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Parabolic Variational Inequality for the Cahn-Hilliard Equation
with Constraint

N. KENMOCHI, M. NIEZGODKA

and

I. PAWLOW

1. Introduction

In this paper we study the Cahn-Hilliard equation with constraint by means of subdifferential
operator techniques. Such a state constraint problem was resently proposed by Blowey-
Elliott [1] as a model of diffusive phase separation. The questions of the existence, uniqueness
and asymptotic behaviour of solutions, treated in [1] for the special case of the deep quench
limit, are considered in our paper without such a restriction.

The standard Cahn-Hilliard equation is a model of diffusive phase separation in isother-
mal binary systems, and in terms of the concentration $u$ of one of the components it has the
form

$u_{t}+\nu\Delta^{2}u-\Delta f(u)=0$ in $Q_{T}=(0,T)x\Omega$ . (1.1)

Here $\Omega$ is a bounded domain in $R^{N},$ $N\geq 1$ , with a smooth boundary $\Gamma=\partial\Omega,$ $\nu$ is a
positive constant related to the surface tension, $f(u)$ corresponds to the volumetric part of
the chemical potential diflerence between components and is given by

$f(u)=F’(u)$ , (1.2)

where $F(u)$ is a homogeneous (volumetric) free energy parametrized by temperature $\theta$ , with
the characteristic double-well form for $\theta$ below the critical temperature $\theta_{c}$ . Usually the free
energy is approximated by polynomials $F$ : $Rarrow R$ , e.g. in the simplest case by quartic
polynomial

$F(u)=F_{o}(\theta)+\alpha_{2}(\theta-\theta_{c})u^{2}+\alpha_{4}u^{4}$ (1.3)

with constants $\alpha_{2},\alpha_{4}>0$ and a given function $F_{o}(\theta)$ of temperature. To preserve an explicit
physical sense, the state variable $u$ often is subject to some constraints, e.g. in the case of
concentration natural limitation is

$0\leq u\leq 1$ . (1.4)

Then the free energy $F(u)$ can be assumed in the form of the so-called regular solution model

$F(u)=F_{o}(\theta)+\alpha_{o}\theta[u\log u+(1-u)\log(1-u)]+\alpha_{1}(\theta-\theta_{c})u(u-1)$ (1.5)

with a function $F_{o}(\theta)$ and positive constants $\alpha_{o},$ $\alpha_{1}$ . The corresponding form of the chemical
potential $f(u)$ is shown in Fig. 1. Moreover, as the deep quench limit of (1.5), i.e. as the
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$(b)$

$tX(t, v(t))+ \int_{0}’\tau|v’(\tau)|_{\gamma\star}^{2}d\tau\leq\int_{0}^{t}\{\tau|\alpha’(\tau)|+X(\tau, v(\tau))\}d\tau\cdot\exp(\int_{0}^{t}|\alpha’(\tau)|d\tau)$

for all $t>0$ ,

and
$X(t, v(t))+ \int^{t}|v’|_{\gamma\star}^{2}d\tau\leq\{X(s, v(s))+\int_{s}^{t}|\alpha’(\tau)|d\tau\}\cdot\exp(\int^{t}|\alpha’(\tau)|d\tau)$ (2.1)

for all $0<s<t$ .
In particula $r$, if $v$. $ED$ , then (2.1) holds for $0=s<t$ , too.

The third theorem is concerned with the large time behaviour of the solution $v(t)$ of (VI).

Theorem 2.3. In addition to the assumptions $(\varphi 1)-(\varphi 3)$ and (p) suppose that $\alpha’\in L^{1}(R_{+})$ ,
and

$(\varphi 4)\varphi^{t}$ converges to a proper $l.s.c$ . convex function $\varphi^{\infty}$ on $H$ in the sense of Mosco [11] as
$tarrow\infty,$ $i.e$ .
$(Ml)$ for any $z\in D(\varphi^{\infty})$ there exists a function $w:R+arrow H$ such that $w(t)arrow z$ in
$H$ and $\varphi^{t}(w(t))arrow\varphi^{\infty}(z)$ as $tarrow\infty$ ;
$(M2)$ if $w:R_{\star}arrow H$ and $w(t)arrow z$ weakly in $H$ as $tarrow\infty$ , then $\lim\inf_{tarrow\infty}\varphi^{t}(w(t))\geq$

