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Linearized Stability for Nonlinear Evolution Equations

and Semilinear Boundary Value Problems

Nobuyuki Kato ({7 E3%)

Department of Mathematics, Shimane University, 690, Japan

Introduction

We are concerned with a linearized stability for semilinear boundary value evolution prob-

lems of the form:

(d/dt)u(t) = Au(t) + F(u(t)), Lu(t)=®(u(t)), t>0,
(BE) |
u(0) = =,.
Recently, Greiner [G1] has investigated this problem and obtained the linearized stability
for it. Also, Thieme [Th| has treated this problem as a semilinear efolution problem
with non-densely defined linear operator and obtained the linearized stability as well. But
their hypotheses are a little different. Greiner [G1] imposed the assumption on ®'(z) o A4,
while Thieme [Th] made a condition on L instead. Thieme’s condition is similar to one
assumed by Greiner [G2] in linear case. Here we are going on the line of Thieme, but
for simplicity, we will assume on L the same condition as in [G2]. The purpose here is
to give a different approach based on the theory of nonlinear evolution equations of the
form (d/dt)u(t) + Bu(t) = 0, where B is a quasi-m-accretive operator. Recently, the
author [K1] has obtained a principle .of linearized stability for such a nonlinear evolution
equation, which is introduced in §1. We will show how the abstract boundary value
evolution equations such as (BE) can be treated as a nonlinear framework and obtain the

linearized stability for (BE).
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1. Nonlinear evolution equations

In this section, we review a main result of [K1]. Let (X,|-|) be a Banach space and
B : D(B) C X — X be a single-valued nonlinear operator such that B + wI is m-accretive
for some w > 0. In this section, we consider the nonlinear evolution equation

(E) (d/dt)u(t) + Bu(t) =0, t>0.

We call % a stationary solution of (E) if # € D(B) and B = 0. Throughout this section,
we fix a stationary solution % of (F) and investigate the asymptotic stability of z. We

assume the following hypotheses:

(H1) There exists an open ball Us(%) of radius § with center @ such that for each = €
Us(%) N D(B), there exists a linear operator dB(z) : D(6B(z)) C X — X such that

0B(z) + wl is m-accretive and
G(0B(=)) = limt™*[G(B) - (=, Bz)],

where G stands for the graph of operators and the lim;q is taken in the sense of set

sequences. dB(z) is called the proto-derivative of B at z. See [R] (or [K1]).

(H2) There exist a Az > 0 and a nondecreasing function Ly : [0,00) — [0,00) such that
(I + A0B(z)) v — (I + A0B(2)) 1v| < Az — z|La(|v|)

for 0 <A< Ag,2,2€ Us(a)ND(B),veX.
~ Recall that B generates a nonlinear semigroup {S(t)} on D(B) such that |S(t)z — S(t)y| <
e“*|z — y|, by the Crandall-Liggett theorem.

Definition. We say that the stationary solution % is exponentially asymptotically stable

if there exist constants n > 0, C > 1, a > 0 such that
|S(t)uo — &| < Ce™*|ug — 4]
for ug € D(B) with |ug — 4| <7, and t > 0.

A principle of linearized stability for (E) obtained in [K1] is as follows:
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Theorem 1. Assume the above hypotheses (H1) and (H2). If there exist ¥ > 0 and
M > 1 such that the proto-derivative —§B(u) of —B at 4 is the infinitesimal generator of
a (Co)-semigroup {T'(t)} such that || T'(t)|| < Me™"%, then i is exponentially asymptotically

stable.

2. Semilinear boundary value evolution problems

In this section, we consider the following abstract evolution equations with semilinear

boundary conditions:
{ (d/dtyu(t) = Au(t) + F(a(t)), Lu(t) = B(u(t)), >0,

u(O) = Zyp.

(BE)

We assume the following basic assumptions:
Al (a) X, Y, 0X are Banach spaces. Y is densely and continuously embeded in X.

(b) A:Y — X is a bounded linear operator.

(c) F : X — X is continuously Fréchet differentiable (in the sense defined below).

(d) L:Y — 80X is a bounded linear surjection.

(e) ® : X — 0X is continuously Fréchet differentiable (in the sense defined below).
Here, an operator K : X — Z is said to be continuously Fréchet differentiable if for any
é € X, there exists K'(¢) € L(X,Z) such that K(¢ + k) = K(¢) + K'(¢)h + ox(R),
h € X, where ox : X — Z, |ox(h)|z < bx(7)|k| for |h| < 7, and bx : [0,00) — [0,00)
is a continuous increasing function satisfying bx(0) = 0; and there exists a continuous
increasing function d : [0, 00) — [0, 00) such that || K'(¢) — K'(¥)||c(x,2) < dx(r)|é— ¥,
for |4, [¥] < 7.

A2 Ay := Alkerr is the infinitesimal generator of a (Cp)-semigroup {To(¢)}.
A3 There exist constants vy > 0 and g € R such that |Lz|sx > pv|z| for any p > po and

z € ker(p — A).

