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Parabolic Variational Inequality for the Cahn-Hilliard Equation
with Constraint
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1. Introduction

In this paper we study the Cahn-Hilliard equation with constraint by means of subdifferential
operator techniques. Such a state constraint problem was resently proposed by Blowey-
Elliott [1] as a model of diffusive phase separation. The questions of the existence, uniqueness
and asymptotic behaviour of solutions, treated in [1] for the special case of the deep quench
limit, are considered in our paper without such a restriction.

The standard Cahn-Hilliard equation is a model of diffusive phase separation in isother-
mal binary systems, and in terms of the concentration u of one of the components it has the

form
U+ vA*u—Af(u)=0 in Qr=(0,T) x Q. (1.1)

Here Q is a bounded domain in RY, N > 1, with a smooth boundary I' = 99, v is a

positive constant related to the surface tension, f(u) corresponds to the volumetric part of
the chemical potential difference between components and is given by

f(u) = F'(w), (1.2)

where F(u) is a homogeneous (volumetric) free energy parametrized by temperature 8, with
the characteristic double-well form for 8 below the critical temperature §.. Usually the free
energy is approximated by polynomials F : R — R, e.g. in the simplest case by quartic
polynomial '

F(u) = F,(6) + 05(8 — 6.)u® + agu’ (1.3)

with constants a,,ay > 0 and a given function F,(#) of temperature. To preserve an explicit
physical sense, the state variable u often is subject to some constraints, e.g. in the case of

concentration natural limitation is
0<u<l. (1.4)

Then the free energy F(u) can be assumed in the form of the so-called regular solution model
F(u) = F,(0) + af[ulog u + (1 — u)log(l — u)] + oy (f — 0 )u(u — 1) (1.5)

with a function F,(6) and positive constants «,, @;. The corresponding form of the chemical
potential f(u) is shown in Fig. 1. Moreover, as the deep quench limit of (1.5), i.e. as the
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(t)
1X(t () + /0' 7|/ (1)|3ed7 < /(:{TICY'(T)I + X(1,v(7))}dr - exp(/ot |’ (7)|dT)

for all t > 0,
and . ‘ ,
X(60(0)+ [ Whedr < (X(s,0060) + [ 1lar}-exp( [ fo'oler)  (2:)
forall0<s<t.
In particular, if v, € D, then (2.1) holds for 0 = s < ¢, too.

The third theorem is concerned with the large time behaviour of the solution v(t) of (VI).

Theorem 2.3. In addition to the assumptions (p1)—(p3) and (p) suppose that o’ € L*(Ry),
and

(p4) @' converges to a proper l.s.c. conver function > on H in the sense of Mosco [11] as
t — o0, i.e.
(M1) for any z € D(¢>) there exists a function w: Ry — H such that w(t) — 2z in
H and o' (w(t)) = ¢*(z) ast — oo;
(M2) if w: Ry — H and w(t) — z weakly in H ast — oo, then liminf,.c oH(w(t)) >
p>(2).
Let v be the solution of (VI) on Ry associated with initial datum v, € D, and denote by
w(v,) the w-limit set of v(t) in H ast — o0o,i.e. w(vo) = {z € H; v(t,) — zin H for some
t, with t, — oo}. Then w(v,) # @ and

090™(Voo) + P(Veo) 2 0 for all vy, € w(v,).

Finally we give a result on the continuous dependence of solutions of (VI) upon the data

Vo, {‘P‘} and p(')

Theorem 2.4. Let {¢'} be a sequence of families of proper Ls.c. convez functions on H
such that conditions (p1) — (p3) are satisfied for common positive constants Co, Ch and a
common function a € Wi (R4). Also, let p, be a sequence of Lipschitz continuous operators
in H such that condition (p) is satisfied for a common Lipschitz constant L, > 0 and a non-
negative C'-function P, on H. Suppose that for each t <0, ¢, converges to ¢ on H in the
sense of Mosco as n — oo, i.e.

(m1) for any z € D, there ezists {2,} C H such that z, € Dy (= D(¢t)), 2n — 2z in H
and ¢t (z,) — ¢'(z) as n — oo;

(m2) if 2, € H and z, — z weakly in H as n — oo, then liminfyo, 0t (2a) > ¢H(2).
Furthermore suppose that for each z € H,

pn(2) = p(2) in H, P.(z) = P(z) as n — oo.
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The cases (1.3),(1.5) and (1.6) of free energies can be written in the form (1.7) with
appropriate functions 8 and §, and these special cases have been studied by Blowey-Elliott
[1] and Elliott-Luckhaus [5).

