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0. Introduction
The Navier-Stokes equations arising from viscous incompressible
fluid dynamics has been investigated in depth. We consider the

initial value problem of the Navier-Stokes equations

ut(X.t) + (u,7u(x,t) - Au(x,t) f(x,t) - vp(x,t) in Q x (0,T),

(1) veu(x,t) =0 in @ x (0,T),
u(X,t) = 0 on r X (OvT)v
u(x,0) = a(x) in Q.

Here and hereafter u = {uJ(x,t)}Jr:l1 is the velocity field, p = p(x,t)
the pressure, a = {aj(x)}jgl the initial velocity, T = {fj(x,t)}JEl
du

the external force, u, = 3%’ vV = {%i

n .
t }j=l’ and A is the Laplacian. u

J

and p are unknown, while f and a are given functions.

We always assume that Q is a bounded domain in Rn withn 2 2, a
half space of R™ with n > 2, or an exterior domain in R™ with n > 3,
and that the boundary I' of Q is smooth.

Fujita and Kato [4], [12] and Sobolevskii [21] established an
approach to this Problem by means of fractional powers and semigroups
of operators. Later, Giga and Miyakawa [9] developed a good Lr—theory
which is a generalization of Lz-theory of Fujita and Kato. They did

not assumed that the initial velocity is regular, which was assumed
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before in {4], [10], [23] etc.

However, we found that by making use of abstrct Besov spaces (
see § 2 for their definition) in stead of fractional powers we obtain
better results. The advantages of this approach are the following:

(i) We can prove an estimate of semigroups in abstract Besov spaces
(see Lemma 3.1), which is better than the well-known estimate:

1A%t (t)xi < ct™*8yabxy for x € 2(a%), t > 0, « > 8.
(ii) The nonlinear term Pr(u,V)u can be easily estimated (see Lemma
5.1). (iii) We need only know that the negative of the Stokes
operator —Ar generates an analytic semigroup on Xr' and we need not
prove the existénce of the bounded inverse of Ar which is proved only
when Q is a bounded domain, so that we can treat an exterior domain
and a half space at the same time. (iv) We need only use the real
interpolation theory, hence need not make use of the estimate
eltl

it
AL “D(Xr) < Cae

for any t € R, which is hard to be proven
(cf.[8], [7], [8]).
To eliminate the term vp we make use of Pr’ a continuous

operator from Lr(Q) to

X.:= the closure of the space {u € (CZ(Q))n; v-u = 0} in Lr(Q)
- which is identical on Xr and Per = 0. (The existence of Pr is proved
in {2], [5], [16].) The Stokes operator A. 1s defined by A, = - P.A
with domain Q(Ar) =X. N {u € W?(Q); u =0 on T}, then -A. generates
an analytic semigroup {T(t); t = 0} in Xr (21, [31, [6], [7]). Here
WE(R) = {W}()}" is the Sobolev space and L_(Q) = {L.(2)}".

Applying Pr to (I), we get an abstract ordinary differential

equation in Xr:
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(1) u ¢ Aru = F(u,u) + Prf t > 0, u(0) = a,

where F(u,v) = -Pr(u,V)v, whose integral form is the equation
t

(I) u(t) = T(t)a + f T(t-s)(F(u(s),u(s)) + P_f(s)}ds, t > 0.
0

To solve (I) or (@), we extend T(t) and F(u,v) by continuity (
see Lemma 3.1 and Lemma 5.1).
Our main results are the following:

Theorem A. If a € DY_(A), P_f(s) € C ((0,11:07°%(a ), B -

1-y-8 2r

% £y <1, 0< y+8 <1, and &6 < 1, then there exist a positive number
TO and a non-negative number o > ¥y such thét there is a unique
solution u € C([0,Ty):D)_(A.)) N Cy . ((0,Tol:DI(A)) of (D).

Any solution u of (@) satisfying

u € C([O,TOI;DI_(AF)) n Co_y((O,TOJ,DZ(Ar)) for some o > ¥’
is unique. Here v+ = max{y,0}, Dg(A) denotes the abstract Besov space
defined in § 2, C(I;Y) denotes the space of Y-valued continuous
functions on an interval I, and

CY((O,T];Y):= {ueC((0,TI;Y):lu(t)ly = o(t™¥) as t - 0}.

