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Abstract — This paper presents some simple and practical algorithms for
tracing implicitly defined solution curves. These algorithms use
hyperspheres instead of hyperplanes which are used in the typical
predictor-corrector algorithms. Effective techniques for preventing the
"reversion" phenomenon of the curve tracing are also proposed. The
proposed algorithms are geometrically clear and can be easily programmed.

I. INTRODUCTION

This paper deals with a system of n nonlinear equations in n+l
variables

f1(XgsXgs 0 Xg X yq) =0
fz(xl,XZ,"' ,Xn,Xn+1)=0

fh (X1, X9, X0 X 1)=0.

Since there is one more variable than there are independent equations, the
set of all x=(x1,x2,~-,xn,xn+l)T that satisfy (1) will generally consist of
one or more solution curves in the (n+1)-dimensional Euclidean space.

To find all solutions of (1) is a basic problem which is widely
encountered in science and engineering. For example, to obtain the
driving-point characteristics and transfer characteristics of nonlinear
resistive circuits, it is necessary to solve an equation of the form (1),
where Xn+1 denotes either the driving-point voltage or current.

Another common situation which calls for the solution of (1) is the
application of t .e homotopy method (or the continuation method) for solving
a system of n nonlinear equations in n variables

f(x)=0, (2)
where f : RIL R} is a C2 mapping and xeRY. In the homotopy method, we

introduce an extra variable xn+1§t, in addition to x=(xy,Xg, " ,X and
define a new system of n equations

DT
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h(x,t)=0 (3)

in n+1 variables. The mapping h is called a homotopy. ©One of the most
common homotopies is the Newton homotopy

h(x,t)=f(x)-(1-t)f(a), (4)

where a is any initial guess. At t=0, a is a solution of (3), and at t=1,
(3) reduces to (2). Hence, by tracing the solution curve starting from
(a,0), we can obtain the solutions of (2) at t=1. This homotopy method is
known to be globally convergent for many practical problems including
nonlinear circu’t analysis.

Many algorithms have been presented for tracing the solution curves
[1]-[16]. These curve tracing algorithms are roughly divided into two
categories; one is the predictor-corrector algorithms (or the differential
algorithms) and the other is the pilecewise-linear algorithms. These
algorithms are very efficient at least for small problems. Especially, the
backward-differentiation formula curve tracing algorithm (which is called
the BDF algorithm in this paper) proposed by Ushida and Chua [12] is one of
the most effective and reliable algorithms for tracing solution curves
which have sharp turning points.

However, these curve-tracing algorithms are not widely used in
practical applications. One of the reasons is that the theory and the
programming of these algorithms are not so easy for the practical engineers
and scientists who are not familiar with the homotopy methods. Especially
in the computer-aided design of electronic circuits, the circuit simulation
depends largely on' the existing circuit simulators, and it is difficult to
make a new program of dc analysis from the first.

In this paper, we propose some simple algorithms for tracing solution
curves. These algorithms are geometrically clear and can be easily
programmed, therefore they will be widely used by many engineers. Another
advantage of the algorithms is that the "reversion" phenomenon of the curve
tracing (which often occurs in the BDF algorithm) is prevented by special
techniques. It is also shown that the algorithms can be easily implemented
on the existing circuit simulators such as SPICE.

I1I. THE SPHERICAL ALGORITHM

The typical predictor-corrector algorithms use tangents as predictors
and hyperplanes as correctors as shown in Fig.1l [1],[2]. In the predictor
step, the next point is predicted to obtain a good starting approximation
of Newton's method. In the corrector step, a system of nonlinear equations
is solved by Newton's method to get back onto the solution curve. The
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stepsize of the predictor is pertinently determined; for example, if
Newton's method does not converge or seems to require many iterations, the
stepsize is set small. Also, if the number of Newton iterations is small,
the stepsize is set large. In the BDF algorithm, an efficient stepsize
control algorithm is utilized [12].

Fig.1

However, the predictor-corrector algorithms using éhe hyperplanes are
not simple and their programming is complicated. Another demerit of these
algorithms is that they become extremely slow in the neighbourhood of sharp
turning points of the solution curves. In Fig.2, the stepsize of the

predictor is made smaller and smaller until the hyperplane intersects the
solution curve.

Fig.2

In this section, we propose a new algorithm which uses hyperspheres
instead of hyperplanes. As shown in Fig.3, a sphere which encloses a part
of a solution curve always intersects the solution curve at least two
times. Hence, the corrector equation has at least two solutions.

Fig.3
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Let xo be a point on the solution curve. Then the equation describing
the (n+1)-dimensional sphere centred at x0 with radius s is given by

(Xl-X?)2+(X2-xg)2+-~ +(xn+1-xg+l)2=52. (5)

Therefore the intersections of the sphere and the solution curve (A and B
in Fig.4) are the solutions of the following system of n+l equations

fl(Xl:XZ, t ’Xn’xn“'l):O
fz(leXZv e 9xnvxn+1)=0

SN G IR OTELEIS S0 SOPRAL'E

(1 -x9) 22 (xp-x3) 24 - (x4 -x0, ) =62, (6)

Fig.4

As shown i Fig.5, the solution curve can be traced by successively
solving the systems of nonlinear equations (6). In each step, the previous
solution is used as the centre of the new sphere. The radius of the sphere
is made small if Newton's method does not seem converge in the corrector
step. The initial radius is determined by the stepsize control algorithm
in [12]}.