2. Abstract results

We shall study evolution system (1.8)-(1.10) in an abstract framework.
Let H and V be (real) Hilbert spaces such that V is densely and compactly embedded
in H. V* will be the dual of V. Then, identifying H with its dual, we have

VCHcCV*

with dense and compact injections. Further, let J* be the duality mapping from V* onto V,
‘and for t € Ry = [0,00), let ¢'(-) be a proper, l.s.c., non-negative and convex function on
H. We shall consider the following problem (VI):

{ J*('(t)) + 09t (v(t)) + p(v(t)) 20 in H, t >0,
v(0) = v,,

where v/ = (£)v, 8¢’ is the subdifferential of ' in H; p(-) : H*— H is a Lipschitz
continuous operator and v, a given initial datum.
When it is necessary to indicate the data ¢f,p and v, explicitly, (VI) is denoted by
(VL' p, v.).
Throughout this paper we use the following notations:
(+,): the inner product in H;
(+,+): the duality pairing between V* and V;
| - jw: the norm in W for any normed space W;
J: the duality mapping from V onto V*, hence J* = J~1.
We use some basic notions and results about monotone operators and subdifferentials of
convex functions; for details we refer to Brézis [2] and Lions [10].
We shall discuss (VI)=(VI;¢!, p, v,) under the following additional hypotheses:

(¢1) The effective domain D(¢') (= {z € H;¢'(z) < oo}) of ¢ is independent of ¢ €
R;,D:=D(¢') CV and

¢'(z) > Colz]}, forall z€V and all t € Ry,
where C, is a positive constant.

(92) (2% — 23,21 — 23) > Cy|z1 — 2|4 for all z; € D, z¥ € 0p'(2),i = 1,2, and all t € Ry,
where C) is a positive constant.

(¢3) There is a function o € W, (R.4) such that
¢'(z) — ¢°(2) < la(t) — a(9)I(1+ ¢*(2))

forall2€ Dand s, t € R, with s <{t.
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(p) p is a Lipschitz continuous operator in H and there is a non-negative C!—function
P:H — R whose gradient coincides with p, i.e. p = V P; hence

d

aP(w(t)) = (p(w(t)), w'(t)) for a.e.t €R, if w € W Ry; H).

We now introduce a notion of the solution in a weak sense to problem (VI).

Definition 2.1. (i) Let 0 < T < oo. Then a function v : [0,T] — H is called a solution
of (VI) on [0, T}, if v € L*(0,T; V)N C([0, T); V*), v' € L2 ((0,T]; V*), v(0) = v, ) (v) €
L}(0,T) and '

=J*(V'(t)) — p(u(t)) € 8 (v(t))  for a.e. t €[0,T).

(i1) A function v : Ry — H is called a solution of (VI) on Ry, if the restriction of v to
[0, T} is a solution of (VI) on [0, T for every finite T' > 0.

Our results for (VI) are given as follows.

Theorem 2.1. Assume that (p1)—(93) and (p) are satisfied. Let T be any positive number.
Then the following two statements (a) and (b) hold:

(a) If v, is given in the closure Dy of D in V*, then (VI) has one and only one solution
v on [0, T] such that

thy € L3(0,T;V*), sup tp'(v(t)) < oo.
0<t<T

(b) If v, € D, then the solution v of (VI) on [0,T] satisfies that

o' € L*(0,T;V*), sup ¢'(v(t)) < oo;
0<I<T

hence v € C([0,T}; H).
The second theorem is concerned with the energy inequality for (VI).

Theorem 2.2. Assume that (1) — (¢3) and (p) hold. Let v be the solution of (VI) on R,
associated with initial datum v, € D,. Define

X(t,2) = ¢'(2) + P(2) forzeDandteR,.

Then: (a)
2 ¢ 2 ¢ T 2 Mot
sup [o(r)fe + [ ¢7(o(r))dr < Mollualie + [ &7 (2)ar + (Jaffy + 1))
0<r<t 0 0

forallz€ D andt >0,

where M, is a positive constant dependent only on C, in (p1), the Lipschitz constant L, of
p(*) and the value |p(0)|q. ,
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limit of (1.5) as # — 0, the non-smooth free energy

Flu) = Fo(6) + ay6.u(1 — u) ifo<u<l,
] o otherwise

(1.6)

is obtained (see Fig. 2); the constraint (1.4) is included in formula (1.6). This type of free
energy (1.6) was introduced by Oono-Puri{12], and the corresponding Cahn-Hilliard equation
was numerically studied by them; subsequently this model was analized theoretically, too,
by Blowey-Elliott [1}.