The conditions Al and A2 are the same ones as assumed in [G1]. The condition A3 is the

one assumed in [G2, (2.1)] in linear case. We may change it by the similar condition as
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assumed by Thieme [Th, Assumptions 6.1 (d)]. In stead of A2, by the standard renorming,
we may assume without loss of generality that
A2’ —Aq is m-accretive in X.

The solution we employ is the mild solution defined by Greiner [G2] (Thieme [Th]

called the ‘integral solution’).

Definition. A function u € C([0,T); X) is called a mild solution of (BE) iffot u(s)ds €Y,
u(t) =29+ A(j: u(s)ds) + _[; F(u(s))ds, and L(f; u(s)ds) = fot ®(u(s))ds fort € [0,T).

Applying Theorem 1, we can obtain a similar result by Thieme [Th]|:

Theorem 2. Let u be a stationary solution of (BE), that is4 € Y, Az + F(u4) = 0, and
Lu = (). If the growth bound of the semigroup generated by By := A+ F'(@)|xex(L-%'(a))
is less than 0, then u is exponentially asymptotically stable in the sense that there exist
constants 7 > 0, C > 1 and a > 0 such that if |29 — 4| < 7, then the mild solution u(t) of
(BE) with initial data zq exists for all t > 0 and satisfies |u(t) — &| < Ce™*|zg — @] for
allt > 0.

3. Proof of Theorem 2

Let £ > 0. Then p belongs to the resolvent set of 4. By [G2, Lemma 1.2], one has
D(A) = D(Ao) ® ker(p — A) and Llyer(u—4) is an isomorphism of ker(u — A) onto 9X.
Therefore, L, := (Llxer(u-4))"" : 8X — (ker(p — A),| - |y) is continuous by the open
mapping theorem, and hence, L, is also continuous from §X into (X, |- |). Note that, by
A3, we have ||L,||c(ox,x) < 1/py for p > max{0, po}.

Let @ be a stationary solution of (BE), that is 2 € D(A4), A + F(a) = 0, and
Lu = &(u). Choose 7o > 0 such that |&| < ro and define the radial truncations of F and
® by

C(F@) i < 8(4) |6l < e
Fo(#) '“{F(ro¢/|¢|) i g >r,  2009) '_{‘I’("od’/l‘ﬁl) it 1] > ro.
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It is known that Fy and &, are globally Lipschitz continuous on X and continuously Fréchet
differentiable on the ball U,,(0) in X with the derivatives F'(z), ®'(z) for € U,,(0). See
e.g. [W, Proposition 3.10].

Lemma 3.1. For p > max{uo, ||®ollLip/7}, I — L. Po is invertible and the inverse (I —
L,®0)7! is Lipschitz continuous with constant py/(py — ||®o||Lip). Further, if z € D(A),
then (I — L,®0)" 'z € D(4).

Now define an operator B on X by

B¢ = —A¢p — Fo(4), for ¢ € D(B):={¢ € D(4)| L¢ = ®o(¢)}

Proposition 3.2. B + wl is a densely defined m-accretive operator in X, where w =

1RollLip /7 + || Follzip-

Proof. Firstly, we show the range condition R(I+AB) = X for sufficiently small A > 0. Let
y € X. For z € D(A), define an operator K : D(A) — D(A) by Kz = (I — L, %) (I —
AA)"Y(AFo(z) +y), where p = 1/X and X is sufficiently small. We want to seek the fixed
point of K and it is easily seen that K is a contraction. Next, we show that B + w/I is
accretive in X. We should remark that for sufficiently small A > 0, (I+ AB)"': X —» X

is well-defined as a single-valued operator and it satisfies
(I+AB) 'y =(I—L,®0) (I - A4o) '(AFo((I+AB) 'y) +9),

where p = 1/X. Let z; = (I + AB)~!y; for i = 1,2. Using the above relation, we get
(1 — Aw)|21 — z2| < |y1 — ¥2|, which shows B + wI is accretive.

Finally, after a little long calculation, we can show that
Lim (7 + AB) 'y=y, VyeX,

which guarantees that D(B) = X. O
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In the following, J represents the resolvent (I + AB)~!. Choose » > 0 so small that
|a| + » < ro. Then u € U, (@) implies u € U,,(0). For u € D(B) N U, (), define a linear
operator dB(u) : X — X by

8B(u)h = —Ah — F'(u)h for h € D(0B(w)) := {h € D(4) | Lh = &' (u)h}.

Then by the same reason as above proposition, we have

Proposition 3.3. With w, := ||®'(u)||c(x,0x)/7 + || F'(%)||, 8B(u) + w,I is m-accretive
in X.

Lemma 3.4. Let Ag = 1/ max{po,1/2w} and set £ := {v € X | hav € U,(u),0 < A <
Ao}. Then Jy is Géateaux differentiable on E and has a Géteaux derivative dJ(v)h =
(I+A0B(Jav)) thforve E,h€ X,0< A < Ap.