$\varphi^{\infty}(z)$ .
Let $v$ be the solution of (VI) on $R_{\star}$ associated with initial datum $v_{o}\in D_{\star}$ , and denote by
$\omega(v_{o})$ the $\omega$ -limit set of $v(t)$ in $H$ as $tarrow\infty,i.e$ . $\omega(v_{o}):=\{z\in H;v(t_{n})arrow z$ in $H$ for some
$t_{\mathfrak{n}}$ with $t_{n}arrow\infty$ }. Then $\omega(v_{o})\neq\#$ and

$\partial\varphi^{\infty}(v_{\infty})+p(v_{\infty})\ni O$ for all $v_{\infty}\in\omega(v_{o})$ .

Finally we give a result on the continuous dependence of solutions of (VI) upon the data
$v_{o},$

$\{\varphi^{t}\}$ and $p(\cdot)$ .

Theorem 2.4. Let $\{\varphi_{n}^{t}\}$ be a sequence of families of $p$ roper $l.s.c$ . convex functions on $H$

such that conditions $(\varphi 1)-(\varphi 3)$ are satisfied for common positive constants $C_{o},$ $C_{1}$ and a

common function $\alpha\in W_{1oc}^{1,1}(R_{+})$ . Also, let $p_{n}$ be a sequence of Lipschitz continuous operators
in $H$ such that condition (p) is satisfied for a common Lipschitz constant $L_{o}>0$ and a non-
negative $C^{1}$ -function $P_{\mathfrak{n}}$ on H. Suppose that for each $t\leq 0,$ $\varphi_{n}^{t}$ converges to $\varphi^{t}$ on $H$ in the

sense of Mosco as $narrow\infty,$ $i.e$ .
$(ml)$ for any $z\in D$ , there exists $\{z.\}CH$ such that $z_{n}\in D_{n}(=D(\varphi_{n}^{t})),$ $z_{\mathfrak{n}}arrow z$ in $H$

and $\varphi_{n}^{t}(z_{\mathfrak{n}})arrow\varphi^{t}(z)$ as $narrow\infty$ ;

$(m2)$ if $z_{\mathfrak{n}}\in H$ and $z$. $arrow z$ weakly in $H$ as $narrow\infty$ , then $\lim\inf_{narrow\infty}\varphi_{n}^{t}(z_{n})\geq\varphi^{t}(z)$ .

Furthermore suppose that for each $z\in H$ ,

$p.(z)arrow p(z)$ in $H$ , $P_{n}(z)arrow P(z)$ as $narrow\infty$ .
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The cases $(1.3),(1.5)\wedge$ and (1.6) of free energies can be written in the form (1.7) with
appropriate functions $\beta$ and $\hat{g}$ , and these special cases have been studied by Blowey-Elliott
[1] and Elliott-Luckhaus [5].

2. Abstract results

We shall study evolution system $(1.8)-(1.10)$ in an abstract framework.
Let $H$ and $V$ be (real) Hibert spaces such that $V$ is densely and compactly embedded

in H. $V^{\star}$ will be the dual of $V$ . Then, identifying $H$ with its dual, we have

$V\subset H\subset V^{\star}$

with dense and compact injections. Further, let $J^{\star}$ be the duality mapping from $V^{\star}$ onto $V$ ,
and for $t\in R_{+}=[0, \infty$), let $\varphi^{1}(\cdot)$ be a proper, l.s. $c.$ , non-negative and convex function on
$H$ . We shall consider the following problem (VI):

$\{v(0)=vJ^{\star}(v’(t))_{o}+\partial\varphi^{t}(v(t))+p(v(t))\ni 0$
in $H,$ $t>0$ ,

where $v‘=( \frac{d}{dt})v,$ $\partial\varphi^{t}$ is the subdifferential of $\varphi^{t}$ in $H;p(\cdot)$ : $H^{:}arrow H$ is a Lipschitz
continuous operator and $v_{o}$ a given initial datum.

When it is necessary to indicate the data $\varphi^{t},p$ and $v_{o}$ explicitly, (VI) is denoted by
$(VI;\varphi^{t},p,v_{o})$ .

