\sigma-\kappa+1,\gamma+\kappa-1,Z,T} \leq C \|g\|_{\sigma,\gamma,Y,T},$$

where C is a positive constant independent of g and T.

In particular, if $\mathbf{g} \in C^{\sigma}_{\gamma}((0,T]; D^{\beta}_{\infty}(A)), \beta < \alpha < \beta+1$, then $\mathbf{v} \in C^{\sigma+\beta-\alpha+1}_{\gamma+\alpha-\beta-1}((0,T]; D^{\alpha}_{1}(A)).$

4. The basic properties of the Stokes operator

In this section we always assume that $\alpha > 0$, $1 < r < \infty$ and $1 \le q \le \infty$, and A_r denotes the Stokes operator, and $\mathbb{B}_{r,q}^{\alpha}(\Omega) = \{\mathbb{B}_{r,q}^{\alpha}(\Omega)\}^n$. Lemma 4.1. $\mathbb{P}_r \in \mathfrak{L}(\mathbb{B}_{r,q}^{\alpha}(\Omega))$.

(4.1) $\begin{aligned} \|u\|_{B^{\alpha+2}_{r,q}(\Omega)} &\leq C\{\|A_{r}u\|_{R^{\alpha}_{r,q}(\Omega)} \in \mathbb{B}^{\alpha+2}_{r,q}(\Omega) \text{ and } \\ &\|u\|_{B^{\alpha+2}_{r,q}(\Omega)} \leq C\{\|A_{r}u\|_{R^{\alpha}_{r,q}(\Omega)} + \|u\|_{L_{r}(\Omega)}\}. \end{aligned}$

Lemma 4.3. We have

(4.2) $D_q^{\alpha}(A_r) \subset X_r \cap \mathbb{B}_{r,q}^{2\alpha}(\Omega),$

and for any poisitive integer k and for any $\lambda \ge 1$

(4.3)
$$\|\lambda^{k}(\lambda+A_{r})^{-k}\|_{\mathfrak{L}(X_{r}, D_{q}^{\alpha}(A_{r}))} \leq C\lambda^{\alpha}.$$

Lemma 4.4. For any $1 \leq \lambda$ we have

(4.4)
$$\|\partial_{j}(\lambda+A_{r})^{-1}\|_{\mathfrak{L}(X_{r},\mathbb{L}_{r}(\Omega))} \leq C\lambda^{-1/2},$$

(4.5)
$$\|(\lambda + A_r)^{-1} P_r \partial_j \|_{\mathfrak{L}(\mathbb{L}_r(\Omega), X_r)} \leq C \lambda^{-1/2}$$

Lemma 4.5. Let $1 < s < r \le \infty$, $2k \ge 2\rho \ge \frac{n}{s} - \frac{n}{r}$ and $k \in \mathbb{N}$. Then (4.6) $\|\lambda^{k}(\lambda + A_{s})^{-k}\|_{\mathfrak{L}(X_{s}, \mathbb{L}_{r}(\Omega))} \le C\lambda^{\rho}$ for $1 \le \lambda < \infty$. Lemma 4.6. Let $1 < s < r < \infty$, $2\rho \ge \frac{n}{s} - \frac{n}{r}$ and $\beta \in \mathbb{R}$. Then (4.7) $D_q^{\beta}(A_s) \subset D_q^{\beta-\rho}(A_r)$.

5. Estimation of the nonlinear term

The inequality for the nonlinear term $P_r(u, \nabla)u$ by means of abstract Besov spaces, which is proved in the following, is a crucial result in our investigation. Giga and Miyakawa [9] have given a similar estimate by means of fractional powers $A_r^{\alpha}(\alpha>0)$ and $A_r^{-\delta}(\delta>0)$, but their estimate holds only when $\delta+\rho > 1/2$ and $\delta < 1/2 + n/2$ - n/2r.

