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One of the main goals in Dynamics is to find the asymptotic behaviour of the

motions. Here we will be concerned with the autonomous differential equation

$\dot{x}=f(x)$ (1)

for a $C^{1}$ vector field $f:\mathbb{R}^{n}arrow \mathbb{R}^{n}$ , and the problem of determining or estimating the

basin of attraction of its asymptotically stable equilibria, that is, the set of initial data

for which the trajectory converges to the equilibrium as $tarrow+\infty$ . It is well-known from

Liapunov Stability Theory that an equilibrium point attracts a whole neighbourhood

whenever the eigenvalues of the Jacobian matrix $f’(x)$ of $f$ have strictly negative real

parts in that point. In this case one says that the equilibrium point is a “sink “. A sink

for equation (1) which attracts the whole space $\mathbb{R}$ “ can be called a “global sink “.
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Beyond the elementary local result, the planar case $n=2$ is still field of research.

In other words, the dimension 2 is already difficult for the current state of the art. In

particular, it is an open problem whether strictly negative real parts of the eigenval$u$es

of $f’(x)$ for all $x\in \mathbb{R}^{2}$ (that we call here global $Ja$ cobian condition) imply that the

$eq$uilibrium point is a global sink. The conjecture goes back to Krasovskij (1959) and

Markus and Yamabe (1960), and has been answered positively only with additional

assumptions in those papers and in some later works.

The paper Olech (1963), which is perhaps the most important contribution to the

problem, proved in particular that if a given $f$ satisfies the global Jacobian condition

and is one-to-one, then its equilibrium point (there cannot be more than one, of course)

is globally attractive. Conversely, if $f$ were not one-to-one, i.e., $f(x_{1})=f(x_{2})$ for some
$x_{1}\neq x_{2}$ , it is clear that the vector field $xrightarrow f(x)-f(x_{1})$ would have the same Jacobian

matrix as $f$ , but two equilibrium points, neither of which attracts the other. The

global attractivity planar conjecture is then equivalent to the following global injectivity

conjecture: does the global Jacobian condition imply that $f$ is one-to-one?

Meisters and Olech (1988) proved the conjecture in the polynomial case using Olech

(1963).

Among the other relevant papers on this and on related topics such as the Jacobian

conjecture of Algebraic Geometry for polynomial mappings, we refer the reader, with

no claim to a complete list, to Hartman (1961), Olech (1964), Meisters (1982), Gasull

et al. (1991), Gasull&Sotomayor (1990), Gutierrez (1992), Druzkowski (1991).

Proving global asymptotic stability for arbitrary dimension $n\geq 2$ is of great im-

portance for the applications. Some results of this kind are proved in Hartman&Olech

(1962), which generalizes the results of Olech (1963) and also gives other results re-

lated to Borg (1960). Hartman’s book (1982) devotes part of the last chapter to global

asymptotic stability. In the sequel we consider the planar case only.

In their (1992) paper, the authors introduce the $2\cross 2$ matrix function

$g(x):=I+ \frac{f’(x)^{T}f’(x)}{\det f(x)}$ , (2)

(I is the identity $2\cross 2$ matrix, the symbol $T$ means transposition and $\det$ means deter-

minant) and contribute a new approach to the global injectivity side of the conjecture,
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based on the remarkable properties that $g$ enjoys when $f$ is a planar vector field sat-

isfying the global Jacobian condition. The main result can be described as follows: if

a function $f$ satisfies the global Jacobian condition and if the norm of the associated

matrix $g(x)$ is bounded or, at least, grows slowly (for instance, linearly) as $|x|arrow+\infty$ ,

then $f$ is one-to-one and, by the theorem in Olech (1963), its equilibrium point (if it

exists) is globally attractive. The exact statement is:

Theorem. Let $f$ : $\mathbb{R}^{2}arrow \mathbb{R}^{2}$ be a $C^{2}$ map with $f(O)=0$ and such that the real

$p$arts of the eigenvalues of $f’(x)$ are strictly negative at every $x\in \mathbb{R}^{2}$ . Moreo$ver$,

let us $assume$ that th$ere$ exist a poin $t\overline{x}\in \mathbb{R}^{2}$ and a function $K:[0,$ $+\infty[arrow[0,$ $+\infty[$

such that, for the $g$ given by formula (2),

(i) $\Vert g(x)\Vert\leq K(|x-\overline{x}|)$ ;

(ii) $K$ is $weai_{1}\sqrt y$ in $cre$asing;

(iii) $\int_{0}^{+\infty}\frac{1}{K(r)}dr=+\infty$ .