Throughout this paper we use the following notations:
$(\cdot, \cdot)$ : the inner product in $H$ ;
( $\cdot,$

$\cdot\rangle$ : the duality pairing between $V^{\star}$ and $V$ ;
$|\cdot|_{W}$ : the norm in $W$ for any normed space $W$ ;
$J$ : the duality mapping from $V$ onto $V^{\star}$ , hence $J^{\star}=J^{-1}$ .

We use some basic notions and results about monotone operators and subdifferentials of
convex functions; for details we refer to Br\’ezis [2] and Lions [10].

We shall discuss (VI) $=(VI;\varphi^{t},p)v_{o})$ under the following additional hypotheses:

$(\varphi 1)$ The effective domain $D(\varphi^{t})(=\{z\in H;\varphi^{t}(z)<\infty\})$ of $\varphi^{t}$ is independent of $t\in$

$R_{+},$ $D:=D(\varphi)\subset V$ and

$\varphi^{t}(z)\geq C_{o}|z|_{V}^{2}$ for all $z\in V$ and all $t\in R+$ ’

where $C_{o}$ is a positive constant.

$(\varphi 2)(z_{1}^{\star}-z_{2}^{\star}, z_{1}-z_{2})\geq C_{1}|z_{1}-z_{2}|_{V}^{2}$ for all $z;\in D,$ $z^{\star}\in\partial\varphi^{t}(z_{i}),$ $i=1_{1}2$ , and all $t\in R+$ ,
where $C_{1}$ is a positive constant.

$(\varphi 3)$ There is a function $\alpha\in W_{loc}^{1,1}(R_{+})$ such that

$\varphi^{t}(z)-\varphi^{s}(z)\leq|\alpha(t)-\alpha(s)|(1+\varphi^{s}(z))$

for all $z\in D$ and $s,$ $t\in R_{+}$ with $s\leq t$ .
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(p) $p$ is a Lipschitz continuous operator in $H$ and there is a non-negative $C^{1}$ -function
$P:Harrow R$ whose gradient coincides with $p$ , i.e. $p=\nabla P$ ; hence

$\frac{d}{dt}P(w(t))=(p(w(t)))w’(t))$ for $a.e$ . $t\in R$ , if $w\in W_{loc}^{1,2}R_{+};H$ ).

We now introduce a notion of the solution in a weak sense to problem (VI).

Deflnition 2.1. (i) Let $0<T<\infty$ . Then a function $v$ : $[0, T]arrow H$ is called a solution
of (VI) on $[0,T]$ , if $v\in L^{2}(0,T;V)\cap C([0,T];V^{\star}),$ $v’\in L_{loc}^{2}((0,T$] $;V^{\star}$ )

$,$

$v(0)=v_{o},$ $\varphi^{()}(v)\in$

$L^{1}(0,T)$ and
$-J^{\star}(v’(t))-p(v(t))\in\partial\varphi^{t}(v(t))$ for $a.e$ . $t\in[0, T]$ .

(ii) A function $v:R+arrow H$ is called a solution of (VI) on $R_{+}$ , if the restriction of $v$ to
$[0, T]$ is a solution of (VI) on $[0,T]$ for every finite $T>0$ .

Our results for (VI) are given as follows.

Theorem 2.1. Assume that $(\varphi 1)-(\varphi 3)$ and (p) are satisfied. Let $T$ be any positive number.
Then the following two statements $(a)$ and $(b)$ hold:

$(a)$ If $v_{o}$ is given in the $clo$sure $D_{\star}$ of $D$ in $V_{J}^{\star}$ then (VI) has one and only one solution
$v$ on $[0,T]$ such that

$t^{\}}v’\in L^{2}(0, T;V^{\star})$ , $\sup_{0<t\leq T}t\varphi^{\ell}(v(t))<\infty$ .

$(b)$ If $v_{o}\in D$ , then the solution $v$ of (VI) on $[0, T]$ satisfies that

$v’\in L^{2}(0, T;V^{\star})$ , $\sup_{0\leq t\leq T}\varphi^{t}(v(t))<\infty$ ;

hence $v\in C([0,T];H)$ .