Lemma 5.1. Let δ , θ and ρ be numbers satisfying (5.1) $\theta + \rho + \delta \ge \frac{n}{2r} + \frac{1}{2}$, $\theta + \rho > \frac{n}{r} - \frac{n}{2}$, $\rho + \delta \ge \frac{1}{2}$, $\delta \ge 0$, $\gamma \ge 0$, $\rho \ge 0$. Then, for any $u \in D_1^{\theta}(A_r) \cap \mathcal{D}(A_r)$ and $v \in D_1^{\rho}(A_r) \cap \mathcal{D}(A_r)$ we have

(5.2)
$$\|P_{r}(u, \nabla)v\| \leq C \|u\|_{D_{\infty}^{-\delta}(A_{r})} \leq C \|u\|_{D_{1}^{\theta}(A_{r})} \|v\|_{D_{1}^{\theta}(A_{r})}$$

We can replace $D_{\infty}^{0}(A_{r})$ by X_{r} when $\delta = 0$.

Since $\mathcal{D}(A_r^m)$ is dense in $D_1^{\theta}(A_r)$ and $D_1^{\rho}(A_r)$, by this lemma we can uniquely extend $P_r(u, \nabla)v$ to a continuous bilinear operator from $D_1^{\theta}(A_r) \times D_1^{\rho}(A_r)$ to $D_{\infty}^{-\delta}(A_r)$ if $\{\theta, \rho, \delta\}$ satisfies (5.1), and we denote its extension by $F_{\theta, \rho, \delta}(u, v)$. But, when $\{\theta', \rho', \delta'\}$ is another triple satisfying (5.1), $F_{\theta, \rho, \delta}(u, v) = F_{\theta', \rho', \delta'}(u, v)$ holds for any $(u, v) \in$ $\mathcal{D}(A_r^m) \times \mathcal{D}(A_r^m)$, and for sufficiently large m $\mathcal{D}(A_r^m) \times \mathcal{D}(A_r^m)$ is dense in $D_1^{\theta}(A_r) \times D_1^{\rho}(A_r)$ and in $D_1^{\theta'}(A_r) \times D_1^{\rho'}(A_r)$, so it follows that

$$\begin{split} & F_{\theta,\rho,\delta}(u,v) = F_{\theta',\rho',\delta'}(u,v) \\ \text{holds for any } (u,v) \in \{D_1^{\theta}(A_r) \times D_1^{\rho}(A_r)\} \cap \{D_1^{\theta'}(A_r) \times D_1^{\rho'}(A_r)\}. \text{ Namely,} \\ & F_{\theta,\rho,\delta}(u,v) \text{ is independent of the choice of } \{\rho,\theta,\delta\}. \text{ Hence we omit these suffixes and write it simply as } F(u,v) \text{ in the following.} \end{split}$$

Lemma 5.2. Assume that $\gamma,\ \delta$ and ρ satisfy (5.1). If u \in

 $C^{\mu}_{\eta}((0,T]; D^{\theta}_{1}(A_{r})) \text{ and if } v \in C^{\mu}_{\eta}((0,T]; D^{\rho}_{1}(A_{r})) \text{ with } \mu \geq 0 \text{ and } \eta \geq 0,$ then $F(u,v) \in C^{\mu}_{2\eta}((0,T]; D^{-\delta}_{\infty}(A_{r})).$

6. Proof of Theorem A

Now we are in a position to prove Theorem A. First note that it follows from the assumptions, Lemma 3.1 and Lemma 3.2 that

(6.1)
$$u_{0}(t) := T(t)a + \int_{0}^{t} T(t-s)P_{r}f(s)ds$$

belongs to $C([0,T]; D_{\infty-}^{\gamma}(A_{r})) \cap C_{\alpha-\gamma}((0,T]; D_{1}^{\alpha}(A_{r}))$ for any α with $\gamma < \alpha$,
 $0 \le \alpha < 1 - \delta$. We choose a number α so that
(6.2) $\gamma < \alpha < 1-\delta$, $\alpha-\gamma < \frac{1}{2}$, $\alpha < \frac{1}{2} + \frac{\gamma}{2}$, $\alpha \ge 0$,
and take a number β so that
(6.3) $1+\gamma \ge 2\alpha+\beta \ge \frac{n}{2r} + \frac{1}{2}$, $1 > \alpha+\beta \ge \frac{1}{2}$, $\beta \ge 0$.
Then, $2\alpha > 2\gamma \ge \frac{n}{r} - 1 \ge \frac{n}{r} - \frac{n}{2}$. Define Φv by
(6.2) $\Phi v(t) = \int_{0}^{t} T(t-s)F(u_{0}(s)+v(s),u_{0}(s)+v(s))ds$,
set $u = u_{0} + v$ and substitute this into (II). Then it becomes $v = \Phi v$.
Thus, a fixed point of Φ gives a solution of (II).