Theorem B. Under the assumptions of Theorem A, let u be a

solution of (I) belonging to C((O,T];Di(Ar)) for some non-negative
number ¢ with ¢ > y. Then
(i) u € Cl_a_a((O,T];Dg(Ar)) for any 0 £ ¢ < 1 - 3.
(ii) Furthermore, if Prf € Cv((O,T];Xr), v > 0, then u is a solution
of (I), namely, u(t) is differentiable in 0 < t < T, u(t) € Q(Ar) for
0 <t < T and satisfies (I).

Here C“(I;Y) denotes the space of Y-valued ( locally ) um-Holder

cohtinuous functions on I.

Theorem C. Under the assumptions of Theorem A, assume that Prf €
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(c®(Ax(0,T])}™. Then, any solution u of (I) in C((O,T];Di(Ar)) for

some non-negative number ¢ with ¢ > ¥ belongs to {c”(@x(0,T1) 1",
where C”(Q) denotes the space of infinitely differentiable functions
on an open set Q.

These results are improvements of those in Fujita and Kato [4],
and in Giga and Miyakawa [9]. For instance,

Result in Fujita and Kato [4]. Let Q be a bounded domain with
smooth boundary in R" and 1let 1/4 < ¥ < 1/2. Assume that a € 9(A;)
and that IIPrf(t)II2 = o(t_1+?) as t'=» 0. Then there exists a unique
solution u of (I) such that (i) u € C([O,T*];Xz). (i1) u €
C((O,T*];Q(Ag)) for any 3/4 < o« < vy + 1/2, and that (iii) |IA°2‘u(t)II2 =
0(tY™® ) as t » 0, where we simply denote the norm of Lr(Q) by - 1..
Here T, is a positive number depending on v, «, IIA;aII2 and

sup s VIR, E(s) I,
0<s<T

Result in Giga and Miyakawa [9]. Let Q be a bounded domain with
smooth boundary in Rn, and let n/2r - 1/2 £y <1, -y < 8§ <1 - |v|
and & =2 0. Assume that a € 9(A:) and IIA;_&Prf(t)IIr is continuous on

Y+5—1) as t » 0. Then for any ¥

(0,T) and satisfies IIA;BPrf(t)IIr = o(t
< @ < 1-§ there is a solutlon u € C([0,T,1;9(A}))NC,  ((0,T,1:9(AD))
of (II). Here T* depends on y, 8, o, a and Prf‘

The conditions required to the initial velocity and the external
force in Theorem A are weaker than those in [9] and more precise
information about solutions are contained in this theorem.

Notations. We will use the following notations: For an open set
Q in R™ and 1 < p < » we define

e (qyi= (] 120 1Paxit?, uen o= (] 1200 1P 1x1 ey P,
P Q Q

Lp(Q)
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and for p = «» make the usual modification. Lp(Q) (or L;(Q)) denotes

the space of all measurable functions f with HfHL (Q) < @ (or
p
HfHL*(Q)'< o ). For a Banach space X we denote by Lp(Q;X) (or
p

L;(Q;X)) the set of all strongly measurable X-valued functions with
I£(x) Iy € L (Q) (or L;(Q)). We also consider the spaces with the
exponent «-. Namely, _
*
L (:X) (= L, _(:X) ):= { f € L (X); If(x)lIy » 0 as Ix| » = },
and its norm is that of L. We define p < »- < o for real number p.

w?(n):= {feLp(Q); 3% € Lp(Q) for any multi-index with lal<m},

where a“f denotes the weak derivative of f, |al = al+a2+"°+an.
and its norm is given by Ifll m 1= > na“fnL Q)
Wp(Q) lotl<m P

f(X,Y) denotes the space of all continuous linear operators from
X toY, £(X):= £2(X,X), and 2(A) denotes the domain of an operator A.
1. Besov spaces

Here we describe the definition and some properties of Besov
spaces, which are one of our main tools.