Then $f$ is one-to-one, and $x=0$ is globally asymptotically stable for $\dot{x}=f(x)$ .

The theorem is obtained by introducing an auxiliary boundary value problem, and by

using a simple topological degree argument. We hope that this strategy can lead to

more general results.

No new positive result is presented in this note, but we conclude with an example

that addresses the side issue of surjectivity (or, rather, non-surjectivity), of $f$ . This is

partly because the examples accompanying the theorem in the original paper happen

to be all onto $\mathbb{R}^{2}$ and because the statement itself does vaguely remind of Hadamard’s

celebrated theorem, according to which $f:\mathbb{R}^{n}arrow \mathbb{R}^{n}$ is bijective whenever $f’(x)$ is always

nonsingular and 1 $f’(x)^{-1}\Vert\leq K(|x|)$ for a function $K$ as above. To dispel the doubt

that surjectivity may be implied by our theorem, we show a function $\mathbb{R}^{2}arrow \mathbb{R}^{2}$ which

satisfies the hypotheses but is not onto.
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Example. Define the function $f$ : $\mathbb{R}^{2}arrow \mathbb{R}^{2}$

$f(x)$ $:=-\varphi(r)x$ , where $x=(\begin{array}{l}\xi\eta\end{array})\in \mathbb{R}^{2}$ , $r=\sqrt{\xi^{2}+\eta^{2}}$ ,

$\varphi(r)$ $:=\{\begin{array}{l}r^{-1}arctanrforr\neq 0lforr=0\end{array}$

It is easily seen that $\varphi$ and $f$ are analytic and that $f$ is one-to-one. It is not onto $\mathbb{R}^{2}$

because $|f(x)|<\pi/2$ . The Jacobian matrix $f’(x)$ is

$f^{/}(x)=(\begin{array}{ll}-\varphi’(r)\frac{\xi^{2}}{r}-\varphi(r) -\varphi’(r)\frac{\xi\eta}{r}-\varphi’(r)\frac{\xi\eta}{r} -\varphi’(r)\frac{\eta^{2}}{r}-\varphi(r)\end{array})$ ,

whose trace and determinant are

tr $f’(x)=-2 \varphi(r)-r\varphi’(r)=-\varphi(r)-\frac{1}{1+r^{2}}<0$ ,

$\det f’(x)=\varphi(r)(r\varphi’(r)+\varphi(r))=\frac{\varphi(r)}{1+r^{2}}>0$ .

If $R$ is an orthogonal $2\cross 2m$atrix, we have $f(Rx)=Rf(x)$ , whence

$f’(x)=R^{T}f’(Rx)R$ , $g(x)=R^{T}g(Rx)R$ ,

where $g(x)$ is the matrix in formula (2). Thus the eigenvalues and the operator norm

of $g(x)$ are unaffected by a rotation of $x$ . Then we can limit ourselves to compute them

for $x=(\xi,0),$ $\xi\geq 0$ , where $g$ is diagonal:

$g(\xi, 0)=(^{1+\frac{r}{(1+r^{2})\arctan r}}0$
$1+ \frac{1+r^{0_{2}}}{r}$

arctan
$r)$ .

The function $rrightarrow r^{-1}(1+r^{2})$ arctan $r$ is nondecreasing on [$0,$ $+\infty[and$ it is $\geq 1$ , so that

the norm of $g$ , which coincides with its greater eigenvalue, is:

$\Vert g(x)\Vert=1+\frac{1+r^{2}}{r}$ arctan $r$ ,

and it is obvious that, if $\overline{x}=0$ , the best possible choice for the function $K$ of the

theorem above is
$K(r)=1+ \frac{1+r^{2}}{r}$ arctan $r$ ,

for which the integral condition (iii) is verified:

$\int_{0}^{+\infty}\frac{1}{K(r)}dr=\int_{0}^{+\infty}\frac{r}{r+(1+r^{2})\arctan r}dr=+\infty$ .
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