It follows from Lemma 5.2 that if $v \in C_{\alpha-\gamma}((0,T];D_1^{\alpha}(A_r))$ then $F(u_0+v,u_0+v) \in C_{2\alpha-2\gamma}((0,T];D_{\infty-}^{\beta}(A_r)) \text{ and}$ (6.3) $\|F(u_0+v,u_0+v)\|_{-\beta,\infty,2(\alpha-\gamma),t} \leq C_1 \|u_0+v\|_{\alpha,1,\alpha-\gamma,t}^2$, where $\|u\|_{\alpha,q,\gamma,t} := \|u\|_{C_{\gamma}^0((0,t];D_q^{\alpha}(A_r))}$ (see Definition 3). This means, with the aid of Lemma 3.2, that $\Phi v \in C_{\alpha-\gamma}((0,T];D_1^{\alpha}(A_r))$ and (6.4) $t^{\alpha-\gamma-\eta} \|\Phi v(t)\|_{D_1^{\alpha}} \leq C_2 \|F(u_0+v,u_0+v)\|_{-\beta,\infty,2\alpha-2\gamma,t}$ $\leq C_1 C_2 \{\|u_0\|_{\alpha,1,\alpha-\gamma,t} + \|v\|_{\alpha,1,\alpha-\gamma,t}\}^2$, where $\tau = 1$ is 2v = 0

where $\eta = 1 + \gamma - 2\alpha - \beta$.

When $\gamma > \frac{n}{2r} - \frac{1}{2}$, we can choose α and β so that $\eta > 0$, so we can take a number $T_0 \leq T$ so small that $4T_0^{\eta}C_1C_2 \|u_0\|_{\alpha,1,\alpha-\gamma,T} < 1$. When $\gamma =$

 $\frac{n}{2r} - \frac{1}{2}, \eta \text{ must be 0. But, since Lemma 3.1 and Lemma 3.2 imply that} \\ \|u_0\|_{\alpha,1,\alpha-\gamma,t} \to 0 \text{ as } t \to +0, \text{ there is } T_0 \in (0,T] \text{ such that} \\ \frac{4C_1C_2\|u_0\|_{\alpha,1,\alpha-\gamma,T_0}}{1.6} < 1.$

Therefore, if $\|v\|_{\alpha,1,\alpha-\gamma,T_0} \le K_0 := \|u_0\|_{\alpha,1,\alpha-\gamma,T_0}$, then we have (6.5) $\|\Phi v\|_{\alpha,1,\alpha-\gamma,T_0} \le C_1 C_2 T_0^{\eta} (K_0 + K_0)^2 \le K_0.$

Thus, Φ maps the space

$$\mathsf{M} := \{ v \in C_{\alpha - \gamma}((0, T_0]; \mathsf{D}_1^{\alpha}(\mathsf{A}_r)); \|v\|_{\alpha, 1, \alpha - \gamma, T_0} \le K_0 \}$$

into itself. Obviously M is a complete metric space. Also, we have by Lemma 5.1

$$(6.6) \|F(v_{1}(s), v_{1}(s)) - F(v_{2}(s), v_{2}(s))\|_{D_{\omega}^{-\beta}} \leq \|F(v_{1}(s), v_{1}(s) - v_{2}(s))\|_{D_{\omega}^{-\beta}} + \|F(v_{1}(s) - v_{2}(s), v_{2}(s))\|_{D_{\omega}^{-\beta}} \leq C_{1} \{\|v_{1}(s)\|_{D_{1}^{\alpha}} + \|v_{2}(s)\|_{D_{1}^{\alpha}} \|v_{1}(s) - v_{2}(s)\|_{D_{1}^{\alpha}}.$$

Hence, when v and w belong to M, by Lemma 3.2 we have

$$\begin{aligned} t^{\alpha-\gamma-\eta} \| \Phi v(t) - \Phi w(t) \|_{D_{1}^{\alpha}} &\leq C_{2} \| F(u_{0}+v,u_{0}+v) - F(u_{0}+w,u_{0}+w) \|_{-\beta,\infty,2\alpha-2\gamma,t} \\ &\leq 4C_{1}C_{2}K_{0} \| v-w \|_{\alpha,1,\alpha-\gamma,t}. \end{aligned}$$

Therefore, with L:= $4T_0^{\eta}C_1C_2 \|u_0\|_{\alpha,1,\alpha-\gamma,T_0} < 1$, we have

$$(6.7) \qquad \|\Phi v - \Phi w\|_{\alpha, 1, \alpha - \gamma, T_0} \leq L \|v - w\|_{\alpha, 1, \alpha - \gamma, T_0}$$

Consequently by the fixed point theorem we obtain a solution of (II).