Definition 1. Let Q be an open set in R, and let 1 < p, q < o.

When 0 < ¢ £ 1 we define

g .= o Y
(1.1) Bp’q(Q). {f € Lp(Q). lflB I @) < },
P,q
(1.2) Ifl i= H{Iyl_oﬂf('+y)—f(~)ﬂ Hi if o < 1,
pP,q q
-1
1£1 o= Myl THE(+2y)-2F(-+y)+f ()l Hi ,
1 L_(Q ) % ph
Bp,q(Q) p'r2,y Lq(R )
where Qz v" QAN(Q-y)N(Q-2y), and its norm is given by
(1.3) (bl = | T + Ifll .
o fod L _(Q)
Bp’q(Q) Bp,q(Q) p

When o > 1, by expressing ¢ =k + 8, k € N, 0 < 8 < 1, we define



4 .=
(1.4) Bp’q(Q) 1= {f €
(1.5) It
o
Bp,q(Q)
(1.8) (b
n O
Bp,q(Q)

It is easy to see
Lemma 1. Let 1 <

t € R, and let Q be an

(1) (Imbedding). If p < q and if ©t > o+, then Bptg(Q) c B

T o T
Bp,g(Q) c Wq(Q). Wp(Q)
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k . A 6 -
Wp(Q), 9°f € Bp'q(Q) for every |loal k },
= 3 18% 0 :

lal=k Bp’q(Q)
= |f| + Ifll .
o m
Bp,q(Q) Wp(Q)
that Bpoq(Q) are all Banach spaces.

P, g <=, 1 <&, n<ee x=n/p-n/q, o €R,

open set with the cone property.

g
a,n

o T o
c Bq,n(g)' Wp(Q) c Wq(Q). We also have

(Q) ’

g+ c

(1.7) BD,E(Q) c Bq,n(g) if &€ £ n,

(1.8) Bg*é(n) c wg(n) if E<q<wor £ = 1,

(1.9) wog*(n) c qun(n) if 1<p<aq, p<n,

(1.10) w°;*(n) c wg(n) if 1 <p<gq< ®.

(ii) (Real Interporation). Let 0 < 8 <1, u = (1-8)c + @tr. Then

o T _ o T - M

(1.11) (BP.E(Q)’Bp,n(Q))9»q = (Wp(Q),Wp(Q))(;,,q Bp'q(Q).

Here ( , )9 q denotes the real interpolation space.

(iii) (Product in Besov Spaces). Let 7y, o, t > 0 and assume that y <

min{o,t,o0+t-n/r}. Then,

(1.12) fuvll
B Y
r,

Proof. c¢f. Muramat

2. Abstract Besov Space

o
»q

< Cliull - -livl

T
B
q Br.q r,q

u [17],[18],[19].

for any u € Br (Q) and v € Brtq(Q) we have

S

Abstract Besov spaces have been introduced and precisely

investigated by Komatsu
in a Banach space X. Ou
different from that of

systematically all the

[13],[14]1,[15] for a non-negative operator A
r definition of the space Dg(A) is slightly
Komatsu, which make it possible to treat

spaces Dg(A), -0 < g < @,
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Throughout this section and the next section by Ilxll and ITlI we
denote the norm of X and £(X), respectively.

Definition 2. A closed linear operator A in X is called
non—-negative if there is a number o 2 0 such that (—w,—co) is
contained in the resolvent Set of A and if

1

(2.1) M:= sup{lix(x+A) “l; x > co} < o,

For simplicity we assume always that ¢, < 1 in this paper.

0
For a non-negative operator A, real number ¢ and 1 < p < = (
including p = »~ ) we define the space Dg(A) by the completion of the

space {x € X; AcllAn(x+A)_Q-nx € L;([l,w);X)} with respect to the

norm "‘"DO(A)’ where n and ¢ are the least non-negative integers such
p
that n > ¢ > -4, and
(2.2) L L LI n+a) " x,
p p
(2.3) Ixl o := 12728 (a+a) "4 Ny . .
Dp(A) Lp([l.m):X)

For the case p = », ¢ £ 0 we have to make some modifications.