N 4

F(u), F(u)

Fig. 1 Fig.2

For generality we propose in this paper the representation of (possibly non-smooth) free
energy in the form

- F(u) = B(u) + §(u), (1.7)
where f is a proper, L.s.c. and convex function on R and § is a non-negative function of
C'—class on R with Lipschitz continuous derivative ¢ = §’ on R. In such a non-smooth case
of free energy functionals, the formula (1.2), giving the volumetric part f(u) of the chemical
potential difference, does not make sense any longer. Therefore, following the idea in [1],
we introduce a generalized notion of chemical potential which is represented in terms of the

multivalued function
Fu) ={¢+g(u); £ €B(u)};

where 8 is the subdifferential of # in R. Then the Cahn-Hilliard equation (1.1) is extended
to the general form

u + vA%u — A(E + g(u)) =0, £€pP(u) inQr. (1.8)
Equation (1.8) is to be satisfied together with boundary conditions

du
on

and initial condition

=0, %(vAu +&+9(uw)=0 onXy:=(0,T) x7y (1.9)

u(0,) = u, in Q, (1.10)

where u, is a given initial datum, and -:; denotes the outward normal derivative on I'.



17

Let {vm} be a sequence in V* such that vo, € Dyy (=the closure of D, in V*), v, € D, and
Yon = Yo 1n V* as n — oo. Then the solution v, of (VI), 1= (VI; ¢, Pn,Ven) converges to
the solution v of (VI) := (VI;¢',p,v,) as n — oo in the following sense: for every finite
T>0and every0< § < T,

Up = 0 in C([0,T); V™),

tli'v:‘ — tiy/ weakly in L*(0,T; V*),
Up — U in C([6,T]; H) and weakly* in L*(6,T;V),

as n — oo.

3. Sketch of the proofs

We sketch the proofs of the main theorems.

(1) (Uniqueness) Let v;, i = 1,2, be two solutions of (VI) on [0,7] and put v := v; — v,.
Multiply the difference of two equations, which v; and v, satisfy, by v, and then use the
inequality

lz|} < elz]i + Ce)|2|5 forall z €V,
where ¢ is an arbitrary positive number and C(e) is a suitable positive constant dependent
only on ¢. Then we have an inequality of the form

1d
2dt
where k; and k; are some positive constants. Therefore, Gronwall’s lemma implies that
v=0.
(2) (Approximate problems) Let v, € D and p be any parameter in (0, 1]. Consider the
following approximate problem (VI), for (VI):

(o0 0 30 i, 0t
v,(0) = v,.

(@))% + k1|v@))} < kalo(t)3e for ae. t €[0,T),

By making use of the results in [9] this problem (VI), has one only one solution v, €
WL2(0,T; H) N L=(0,T;V). Also, multiplying the equation of (VI), by v,,v, and tv,, we
have similar estimates as those in Theorem 2.2.

(3) (Existence and estimates for (VI)) In the case when v, € D, by the standard mono-
tonicity and compactness methods we can prove that the solution v, tends to the solution v
of (VI) as p — 0 in the sense that

v, = v in C([0,T); H) and weakly*in L*(0,T;V),
v, ¢ weakly in L*(0,T; V™),
pv, =0 in L*(0,T; H).
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Moreover we have the estimates in Theorem 2.2 for v. In the case wher v, € D, it is enough
to approximate v, by a sequence {v,,} C D and to see the convergence of the solution v,
associated with initial datum v,,,.

(4) (Proof of Theorem 2.3) From the energy estimates which were obtained in Theorem
2.2, it follows that v’ € L?(1, 00; V*) and v € L*(1, 00; V); hence Theorem 2.3 holds.

(5) (Proof of Theorem 2.4) Under the assumptions of Theorem 2.4, we see from the
energy estimates for v, that {v,} is bounded in C([0, T); H) N L?(0,T; V)N L2.((0, T; V)N
Wi2((0,T); V*). Hence by the usual mornotonicity and compactness argument we have the
assertions of Theorem 2.4.

4. Application to the Cahn-Hilliard equation with constraint
We denote by (CHC) the Cahn-Hilliard equation with constraint (1.8)-(1.10). Here we
suppose that

(A1) g: R — R is a Lipschitz continuous function with a non-negative primitive § on R.

(A2) B is a maximal monotone graph in R xR such that 0 € R(f) and int.D(8) # @; we
may assume that there is a non-negative proper l.s.c. convex function on R such that

its subdifferential 83 coincides with g in R.

(A3) u, € L%(Q), u,(z) € D(B) for a.e. z € Q.