Next, let $u \in C_{\alpha-\gamma}((0,T_0];D_1^{\alpha}(A_r))$ be a solution of (II). Then,

noting that
$$0 < \gamma + \beta < 1$$
, by Lemma 3.2 and Lemma 5.2 we have ρ^t

$$\int_{0}^{T(t-s)F(u(s),u(s))ds} \in C((0,T_{0}];D_{1}^{r}(A_{r})),$$

$$t^{-\eta} \| \int_{0}^{t} T(t-s)F(u(s),u(s))ds \|_{D_{1}^{\gamma}} \leq C_{1} \|F(u,u)\|_{-\beta,\infty,2\alpha-2\gamma,t}$$

$$\leq C_1 C_2 \|u\|_{\alpha,1,\alpha-\gamma,t}^2 \to 0 \text{ as } t \to +0.$$

Therefore, $u \in C([0,T_0];D_{\omega-}^{\gamma}(A_r))$.

Finally, we discuss the uniqueness. Let u be a solution of (II) such that $u \in C([0,T_0];D^{\gamma}_{\infty}(A_r)) \cap C_{\sigma-\gamma}((0,T_0];D^{\sigma}_{\infty}(A_r))$ with $\sigma > \gamma^+$. Since we can choose α sufficiently near γ if $\gamma \ge 0$ and we may take $\alpha = 0$ if $\gamma < 0$, without loss of generality, we may assume that $\gamma < \alpha < \sigma$. By the interpolation inequality we have

$$\|u(t)\|_{D_{1}^{\alpha}} \leq C \|u(t)\|_{D_{\infty}^{\gamma}}^{\theta} \cdot \|u(t)\|_{D_{\infty}^{\sigma}}^{1-\theta} \text{ with } \theta = \frac{\sigma-\alpha}{\sigma-\gamma},$$

which implies that $u \in C_{\alpha-\gamma}((0,T_0];D_1^{\alpha}(A_r))$. Now the uniqueness follows from (6.7). This completes the proof of Theorem A.

Remark 6. From the above proof we see that any solution of (II) in $C_{\alpha-\gamma}((0,T_0];D_1^{\alpha}(A_r))$ for some non-negative number α with $\gamma < \alpha < \min\{1-\delta,\frac{1}{2} + \gamma,\frac{1}{2} + \frac{\gamma}{2}\}$ is unique, and belongs to $C([0,T_0];D_{\infty-}^{\gamma}(A_r))$. 7. Proof of Theorem B

The heart of the proof of Theorem B is the following lemma:

Lemma 7. Assume that $a \in D_{\infty-}^{\gamma}(A_{r})$, $P_{r}f \in C_{1-\gamma-\delta}((0,T]; D_{\infty}^{-\delta}(A_{r}))$, $0 < \gamma+\delta < 1$, $\delta < 1$, α and β satisfy the condition (7.1) $\alpha \ge 0$, $\beta \ge 0$, $2\alpha+\beta \ge \frac{n}{2r} + \frac{1}{2}$, $\frac{1}{2} \le \alpha+\beta < 1$, and put μ := 1 - max{ β,δ }. If $u \in C((0,T]; D_{1}^{\alpha}(A_{r}))$ is a solution of (II), then $u \in C^{\mu-\alpha'}((0,T]; D_{1}^{\alpha'}(A_{r}))$ for any α' with $0 \le \alpha' < \mu$.