Proposition 3.5. For u € D(B) NU, (%), G(8B(u)) = lim; ot~ }[G(B) — (v, Bu)].

Proof. Let v = (I + AB)u for v € D(B)NU,(%) and 0 < A < Ag. By Lemma 3.4,
dJx(v)h = (I + A0B(Jxv))"'h. Define ¥)(z,y) = (2 + Ay,z). Then by [K2, Lemma
4.1], we obtain lim,ot~ [T (G(J2)) — ¥ (v,Jav)] = ¥;1(G(dJxr(v))). This reads as
limejo ¢~ [G(B) — (Jyv, BJAv)] = G(OA(Jyv)), which is the result. O

Combining Propositions 3.3 and 3.5, we have
Proposition 3.6. §B(u) + wI is m-accretive in X for w € D(B) N U, ().
Finally, we get
Proposition 3.7. There exist Az > 0, §; € (0,7] such that
[(I+A0B(2)) v — (I + A0B(u))~"v| < 4X(dr(ro) + dz(r0))lz — ullv|
for 0 < A < Ag, z,u € Us, (@) N D(B) and v € X.

Consequently, the hypotheses (H1) and (H2) in §1 with § = §; are fulfilled. Let

{S(t)} be a nonlinear semigroup generated by —B and put u(t) := S(t)zo for z¢9 € X.
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By Proposition 4.1 in the next section, we can characterize u(t) as the mild solution of
(BE) with Fy and ®¢ instead of F and ®. If u(t) lies in the ball U, (0), then u(t) is a
mild solution of the original problem (BE) since Fy and ®, are identical to F and ® on
U,,(0), respectively. Since B; = —0B(u), we achieve the proof of Theorem 2 by applying
Theorem 1.

4. Semigroups and mild solutions
In this section, we characterize the semigroup solution generated by the quasi-m-accretive

operator B as the mild solution. More precisely, we show the following

Proposition 4.1. Let u(t) := S(t)z for z € X, where S(t) is the semigroup generated
by —A defined in §2. Then u(t) € C([0,00); X) satisfies f; u(s)ds € Y, u(t) = 2 +
A(fot u(s)ds + f; Fou(s)ds, and L(f; u(s)ds) = fot ®ou(s)ds for allt > 0.

Let X = 8X x X be a Banach space with norm ||(z,y)|| = |2z|ex + |y|. Define an
operator A on X by

A(0,y) = (—Ly, Ay) for (0,y) € D(A) := {0} x D(4).

Note that D(A4) = {0} x X. Define F : {0} x X — X by F(0,y) = (Poy, Foy). Let
B = —(A+ F) and let By denote the part of B on {0} x X, i.e.,

D(Bo) = {(0,y) € D(A) | (A + F)(0,9) € {0} x X},

Bo(0,y) = —(A + F)(0,y).

If we identify {0} x X with X, By can be identified with B defined in §2. Hence by

Proposition 3.2, we have

Proposition 4.2. By+wZ ism-accretivein {0} x X, wherew = |‘§0||Lip /7+||Fol|lLip and T
stands for the identity in {0} x X. Furthermore, D(By) = {0} x X, and (T +ABy)~1(0,2) =
(0,(I +AB)"12).
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Now, we are going to prove Proposition 4.1. By Proposition 4.2, By generates a

nonlinear semigroup {S(¢)} on {0} x X by the exponential formura

8(t)(0,y) = lim (T + %Bo)'”(O,y)

= lim (0,(7 + %B)‘”y) =(0,5(t)y).

By Thieme [Th, Lemma 6.2], it is shown that the part Ay of A in {0} x X generates a
strongly continuous semigroup {7o(¢)} on {0} x X such that T¢(t)(0,2) = (0,To(t)z),
where {Tp(t)} is the semigroup generated by Aq, and

To(t)(0,2) = lim (T— Z4)™(0,2), ¥(0,2) € {0} x X.
Since
(T =AM HT = Z(A+F))(0,2) = (T- M) NI~ ZA)™(0,2)
t « t ; t .
e _ P nm=-it)r -1 _ -3
+ - ;(z ~A) (Z =2 FH(IT - ~(A+ F) 70, 2),
passing to the limit n — co, we have

(T — AA)~18(£)(0,2) = (T — M)~ T o(t)(0, =)

+ /0 CTot - 8)(T — M) FS(s)(0, 2)ds.
Hence letting A | 0 implies
S(t)(0,2) = To(t)(0,2) +l§ﬁ} /o t To(t — 8)(T — AA) "1 FS(s)(0, z)ds.
As shown in [Th], this is equivalent to the fact that fo‘ S(s)(0,2)ds € D(A) and
S()(0,2) = (0,2) + A( /0 t S(s)(0,2)ds) + /0 " FS(s)(0,2)ds, ¢ > 0.
This is translated as [, S(s)ds € D(4) and

Stz =2+ A(/ot S(s)zds) + /0‘ FoS(s)zds

L(/ot S(s)eds) =/Ot BoS(s)eds. O
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