Lemma 2.1. Let A be a non-negative operator in X and let k and m

be positive integers. Then for any X in 9(A) and ¥k 2 1 we have

-k-m k

(2.4) x = cm,kfxlk—lAm(A+A) X da + Qm,k(A(K+A)_1)Kk(K+A)- X,

m-1
where Qm,k(t) = I [k+J—1)tJ. and ¢, = m(m+k_1).

j=ot J m
Proof. This follows from the identity
d -1, k - - -k-
(2.5) gy (AGura) DM wea) ™) = e nE AR (uea) TEOD

and the mean ergodic theorem (cf. K.Yosida [24] p.217).
Using this lemma, arguments analogous to those in Komatsu [13],

[14]1,[15], (see also [20]). yield the following
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Lemma 2.2, (Basic Properties of Abstract Besov Spaces). Let o be
a real number, m and k integers, and let 1 £ p £ =,

(i) Assume that k and m are non-negative and -k < o0 < m. Then x € X

belongs to Dg(A) if and only if onkAm(A+A)_k—mx € L;([l,w);X), and
the norm of D;(A) is equivalent to the norm

(2.6) 1202 KA (x+n) Ky + 1(1+A) Kx,
L, ([1,=);X)

In particular, if 0 < ¢ < m , then
D;(A) = {x € X; 294" (x+A) ™x € L;(ll.w):X)}.
and its norm is equivalent with

(2.7) 12%A" (a+a) ki + Ixll,
Lp([l,w);X)

while DBO(A), 1 <p < »-, is the completion of X with respect to the

norm

(2.8) A7 (2 8) Mx1 + 1(1+8) " x1,
Lo([1,®);X)

and for any x € X its norm in D;G(A) is equivalent with this norm.
(ii) If 0 > T or if ¢ = ¥t and p £ q < », then

(2.9) D;(A) c D;(A) with continuous inclusion.

(i11) set D%(A) = X and for a positive integer n D™(A) = 2(A") with

norm x|l n = uAan + fixl, and define D—n(A) by the completion of X
D (A)

with respect to the norm lIl(1+A) P

xll. Then

(2.10) DT(A) c Dm(A) c Dg(A) with continuous inclusions, and if
9(A) is dense in X D™(A) c DE_(A).

(iv) If 0o <m, m > 0 and p £ =»-, then Q(Am) is dense in Dg(A).

(v) If 0 <9 <1 and k # m, then

(2.11) Dk(ll—)e)+m6

Remark 2. For a positive number ¢ the space Dg(A) coincides

_ k m
(A) = (D" (A),D (A))g,p'
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with that defined by Komatsu [14], and the norm (2.8) is apparently
similar to that of the space Rg(A) introduced by Komatsu [15], but
the space D;a(A) is different from Rg(A).
3. Semigroups and abstract Besov spaces

In this section we always assume that -A generates an analytic
semigroup {T(t);t20} in X, and estimate the norm of T(t) as an
operator acting between abstract Besov spaces relative to A. As
stated in Definition 2, A™I(t), t > 0, m = 0,1,+-+, can be extended

to a unique linear operator on Un: D-n(A) which is bounded on D—k(A)

0
for any k.

Lemma 3.1, If m is a positive integer and if m + ¢« > 8, then

AmT(t) maps Di(A) into Dg(A) and

(3.1) 1IA"T(ox , < ctP kg, for 0 < t T < o,
D D
1 ®
Assume moreover that x € Dg_(A), then IATT(t)x| 0 " O(tﬁ-m-a) as
D
1

t - +0, and T(t)x € C([O,T];Di_(A)).
Definition 3. For a real number v, ¢ = m+8 > 0, m an integer,
0 £ 68 <1, and a Banach space Y the space Ci((O,T]:Y) is the space of