Proof. A simple calculation shows that for any 0 < ϵ < T

(7.2)
$$u(t) = T(t-\varepsilon)u(\varepsilon) + \int_{\varepsilon}^{t} T(t-s) \{F(u(s),u(s))+P_{r}f(s)\} ds.$$

It follows from Lemma 3.1 that $T(t-\varepsilon)u(\varepsilon) \in C^{\infty}((\varepsilon,T];D_{1}^{\alpha'}(A_{r}))$, and it

follows from Lemma 3.2 that for any $0 \le \alpha' < 1-\delta$

$$\int_{\varepsilon}^{t} T(t-s) P_{r} f(s) ds \in C^{1-\alpha'-\delta}((\varepsilon,T]; D_{1}^{\alpha'}(A_{r})),$$

since $P_r f \in C([\varepsilon,T]; D_{\infty}^{-\delta}(A_r))$.

Next, since $u \in C([\varepsilon,T];D_1^{\alpha}(A_r))$ and α and β satisfy (7.1), by Lemma 5.2 we have $F(u,u) \in C([\varepsilon,T];D_{\infty}^{-\beta}(A_r))$. Hence, by Lemma 3.2 we have

 $\int_{\varepsilon}^{t} T(t-s)F(u(s),u(s))ds \in C^{1-\alpha'-\beta}((\varepsilon,T];D_{1}^{\alpha'}(A_{r})) \text{ for any } 0 \le \alpha' < 1-\beta.$ Since ε is arbitrary, we have the conclusion of the lemma.

We now show that straight applications of the lemma give the proof of Theorem B. Let γ , δ , a and $P_r f$ be as in Theorem A, and let u $\in C((0,T];D_1^{\sigma}(A_r))$ with $\sigma \ge 0$, $\sigma > \gamma$.

By π we denote the set of all pairs (α,β) satisfying (7.1). When $(\sigma,\delta) \in \pi$, by Lemma 7 we see that $u \in C^{1-\alpha-\delta}((0,T];D_1^{\alpha}(A_r))$ for any $0 \leq \alpha < 1-\delta$. Otherwise, there is a finte sequence of numbers such that

$$\begin{split} &\alpha_1 \leq \sigma, \ (\alpha_1, \beta_1) \in \pi, \ \alpha_1 < \alpha_2 < \mu_1 := 1 - \max\{\beta_1, \delta\}, \\ &(\alpha_2, \beta_2) \in \pi, \ \beta_1 > \beta_2, \ \alpha_2 < \alpha_3 < 1 - \max\{\beta_2, \delta\}, \ \cdots, \\ &\alpha_{k-1} < \alpha_k < 1 - \max\{\beta_{k-1}, \delta\}, \ (\alpha_k, \delta) \in \pi. \end{split}$$

Since $(\alpha_1, \beta_1) \in \pi$, $\alpha_2 < \mu_1$ and $u \in C((0,T]; D_1^{\alpha_1}(A_r))$, by Lemma 7 we have $u \in C^{\mu_1 - \alpha_2}((0,T]; D_1^{\alpha_2}(A_r))$. Hence, considering that $(\alpha_2, \beta_2) \in \pi$ and $\alpha_3 < \mu_2$, we have $u \in C^{\mu_2 - \alpha_3}((0,T]; D_1^{\alpha_3}(A_r))$ by Lemma 7. Repeating this argument, we finally have $u \in C^{\mu - \alpha}((0,T]; D_1^{\alpha}(A_r))$ for any $0 \le \alpha < \mu := 1 - \delta$, and we have proved Part (i).

Proof of Part (ii). Assume now that $P_r f \in C^{\nu}((0,T];X_r), \nu > 0$. Since $u \in C^{1-\alpha}((0,T];D_1^{\alpha}(A_r))$ for any $0 \le \alpha < 1$ by Part (i), and since we can choose a positive number α so that $\max\{1/2, n/4r+1/4, \gamma\} < \alpha < 1$, it follows from Lemma 5.2 that $F(u,u) \in C^{1-\alpha}((0,T];X_r)$. By (7.2), Lemma 3.2 and Remark 3 we have the conclusion of Part (ii).