The second theorem is concerned with the energy inequality for (VI).

Theorem 2.2. Assume that $(\varphi 1)-(\varphi 3)$ and $(p)$ hold. Let $v$ be the solution of (VI) on $R+$

associated with initial datum $v_{o}\in D_{\star}$ . Define
$X(t,z)=\varphi^{t}(z)+P(z)$ for $z\in D$ and $t\in R+\cdot$

Then: $(a)$

$\sup_{0\leq\tau\leq t}|v(\tau)|_{\gamma\star}^{2}+\int_{0}^{l}\varphi^{\tau}(v(\tau))d\tau\leq M_{o}\{|v_{o}|_{V^{\star}}^{2}+\int_{0}^{t}\varphi^{\tau}(z)d\tau+(|z|_{H}^{2}+1)\}e^{M_{o}t}$

for all $z\in D$ and $t>0$ ,

where $M_{o}$ is a positive constant $dep$endent only on $C_{o}$ in $(\varphi 1)$ , the Lipschitz constant $L_{p}$ of
$p(\cdot)$ and the value $|p(0)|_{H}$ .
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limit of (1.5) as $\thetaarrow 0$ , the non-smooth free energy

$F(u)=\{\infty^{\circ}F(\theta)+\alpha_{1}\theta_{c}u(1-u)$ $otherwiseif0\leq u\leq 1$
, (1.6)

is obtained (see Fig. 2); the constraint (1.4) is included in formula (1.6). This type of free
energy (1.6) was introduced by Oono-Puri [12], and the corresponding Cahn-Hilliard equation
was numerically studied by them; subsequently this model was analized theoretically, too,
by Blowey-Elliott [1].

For generality we propose in this paper the representation of (possibly non-smooth) free
energy in the form

$F(u)=\hat{\beta}(u)+\hat{g}(u)$ , (1.7)

where $\hat{\beta}$ is a proper, l.s.$c$ . and convex function on $R$ and $\hat{g}$ is a non-negative function of
$C^{1}$ -class on $R$ with Lipschitz continuous derivative $g=\hat{g}’$ on R. In such a non-smooth case
of free energy functionals, the formula (1.2), giving the volumetric part $f(u)$ of the chemical
potential difference, does not make sense any longer. Therefore, following the idea in [1],
we introduce a generalized notion of chemical potential which is represented in terms of the
multivalued function

$F(u)=\{\xi+g(u);\xi\in\beta(u)\}$ ,

where $\beta$ is the subdifferential of $\hat{\beta}$ in R. Then the Cahn-Hilliard equation (1.1) is extended
to the general form

$u_{t}+\nu\Delta^{2}u-\Delta(\xi+g(u))=0$ , $\xi\in\beta(u)$ in $Q_{T}$ . (1.8)

Equation (1.8) is to be satisfied together with boundary conditions

$\frac{\partial u}{\partial n}=0$, $\frac{\partial}{\partial n}(\nu\Delta u+\xi+g(u))=0$ on $\Sigma_{T}$ $;=(0,T)\cross\gamma$ (1.9)

and initial condition
$u(0, \cdot)=u_{o}$ in $\Omega$ , (1.10)

where $u_{o}$ is a given initial datum, and $\frac{\partial}{\partial n}$ denotes the outward normal derivative on $\Gamma$ .
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Let $\{v_{\alpha}\}$ be a sequence in $V^{\star}$ such that $v_{on}\in D_{n\star}$ ($=the$ closure of $D_{n}$ in $V^{\star}$), $v_{o}\in D_{\star}$ and
$v_{on}arrow v_{o}$ in $V^{\star}$ as $narrow\infty$ . Then the solution $v_{n}$ of $(VI)_{n};=(VI;\varphi_{n}^{t},p_{n}, v_{on})$ converges to
the so lution $v$ of (VI) $;=(VI;\varphi^{1},p, v_{o})$ as $narrow\infty$ in the following sense: for every finite
$T>0$ and every $0<\delta<T$ ,

$v_{n}arrow v$ in $C([0, T];V^{\star})$ ,

$t^{1}lv_{n}’arrow t^{\frac{1}{2}}v’$ weakly in $L^{2}(0,T;V^{\star})$ ,
$v_{n}arrow v$ in $C([\delta,T];H)$ and $weakly^{\star}$ in $L^{\infty}(\delta, T;V)$ ,

as $narrow\infty$ .