all functions g € Cm((O.T];Y) such that

(3.5) Iglj v:Y = Sup tj+yﬂg(j)(t)HY, jJ=0,1,++,m,
’ ’ ’ 0<tsT
(3.8) Iglo yiy,T' " SUP sup t0+Yh—9Hg(m)(t+h) - g(m)(t)"Y.
rEr T h>0 0<t<T-h
are finte, and its norm is defined by
- m
(3.7) “g“o,y;Y,T' 2J=O|gIJ,V;Y,T + 'glo,y;Y,T'

where g(J) denotes the j-th derivative of g.
Lemma 3.2. Let T0 > 0, Y and Z Banach spaces, and assume that Z

cYc D_n(A) for some n with continuous inclusions and that
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m _m.‘K ) q LK I
(3.8) 1A T(t)"Q(Y.Z) < Ct for any 0 < t £ TO and m 0,1,2, ,
where C and 0 £ K < 1 are constants. Let g € Cz((O,T];Y). o >0, 0<

Yy <1, 0 <Tgx TO and assume that o-k is fractional. Then

t
(3.9) v(t) = f T(t-s)g(s)ds.
0

o-k+1
Y+K-1

(3.10) vl

belongs to C ((0,T}:Z) and

< Cligll

o-k+1,y+x-1,2,T g,7,Y,T’

where C is a positive constant independent of g and T.

In particular, if g € C:((O,T];Di(A)). B < o < B+1, then v €

og+f-o+1
y+o-8-1

4. The basic properties of the Stokes operator

c ((0,T1;DJ(A)).
In this section we always assume that ¢ > 0, 1 < r < @« and 1 < g
£ o, and Ar denotes the Stokes operator, and Braq(Q) = {Braq(Q)}n.
Lemma 4.1. P_ € D(Braq(n)).

r
o o+2
Lemma 4.2, If u € 9(Ar) and Aru € Br.q(g)’ then u € Br,q(n) and

(4.1) Tull < C{IA_ull + Jlul }.
o+2 r o L.(Q)
Br,q(Q) Br'q(Q) r

Lemma 4.3. We have
o 20

(4.2) Dq(Ar) c Xr n'Br’q(Q),

and for any poisitive integer k and for any x 2 1

(4.3) 1K (aea ) < A%,

o
8(X,.D3(A))

Lemma 4.4. For any 1 < 1 we have

-1 -1/2
(4.4) HSJ(A+Ar) "ﬂ‘xr'mr(ﬂ)) < Ca ,
-1 -1/2
(4.5) H(A+Ar) PraJ"H(Lr(Q).Xr) < Cx .
Lemma 4.5, Let 1 < s < r £ o, 2k 2 2p 2 g - % and k € N. Then

k

(4.6) “kk(A+As)— I < CaP for 1 £ A < =,

B(X L ()
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Lemma 4.6, Let 1 < s < r < », 2p 2 g - % and 8 € R. Then

(4.7) pl(a,) € D{7P(AL).
5. Estimation of the nonlinear term
The inequality for the nonlinear term Pr(u,V)u by means of
abstract Besov spaces, which is proved in the following, is a crucial
result in our investigation. Giga and Miyakawa [9] have given a
similar estimate by means of fractional powers A? (x>0) and A;a
(8>0), but their estimate holds only when é+p > 1/2 and & < 1/2 + n/2
- n/2r.
Lemma 5.1, Let &, 8 and p be numbers satisfying
(5.1) ©OB+p+d = %? + %, 8+p > % - %, p+d = %, § 20, Yy =20, p=0.
Then, for any u € Dg(Ar)nQ(Ar) and v € Dg(Ar)nQ(Ar) we have

(5.2) IP.(u,v)vi < Clull_g “lvil

2y pia)  pPa)’
We can replace Dg(Ar) by Xr when & = 0.

Since 9(A?) is dense in Dg(Ar) and Di(Ar), by this lemma we can
uniquely extend Pr(u,v)v to a continuous bilinear operator from
Dg(Ar)fo(Ar) to D;a(Ar) if {0,p,58} satisfies (5.1), and we denote
its extension by Fe’p’s(u,v). But, when {8',p',8'} 1s another triple
satisfying (5.1), Fe‘p’a(u,v) = FO',p'.&'(u’V) holds for any (u,v) €
@(A?)XQ(A?), and for sufficiently large m Q(A?)XQ(A?) is dense in
Dg(Ar)ng(Ar) and in Dg'(Ar)xDi'(Ar), so it follows that

Fe’pya(u.v) = FG'.p'.&'(u’V)
holds for any (u,v) € {Df(Ar)ng(Ar)}n{Dg'(Ar)ng'(Ar)}. Namely,
Fe,p,b(u’V) is independent of the choice of {p,0,8}. Hence we omit
these suffixes and write it simply as F(u,v) in the following.