8. Proof of Theorem C

For simplicity, we assume that $P_r f = 0$. The proof when $P_r f \neq 0$ is essentially the same. Let u(t) be a solution of (I) such that $u \in C((0,T];D_1^{\sigma}(A_r))$ for some non-negative number σ with $\sigma > \frac{n}{2r} - \frac{1}{2}$. Theorem B gives that $u \in C^{1-\alpha}((0,T];D_1^{\alpha}(A_r))$ for any $0 \le \alpha < 1$. Since $\frac{n}{2r} - \frac{1}{2} \le \gamma < 1$, we can choose positive numbers s and α so that $n < s < \infty$ and $0 \le \frac{n}{2r} - \frac{n}{2s} < \alpha < 1$. Hence it follows from Lemma 4.6 that $C^{1-\alpha}((0,T];D_1^{\alpha}(A_r)) \subset C^{1-\alpha}((0,T];D_1^{\alpha'}(A_s))$ with $\alpha' = \alpha - \frac{n}{2r} + \frac{n}{2s}$, and $\alpha' > \frac{n}{2s} - \frac{1}{2}$. By using Theorem B once more we have $u \in C^{1-\alpha}((0,T];D_1^{\alpha}(A_s))$ for any $0 \le \alpha < 1$. Thus, by replacing s by r we may assume that r > n and $a \in D_{\infty-}^{\gamma}(A_r)$,

(8.1) $u \in C^{1-\alpha}((0,T];D_1^{\alpha}(A_r))$ for any $0 \le \alpha < 1$, and u satisfies

(8.2)
$$u(t) = T(t)a + \int_0^t T(t-s)F(u(s),u(s))ds.$$

Now we are going to prove the theorem. It is obvious that $T(t)a \in C^{\infty}((0,T];D_{1}^{\alpha}(A_{r}))$. As $\frac{n}{2r} + \frac{1}{2} < 1$, we can take α so that $\alpha \geq \frac{n}{2r}$ $+ \frac{1}{2}$. Then by (8.1) and Lemma 5.2 we have $F(u,u) \in C^{1-\alpha}((0,T];X_{r})$. Therefore, for any $0 < \varepsilon < T$, in view of (7.2), by Lemma 3.2 we have $u \in C^{2-2\alpha}((\varepsilon,T];D_{1}^{\alpha}(A_{r}))$. As ε can be taken arbitrarily small, we have $C^{2-2\alpha}((0,T];D_{1}^{\alpha}(A_{r}))$. By repeating the above argument k times, we have

 $F(u,u) \in C^{k-k\alpha}((0,T];X_r)$ and $u \in C^{k+1-(k+1)\alpha}((0,T];D_1^{\alpha}(A_r))$. Hence, we have

- (8.3) $u \in C^{\infty}((0,T];D_1^{\alpha}(A_r)),$
- (8.4) $F(u,u) \in C^{\infty}((0,T];X_r).$

Since $\alpha > \frac{n}{2r}$, it follows from lemma 4.3 and Lemma 1 (iii) that the map: $\{u,v\} \rightarrow (u,\nabla)v$ is continuous from $D_1^{\alpha}(A_r) \times D_1^{\alpha}(A_r)$ into $\mathbb{B}_{r,1}^{2\alpha-1}(\Omega). \text{ Hence, by } (8.3) \text{ and Leibniz's rule we have}$ $(8.5) \qquad (u(t), \nabla)u(t) \in C^{\infty}((0,T]; \mathbb{B}_{r,1}^{2\alpha-1}(\Omega)),$ which means, with the aid of Lemma 4.1, that $(8.6) \qquad F(u,u) \in C^{\infty}((0,T]; \mathbb{B}_{r,1}^{2\alpha-1}(\Omega)).$

Since $u_t \in C^{\infty}((0,T]; \mathbb{B}_{r,1}^{2\alpha}(\Omega))$ by lemma 4.3 and (8.3), and since $A_r^{u(t)} = F(u(t), u(t)) - u_t(t)$ (see Theorem B), Lemma 4.2 gives that $u \in C^{\infty}((0,T]; \mathbb{B}_{r,1}^{2\alpha+1}(\Omega))$. By the same reasoning as in the proof of (8.5) we have $(u(t), \nabla)u(t) \in C^{\infty}((0,T]; \mathbb{B}_{r,1}^{2\alpha}(\Omega))$, so we have $A_r^{u} = F(u,u) - u_t \in C^{\infty}((0,T]; \mathbb{B}_{r,1}^{2\alpha}(\Omega))$, hence $u \in C^{\infty}((0,T]; \mathbb{B}_{r,1}^{2\alpha+2}(\Omega))$. Repetition of this argument finally gives that $u \in C^{\infty}((0,T]; \mathbb{B}_{r,1}^{\alpha}(\Omega))$, and Theorem C is proved.