3. Sketch of the proofs

We sketch the proofs of the main theorems.
(1) (Uniqueness) Let $v;,$ $i=1,2$ , be two solutions of (VI) on $[0,T]$ and put $v:=v_{1}-v_{2}$ .

Multiply the differenoe of two equations, which $v_{1}$ and $v_{2}$ satisfy, by $v_{1}$ and then use the
inequality

$|z|_{H}^{2}\leq\epsilon|z|_{V}^{2}+C(\epsilon)|z|_{V^{\star}}^{2}$ for all $z\in V$,

where $\epsilon$ is an arbitrary positive number and $C(\epsilon)$ is a suitable positive constant dependent
only on $\epsilon$ . Then we have an inequality of the form

$\frac{1}{2}\frac{d}{dt}|v(t)|_{\gamma\star}^{2}+k_{1}|v(t)|_{V}^{2}\leq k_{2}|v(t)|_{V^{\star}}^{2}$ for $a.e$ . $t\in[0,T]$ ,

where $k_{1}$ and $k_{2}$ are some positive constants. Therefore, Gronwall’s lemma implies $t$ bat
$v=0$.

(2) (Approximate problems) Let $v_{o}\in D$ and $\mu$ be any parameter in $(0,1$ ]. Consider the
following approximate problem $(VI)_{\mu}$ for (VI):

$\{v_{\mu}(0)=v_{o}(J^{\star}+\mu I)(v_{\mu}’(t))+\partial\varphi^{t}(v_{\mu}(t))+p(v_{\mu}(t))\ni 0$
in $H$, $0<t<T$,

By making use of the results in [9] this problem $(VI)_{\mu}$ has one only one solution $v_{\mu}\in$

$W^{1.2}(0, T;H)\cap L^{\infty}(0,T;V)$ . Also, multiplying the equation of $(VI)_{\mu}$ by $v_{\mu},$
$v_{\mu}’$ and $tv_{\mu}’$ , we

have similar estimates as those in Theorem 2.2.
(3) (Existence and estimates for (VI)) In the case when $v_{o}\in D$ , by the standard mono-

tonicity and compactness methods we can prove that the solution $v_{\mu}$ tends to the solution $v$

of (VI) as $\muarrow 0$ in the sense that

$v_{\mu}arrow v$ in $C([0, T];H)$ and $weakly^{\star}inL^{\infty}(0, T;V)$ ,

$v_{\mu}’arrow v’$ wealdy in $L^{2}(0,T;V^{\star})$ ,

$\mu v_{\mu}’arrow 0$ in $L^{2}(0,T;H)$ .
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Moreover we have the estimates in Theorem 2.2 for $v$ . In the case wheri $v_{o}\in D_{\star}$ , it is enougb
to approximate $v_{o}$ by a sequence $\{v_{m}\}\subset D$ and to see the convergence of the solution $v_{n}$

associated with initial datum $v_{on}$ .
(4) (Proof of Theorem 2.3) From the energy estimates which were obtained in Theorem

2.2, it follows that $v’\in L^{2}(1, \infty;V^{\star})$ and $v\in L^{\infty}(1, \infty;V)$ ; hence Theorem 2.3 holds.
(5) (Proof of Theorem 2.4) Under the assumptions of Theorem 2.4, we see from the

energy estimates for $v_{n}$ that $\{v_{\mathfrak{n}}\}$ is bounded in $C([0, T];H)\cap L^{2}(0, T;V)\cap L_{l\circ c}^{\infty}((0, T];V)\cap$

$W_{o’c}^{12}((0,T];V^{\star})$ . Hence by the usual monotonicity and compactness argument we have the
assertions of Theorem 2.4.

4. Application to the Cahn-Hilliard equation with constraint

We denote by (CHC) the Cahn-Hilliard equation with constraint $(1.8)-(1.10)$ . Here we
suppose that

(A1) $g:Rarrow R$ is a Lipschitz continuous function with a non-negative primitive $\hat{g}$ on R.