Lemma 5.2. Assume that y, & and p satisfy (5.1). If u €
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c((0,T1; p¥(A.)) and 1f v e cA((0,T1;D§(A.)) with u 2 0 and n 2 0,
M .pn~°
then F(u,v) € CZn((O'T]’Dw (AL)).
6. Proof of Theorem A
Now we are in a position to prove Theorem A. First note that it

follows from the assumptions, Lemma 3.1 and Lemma 3.2 that
t

(6.1) uy(t):= T(t)a + I T(t-s)P_f(s)ds
0 r

belongs to C([0,T1;DJ_(A.))NC,__((0,T1;DJ(A.)) for any « with y < a,

0 £ <1 - 8. We choose a number o so that

- - 1 1,72
(6.2) Y < o < 1-86, o-y < 5 X <5+, o = 0,
and take a number B so that
n 1 1
(6.3) 1+y =2 20+ = o * 3 1> a+8 2 o 8 = 0.
Then, 20 > 2y = % -1 2 % - %. Define ¢v by

t
(6.2) dv(t) = f T(t-s)F(uO(s)+v(s),uo(s)+V(S))dS.
0

set u = Uy + Vv and substitute this into (). Then it becomes v = ¢v.

Thus, a fixed point of ® gives a solution of (II).

It follows from Lemma 5.2 that if v € Ca_y((O,T];Dg(Ar)) then

B
Fluy+v,uy+v) € 02a~27((0'T]’D°—(Ar)) and
2
(6.3) IIF(uO+V.u0+v)ll_'g,m,'z(m_},)’t < Cl"u0+v"a,l,a—y,t’
where Huua’q’?’t:= all (see Definition 3). This

0 .o
cy((0,t1:D%(A))

means, with the aid of Lemma 3.2, that ¢v € Ca_y((O,T];Dg(Ar)) and

o-7-n
(6.4) t Iev(t)h < CZ"F(uO+v’u0+V)“—B.w,Zu-Zy,t

Dy

2

< clcz{uuou v ii e,

o, 1, a-7,t * o,1,0-7,t

where n = 1+y-20-8.

When vy > %? - %, we can choose o and 8 so that n > 0, so we can

n =
take a number Ty < T so small that 4TOC1C2"u0“a,1,a—V,T < 1. When vy =
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n

oF T %, n must be 0. But, since Lemma 3.1 and Lemma 3.2 imply that

"uO“a,l,a—y,t -+ 0 as t » +0, there is T, € (0,T] such that

4C1C2"u0"a.l,a"Y.T0 < 1.

Therefore, if "v"a,l,a—y,To < Kyi= “uOua,l,a-?.To' then we have

n 2
(6.5) "mV"a,l,a-v,To < C,C,To(Ky + Kg)© < K.

Thus, ¢ maps the space

.= .p% .
Mi= (v € Cop ((O.TIDIA VG 4 ¢y 7 € Ko)

into itself. Obviously M is a complete metric space.

Also, we have by
Lemma 5.1

(6.6) HF(vl(s).vl(s)) - F(vz(s).vz(s))ﬂ

D;B
< "F(Vl(s)’vl(S)'Vz(S))"D-B + HF(Vl(s)—vz(s).VZ(S))HD_B
< C. {lv,(s)I + v, (s)l Ylv, (s)-v, (s)N _.
1 1 Dg 2 Dg 1 2 DT

Hence, when v and w belong to M, by Lemma 3.2 we have

Y Mipv(t) - dw(t)

. < CzuF(u0+v,u

0+V)—F(u0+w,uo+w)||
1

-B:wv2a~2th

< 401C2K0“V'w“a,1,a—y,t’
Therefore, with L:= 4T]C CZHuOH

a,l.a—Y.TO < 1, we have

(6.7) 10v-0who 1 oy, < LIV 1 gy, T,

Consequently by the fixed point theorem we obtain a solution of (II).