References

- Agmon, S., Douglis, A. and Nirenberg, L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I', Comm. Pure Appl. Math., 12, 623-727 (1959). I. ibid, 17, 35-92 (1964).
- 2. Borchers, W. and Miyakawa, T., L₂ decay for the Navier-Stokes flow in half-spaces', Math. Ann., 282, 139-155 (1988).
- 3. Borchers, W. and Sohr, H., On the semigroup of the Stokes operator for exterior domains in L_p spaces', Math. Z., 196, 415-425 (1987).
- 4. Fujita, H. and Kato, T., On the Navier-Stokes initial value problem 1', Arch. Rational Meth. Anal., 16, 269-315 (1964).
- 5. Fujiwara, D. and Morimoto, H., An L_r-theorem of the Helmholtz decomposition of vector fields', J. Fac. Sci. Univ. Tokyo, Sec., 1, 24, 685-700 (1977).
- 6. Giga, Y., Analyticity of the semigroup generated by the Stokes

operator in L_r spaces', Math. Z., 178, 297-329 (1981).

- 7. Giga, Y., Domains of fractional pawers of the stokes operator in L_r spaces', Arch. Rational Meth. Anal., 89, 251-265 (1985).
- 8. Giga, Y. and Sohr, H., On the Stokes operator in exterior domains', J. Fac. Sci. Univ. Tokyo, Sect. IA Math., 36, 103-130 (1989).
- 9. Giga, Y. and Miyakawa, T., Solution in L_r of the Navier-Stokes initial value problem', Arch. Rational Mech. Anal., 89, 267-281 (1985).
- 10. Heywood, J. G., The Navier-Stokes equations: On the existence, regularity and decay of solutions', Indiana Univ. Math. J., 29, 639-682 (1980).
- 11. Kaniel, S. and Shinbort, M., Smoothness of weak solutions of the Navier-Stokes equations', Arch. Rat. Mech. Anal., 24, 302-324 (1967).
- 12. Kato, T. and Fujita, H., On the nonstationary Navier-Stokes system', Rend. Sem. Mat. Univ. Padova., 32, 243-260 (1962).
- Komatsu, H., Fractional powers of operators', Pacific J. Math.,
 19, 285-346 (1966).
- 14. Komatsu, H., Fractional powers of operators, I, Interporation spaces', Pacific J. Math., 21, 89-111 (1967).
- 15. Komatsu, H., Fractional powers of operatars, I, Negative powers', J. Math. Soc. Japan., 21, 205-220 (1969).
- 16. Miyakawa, T., On nonstationary solutions of the Navier-Stokes equations in an exterior domain', Hiroshima Math. J., 12, 115-140 (1982).
- 17. Muramatu, T., On Besov spaces of functions defined in general

regions', Publ. RIMS, Kyoto Univ., 6, 515-543 (1970).

- 18. Muramatu, T., On imbedding theorems for Besov spaces of functions defineded in general regions', Publ. RIMS, Kyoto Univ., 7, 261-285 (1971).
- 19. Muramatu, T., On Besov spaces and Sobolev spaces of generalized functions defined on a general region', Publ. RIMS, Kyoto Univ., 9, 325-396 (1974).
- 20. Muramatu, T., Abstract Besov Spaces relative to Non-negative Operators'. in preparation.
- 21. Sobolevskii, P. E., On non-stationaly equations of hydrodynamics for viscous fluid', Dokl. Akad. Nauk SSSR., 128, 45-48 (1959). (Russian)
- 22. Solonnikov, V. A., General boundary value problems for Douglis-Nirenberg elliptic systems which are elliptic in the sense of Douglis-Nirenberg', I. Izv. Akad. Nauk SSSR Ser. Mat., 28, 665-706 (1964), (Russian. = AMS Trasl. (2) 56, 193-232 (1966)). I. Proc. Steklov Inst. Math., 92, 233-297. (1966). (Russian)
- 23. Solonnikov, V. A., Estimates for solutions of nonstationary Navier-Stokes equations', J. Soviet Math., 8, 467-529 (1977).
- 24. Yoshida, K., Functional analysis, Springer, Berlin Heidelberg New York, 1965.