(A2) $\beta$ is a maximal monotone graph in $R\cross R$ such that $0\in R(\beta)$ and int. $D(\beta)\neq\#$ ; we
may assume that there is a non-negative proper l.s. $c$ . convex function on $R$ such that
its subdifferential $\partial\hat{\beta}$ coincides with $\beta$ in R.

(A3) $u_{o}\in L^{2}(\Omega),$ $u_{o}(x)\in\overline{D(\beta)}$ for $a.e$ . $x\in\Omega$ .

Definition 4.1. Let $0<T<\infty$ . Then $u:[0,T]arrow H$ is called a (weak) solution of (CHC)
on $[0,T]$ , if $u$ satisfies the following properties $(wl)-(w3)$ :

(w1) $u\in L^{2}(0, T;H^{1}(\Omega))\cap C([0, T];(H^{1}(\Omega))^{\star})\cap L_{1oc}^{2}((0,T];H^{2}(\Omega))\cap L_{loc}^{\infty}((0,T];H^{1}(\Omega))\cap$

$W_{loc}^{1,2}((0, T];(H^{1}(\Omega))^{\star})$ and $\hat{\beta}(u)\in L^{1}(Q_{T})$ ;

(w2) $u(0, \cdot)=u_{o}a.e$ . in $\Sigma_{T}$ ;

(w3) there is a function $\xi:[0,T]arrow L^{2}(\Omega)$ such that

$\xi\in L_{1oc}^{2}((0,T];L^{2}(\Omega))$ , $\xi\in\beta(u)$ $a.e$ . in $Q_{T}$

and
$\frac{d}{dt}(u(t), \eta)+\nu(\Delta u(t), \Delta\eta)-(\xi(t)+g(u(t)), \Delta\eta)=0$

for all $\eta\in H^{2}(\Omega)$ with $g_{a.e}\partial n$ on $\Gamma$ , and for $a.e$ . $t\in[0, T]$ .

Applying Theorems 2.1-2.4 to (CHC) we have:

Theorem 4.1. Assume that $(Al)-(A3)$ hold and

$m:= \frac{1}{|\Omega|}\int_{\Omega}u_{o}dx\in int.D(\beta)$ .
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Then for every finite $T>0$ problem $(CHC)$ has one and only one solution $u$ on $[0, T]$ , and
the following statements $(a)$ and $(b)$ hold:

$(a)u\in L^{\infty}(i, \infty;H^{1}(\Omega)),$ $u’$ ( $S,\infty$ ; (H1 $(\Omega))^{\star}$ ) for every. $\delta>0$ , and hence the $\omega$ -limit set
$\omega(u_{o}):=$ { $z\in L^{2}(\Omega);u(t_{n})arrow z$ in $L^{2}(\Omega)$ for some $t_{n}$ with $t_{n}arrow\infty$} is non-empty;

$(b)\omega(u_{o})\subset H^{2}(\Omega)$ , and any $u_{\infty}\in\omega(u_{o})$ with some $\mu_{\infty}\in R$ and $\xi_{\infty}\in L^{2}(\Omega)$ solves the
following stationary problem

$-\nu\Delta u_{\infty}+\xi_{\infty}+g(\dot{u}_{\infty})=\mu_{\infty}$ $in.\Omega$ , $\xi_{\infty}\in\beta(u_{\infty})$ $a.e$ . $\in\Omega$ ,

$\frac{\partial u_{\infty}}{\partial n}=0$ $a.e$ . on $\Gamma$ , $\frac{1}{|\Omega|}\int_{\Omega}u_{\infty}dx=m$ .

Now, let us reformulate (CHC) as an evolution problem of the form (VI) in the space

$H:= \{z\in L^{2}(\Omega); ; \int_{\Omega}zdx=0\}$ with $|z|_{H}=|z|_{L^{2}(\Omega)}$ ;

put also
$V:=H\cap H^{1}(\Omega)$ with $|z|_{V}=|\nabla z|L^{2}(\Omega)$ .

For this purpose we consider the data $\varphi^{t}=\varphi,$ $p(\cdot)$ and $v_{o}$ as follows:.