LR
Next, let u € Ca-y((o’TO]’Dl(Ar)) be a solution of (I). Then,
noting that 0 < y+8 < 1, by Lemma 3.2 and Lemma 5.2 we have

t
[ re-s)F(u(s) uts)as € co, 110t (a0,
0

_ t
t "uf T(t-s)F(u(s),u(s))dsl
0

. < ClﬂF(u.u)H

_B y ©, 2(1"2'}’,13
1
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2
< Cch"u“a,l,a—Y,t - 0 as t = +0.
Therefore, u € C([O.TO];D:_(Ar)).
Finally, we discuss the uniqueness. Let u be a solution of (I)

.nY .ne +
such that u € C([O.TO],Dm_(Ar))nCo_?((O.TO],Dm(Ar)) with ¢ > v .
Since we can choose ¢ sufficently near vy if ¥y = 0 and we may take o =
0 if vy < 0, without loss of generality, we may assume that y < o < 0.

By the interpolation inequality we have
o) < chu(e)r®, rue)nts® with o - =€,
o Y o o-7
iy pY 1)

which implies that u € Ca—y((o'TO];Dg(Ar))' Now the uniqueness
follows from (6.7). This completes the proof of Theorem A.

Remark 6. From the above proof we see that any solution of (II)
in Ca_?((O,TO];Dg(Ar)) for some non-negative number o with y < o <
min{l-a,% + ?,% + %} is unique, and belongs to C([O,TO];DZ_(Ar)).
7. Proof of Theorem B

The heart of the proof of Theorem B is the following lemma:

Y Y
Lemma 7. Assume that a € D__(A.), P f € Cl—y~6((0’T]’Dw (AL)),
0 <p+d <1, 8 <1, o and B satisfy the condition
n 1 1
(7.1) o0 =20, B >0, 20+8 2 ar Y 3 3 < o+ < 1,

and put pu:= 1 - max{8,8}. If u € C((O.T];Dg(Ar)) is a solution of
(I), then u € c* % ((O.T];Dg (A.)) for any o' with 0 < a' < u.

Proof. A simple calculation shows that for any 0 < € < T

(7.2) u(t)

?

t
T(t-g)u(e) + | T(t-s){F(u(s),u(s))+P £(s)}ds.
=4

It follows from Lemma 3.1 that T(t—e)u(e)'e Cm((S.T];Da'(A )y, and it
1 r

follows from Lemma 3.2 that for any 0 £ o' < 1-§

t A\ - A}
IST(t—s)Prf(S)dS e ¢ 0 (e, T1iDY (a)),
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since P_f € C([€,T1;D_%(A.)).
Next, since u € C([S,T];Dg(Ar)) and o and B satisfy (7.1), by
Lemma 5.2 we have F(u,u) € C([s,T];D;B(Ar)). Hence, by Lemma 3.2 we

have
t 1-a'-8 o'

I T(t-s)F(u(s),u(s))ds € C ((S,T];D1 (Ar)) for any 0 £ o' < 1-8.
g

Since g€ is arbitrary, we have the conclusion of the lemma.

We now show that straight applications of the lemma give the
proof of Theorem B. Let y, &, a and Prf be as in Theorem A, and let u
€ C((0,T1;DJ(A.)) with ¢ 20, 0 > ¥,

By nm we denote the set of all pairs (a,8) satisfying (7.1). When
(0,8) € W, by Lemma 7 we see that u € Cl~a—6((O,T];Dg(Ar)) for any 0O
£ a < 1-8. Otherwise, there is a finte sequence of numbers such that

®, <0, (al,Bl) €W, o <@, < pyi=1- max{Bl,s},
(az,Bz) € W, 81 > 82, o, <@g < 1 - max{Bz,é}. e,
g <o <1 - max{Bk_l,a}. (ak.s) € T,
Since (al,Bl) € 1, ®y < My and u € C((O,T];D?l(Ar)), by Lemma 7 we

M-

o
have u € C 2((O.T];D12(Ar)). Hence, considering that (az,Bz) €

Ha~3 %3 .
and Gy < M,, We have u € C ((O,T];D1 (Ar)) by Lemma 7. Repeating
this argument, we finally have u € C“-a((O,T];Dg(Ar)) for any 0 < ¢ <
p:= 1-6, and we have proved Part (1i).