Definition 4.1. Let 0 < T' < oo. Then u: [0,T] — H is called a (weak) solution of (CHC)
on [0,T), if u satisfies the following properties (w1)-(w3):

(wl) u € L2(0, T; H}()) N C([0, T); (H'(Q))*) N LE, (0, T]; H3(Q)) N Li2((0, T]; H(2)) N
W2 ((0, T); (H*(R))*) and B(u) € L*(Q1);

(w2) u(0,+) = u, a.e.in Zr;
(w3) there is a function € : [0,T] — L?(R2) such that
§ € L, ((0,T); L*(), ¢€pf(u) aeinQr
and

2 (ult),m) + (Bu(t), &) — (E() + o(u), An) = 0

for all n € H%(Q) with £ a.e. on T, and for a.e. t € [0, T},

Applying Theorems 2.1-2.4 to (CHC) we have:
Theorem 4.1. Assume that (A1)-(A3) hold and

1
= — od int. D(S).
m i /nu z € int.D(B)
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Then for every finite T > 0 problem (CHC) has one and only one solution u on [0,T], and
the following statements (a) and (b) hold:

(a) u € L®(6, 00; H1(Q)), u'(65,00; (H}(Q))*) for every. 8. > 0, and hence the w-limit set
w(u,) = {z € L*(Q); u(t,) — 2z in L%(Q) for some t, with t, - oo} is non-empty;

(b) w(u,) C H*(Q), and any uo, € w(u,) with some p € R and &, € L*(N) solves the
following stationary problem

—VQUg + €0 + 9(Ueo) = oo in Q, €00 € (o) a.e. €,

Oty 1
B = 0 a.e.on I |—Q—|—/nuoodx = m.

Now, let us reformulate (CHC) as an evolution problem of the form (VI) in the space
H:={z¢ LZ(Q);;/ zdz = 0} with |z|y = |2|2q);
Q

put also
Vi=H ﬂHI(Q) with Izlv = IVZ|L2(Q).

For this purpose we consider the data ¢' = ¢, p(:) and v, as follows:.

5|Vl + Ja B(z + m)dz if zeV,
o0 otherwise,

ole)= {
where m = 7!17_! o Uodz;

p(2) = nlglz+m), P2):= [ o(+m)dz, z€H;

Vo 1= Uy, — M.

By virtue of the following lemma, problems (CHC) and (VI) associated with the data
defined above are equivalent.

Lemma 4.1. Let £ € L*(Q). Then n(€) € 8p(z) if and only if zm = z + m satisfies that
there are u, € R and &, € L%(Q) such that

~VAZy + & =L F fim in L*(9), €m € B(zm) a.e. in 2,
02y, 1
= 0 a.e. on T, |—fﬂ/nzmdm =m;

hence z, € H3(R). Moreover, py, can be chosen so that
| < M1+ |€]z2(n)),
where M > 0 is a certain constant dependent only upon B and m, and 2., satisfies that

1
V|Azm|2(n) < L3y + Ial19]2.
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By Theorem 2.1 problem (VI) has one and only one solution v. Moreover we see from
the above lemma that the function u := v 4+ m is the unique solution of (CHC), and from
Theorems 2.2 and 2.3 that (a) and (b) hold.

When the state constraint £ € B(u) is not imposed, the system (1.8)-(1.10) becomes
the standard Cahn-Hilliard problem. For such a problem various existence, uniqueness.and
asymptotic results have been establised; see e.g. Elliott [3], Elliott-Zheng [6] and Zheng [15].
For related results in abstract setting we refer to Temam [13] and von Wahl [14]. For the
Cahn-Hilliard models with non-smooth free energy functionals we refer to Elliott-Mikelic
[4]. The structure of stationary solutions corresponding to the Cahn-Hilliard equation was
studied by Gurtin-Matano [7]; their analysis covers also some cases of free energy F'(u) with
infinite walls.

Finally we give examples of § and the corresponding Cahn-Hilliard equations.

Example 4.1. (i) (Logarithmic form) For constants a, > 0 and 6 > 0, § being a parameter,

poy= iy = { 08D o<t

otherwise.

Gien any Lipschitz continuous function § on [0,1], we extend it to a Lipschitz continuous
function g, with support in [~1,2], on the whole line R.
(ii) (The limit of #° as § — 0)

[0, 00) if u=1,
if 0 1
B(u) := f(u) = gg}oo, 0] ;f u : §,< ’
9 otherwise,

and g is the same as in (i).

Example 4.2. Denote by (CHC),; and (CHC), the Cahn-Hilliard equations (CHC) associ-
ated with 8 = % and B = B°, respectibely. Then, by the theorems proved above, (CHC),
and (CHC), have the unique solutions u® and u°, respectively, and moreover v’ — u® as
6 — 0 in the similar sense as Theorem 2.4.
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