$\varphi(z)$ $:=\{\begin{array}{l}\frac{\nu}{2}|\nabla z|_{L^{2}(\Omega)}^{2}+\int_{\Omega}\hat{\beta}(z+m)dxifz\in V\infty otherwise\end{array}$

where $m= \frac{1}{|\Omega|}\int_{\Omega}u_{o}dx$;

$p(z)$ $:=\pi(g(z+m))$ , $P(z)$ $:= \int_{\Omega}\hat{g}(z+m)dx$ , $z\in H$ ;

$v_{o}$ $:=u_{o}-m$ .

By virtue of the following lemma; problems (CHC) and (VI) associated with the data
defined above are equivalent.

Lemma 4.1. Let $\ell\in L^{2}(\Omega)$ . Then $\pi(\ell)\in\partial\varphi(z)$ if and only if $z_{m}=z+m$ satisfies that
there are $\mu_{m}\in R$ and $\xi_{m}\in L^{2}(\Omega)$ such that

$-\nu\Delta z_{m}+\xi_{m}=\ell\dotplus\mu_{m}$ in $L^{2}(\Omega)$ , $\xi_{m}\in\beta(z_{m})$ $a.e$ . in $\Omega$ ,

$\frac{\partial z_{m}}{\partial n}=0$ $a.e$ . on $\Gamma$ , $\frac{1}{|\Omega|}\int_{\Omega}z_{m}dx=m$ ;

hence $z_{m}\in H^{2}(\Omega)$ . Moreover, $\mu_{m}$ can be chosen so that

$|\mu_{m}|\leq M(1+|l|_{L^{2}(\Omega)})$ ,

where $M>0$ is a certain constant dependent only upon $\beta$ and $m_{J}$ and $z_{m}$ satisfies that

$\nu|\Delta z_{m}|_{L^{2}(\Omega)}\leq|l|_{L^{2}(\Omega)}+|\mu_{m}||\Omega|^{\frac{1}{2}}$ .
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By Theorem 2.1 problem (VI) has one and only one solution $v$ . Moreover we see from
the above lemma that the function $u;=v+m$ is the unique solution of (CHC), and from
Theorems 2.2 and 2.3 that (a) and (b) hold.

When the state constraint $\xi\in\beta(u)$ is not imposed, the system $(1.8)-(1.10)becolnes$
the standard Cahn-Hilliard problem. For such a problem various existence, uniqueness and
asymptotic results have been establised; see e.g. Elliott [3], Elliott-Zheng [6] and Zheng [15].
For related results in abstract setting we refer to Temam [13] and von Wahl [14]. For the
Cahn-Hilliard models with non-smooth free energy functionals we refer to Elliott-Mikelic
[4]. The structure of stationary solutions corresponding to the Cahn-Hilliard equation was
studied by Gurtin-Matano [7]; their analysis covers also some cases of free energy $F(u)$ with
infinite walls.

Finally we give exunples of $\beta$ and the corresponding Cahn-Hilliard equations.

Example 4.1. (i) (Logarithmic form) For constants $\alpha_{o}>0$ and $\theta>0,$ $\theta$ being a parameter,

$\beta(u):=\beta^{\theta}(u)=\{\#$
{ $\alpha_{o}\theta$ iog $\frac{u}{1-u}$ } $for0<u<1otherwise$.

Gien any Lipschitz continuous function $\overline{g}$ on $[0,1]$ , we extend it to a Lipschitz continuous
function $g$ , with support in [-1, 2], on the whole line R.

(ii) (The limit of $\beta^{\theta}$ as $\thetaarrow 0$ )

$\beta(u)$ $:=\beta^{0}(u)=\{[0\{0\}^{\infty)}\#(-\infty,0]ifu=1if0<v’<ifu=0otherwise,1$

and $g$ is the same as in (i).

Example 4.2. Denote by $(CHC)_{\theta}$ and $(CHC)_{0}$ the Cahn-Hilliard equations (CHC) associ-
ated with $\beta=\beta^{\theta}$ and $\beta=\beta^{0}$ , respectibely. Then, by the theorems proved above, $(CHC)_{\theta}$

and $(CHC)_{0}$ have the unique solutions $u^{\theta}$ and $u^{0}$ , respectively, and moreover $u^{\theta}arrow u^{0}$ as
$\thetaarrow 0$ in the similar sense as Theorem 2.4.
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