Proof of Part (ii). Assume now that Prf € Cu((O.T];Xr). v > 0.
Since u € Cl—a((O,T];Dg(Ar)) for any 0 £ ¢ < 1 by Part (i), and since
we can choose a positive number o so that max{1/2,n/4r+1/4,7} < o <
1, it follows from Lemma 5.2 that F(u,u) € Cl—a((O,T];Xr). By (7.2),

Lemma 3.2 and Remark 3 we have the conclusion of Part (ii).
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8. Proof of Theorem C
For simplicity, we assume that Prf = 0. The proof when Prf # 0

is essentially the same. Let u(t) be a solution of (II) such that

u € C((O,T];D;(Ar)) for some non-negative number ¢ with o > %; - %.

Theorem B gives that u € Cl—a((O,T];Dg(Ar)) for any 0 £ ¢ < 1. Since

%? - % < ¥ < 1, we can choose positive numbers s and o so that n < s

< @ and 0 £ %? - %E < oo < 1. Hence it follows from Lemma 4.6 that

ct™®((0,71:0%(A,)) € cl"“((o,T];Da'(As)) with «' = o -

1
and o' > %E - %. By using Theorem B once more we have u €

+

n_ n_
2r 2s’

Cl—a((O,T];D%(AS)) for any 0 £ o < 1. Thus, by replacing s by r we
may assume that r > n and a € DI_(Ar).
(8.1) u € Cl_a((O,T];DT(Ar)) for any 0 < o < 1,

and u satisfies
t

(8.2) u(t) = T(t)a + I T(t-s)F(u(s),u(s))ds.
0

Now we are going to prove the theorem. It is obvious that

' ® .p% n_ 1 n_
T(t)a € C ((O’T]'Dl(Ar))' As 5F * 3 < 1, we can take o so that o = 5T

. %. Then by (8.1) and Lemma 5.2 we have F(u,u) € cl““((o.T];xr).

Therefore, for any 0 < g < T, 1in view of (7.2), by Lemma 3.2 we have

u € Cz—za((e,T];Dg(Ar)). As g can be taken arbitrarily small, we have
Cz-za((O.T];Dg(Ar)). By repeating the above argument k times, we have
F(u,u) € K™ ((0,11:x) and u e K"+ (o 17;p%(a )).

Hence, we have
(8.3) u € c7((0,T1;05(A)),
(8.4) F(u,u) € C7((0,T1;X,).
Since o > %?, it follows from lemma 4.3 and Lemma 1 (iii) that

.the map: {u,v} - (u,v)v is continuous from D?(Ar)ng(Ar) into
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B?ail(ﬂ). Hence, by (8.3) and Leibniz's rule we have
’ -1

(8.5) (u(t),9u(t) € c*((0,T1:B2% 1 (@),

which means, with the aid of Lemma 4.1, that
200-1

(8.8) F(u,u) € c"’((o,T];lBr L),
Since u, € Cm((O,T];Bial(Q)) by lemma 4.3 and (8.3), and since Aru(t)
= F(u(t),u(t)) - ut(t) (see Theorem B), Lemma 4.2 gives that u €

Cm((O,T];Bgail(Q)). By the same reasoning as in the proof of (8.5) we

have (u(t),v)u(t) € C”((O.T];Bi?l(ﬂ)), so we have AU = F(u,u) - u, €

Cm((o.T];Bi?l(Q)), hence u € c”((o,T];Bf?Iz(Q)). Repetition of this

argument finally gives that u € Cm((O.T];BrTl(Q)), and Theorem C is

proved.
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