1 N

Fig.5
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Each corrector equation has at least two solution, one of which lies
in the forward direction and another of which lies in the backward
direction. In order to make the Newton iteration converge to the desired
solution in the forward direction, the predictor algorithm is performed.
There are many predictor algorithms, the most efficient one of which is the
BDF predictor algorithm proposed by Ushida and Chua - [12]. In order to make
the algorithm simple, we consider to use the first order BDF predictor
algorithm. Then, as shown in Fig.6, the predicted value 1is obtained by
extrapolating the two previous solutions which are on the solution curve.

(NN

Fig.6

This is the basic form of the spherical algorithm proposed in this
paper. This algorithm is simple and geometrically clear, so it may be
widely used by practical designers.

Remark 1: The spherical algorithm proposed in this section is not a new
algorithm because it is essentially equivalent to the first order BDF
algorithm. Mr. Yasuaki Inoue of Sanyo Electric Co., Ltd. was the first to
point this out [16]. However, the concept "sphere" makes the algorithm
geometrically very clear and gives considerable insight to the algorithm.
As shown in later sections, this geometrical interpretation makes it easy
to detect the potential difficulties of the BDF algorithm and to find
techniques for overcoming then. O

ITII. JACOBIAN MATRIX

The advantages of the spherical algorithm are its simplicity and ease
of programming. In circuit simulation, there is another advantage.

Existing circuit simulators such as SPICE use Newton's method or its
variants to solve nonlinear equations. However Newton's method is not
globally convergent and requires a good initial guess for convergence.
Guessing a solution is often a difficult task, and many circuit designers
experience difficulties in finding dc solutions using the circuit
simulators. The homotopy methods are known to be globally convergent for
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nonlinear circuit equations, but they have not been widely used because the
present circuit simulation depends largely on the existing circuit
simulators. Hence, it is desirable to improve the convefgence through a
little modification of the existing circuit simulator programs.

Let us consider a system of nonlinear equations (2) which describes a
nonlinear resistive circuit. We shall solve (2) by the homotopy method
using the Newton homotopy

h(x,t)=f(x)-(1-t)f(a). (7)
Then the corrector equation in the spherical algorithm is

f(x)-(1-t)f(a)=0
(Xl-xg)2+(x2-xg)2+"t#(xn-xg)2+(t-t°)2=sz. (8)

The Jacobian matrix of this equation is

J f(a)

Aoy —29) Aoz =29 -+ Aea —22) | 2t - )

where J is the Jacobian matrix of f. This (n+1)x(n+l1l) Jacobian matrix is
obtained by adding one row and one column to the nxn matrix J.

In the existing circuit simulators such as SPICE, the program of
Newton's method for f(x)=0 is already described. Therefore the spherical
algorithm is easily programmed through a little modification of the
existing program. Thus, the spherical algorithm can be readily implemented
on the circuit simulators.

IV. THE IMPROVED SPHERICAL ALGORITHMS

Let us consider Fig.6 again. If the sphere is sufficiently small,
Newton's method will converge to the desired solution. However, using
small spheres is time consuming, and it is desirable to use large spheres
to make the algorithm efficient. In such a case, Newton's method may not
converge to the desired solution. Instead, it may converge to the solution
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which lies in the backward direction as shown in Fig.7. Such a phenomenon
is called the "reversion" of the curve tracing.

Fig.7

If the radius of the new sphere is the same as the previous one, this
reversion can b= detected because the unwanted solution A coincides with
the previous solution. However, if the radius changes, the reversion
cannot be detected because the solution A does not coincide with the
previous solution as shown in Fig.8. In this case, the curve tracing may
reverse from this point. In the BDF algorithm, this reversion phenomenon
often occured in practical applications. In this section, we propose two
improved algorithms'which overcome this problem.

Fig.8

In the first improved algorithm, we move the centre of the sphere a
little so that the new sphere passes the previous solution point. In
Fig.9, point A is the previous solution, point D is the solution which has
just been obtained, point C is the centre of the new sphere, and point B is
the next solution which we are going to seek. The centre C is determined
by the first or second order interpolation or extrapolation.

Fig.9
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Fig.10 describes how to reduce the radius of the sphere when Newton's
method does not converge in the corrector step. For simplicity, we will
halve the step size of the predictor if convergence does not occur.
Suppose that we first use a sphere which is the same size as the previous
one and Newton's method does not converge to the solution B. In order to
halve the stepsize of the predictor, we use a sphere with radius 3/4 times
as large as the previous one. If convergence does not occur again {for
example, Newton's method converges to the previous solution A), we reduce
the radius 5/6 times to make the stepsize 1/2. Repeating this process, the
predicted point approaches the desired solution, and convergence will occur

in a finite number of steps. Notice that all spheres pass the point A, so
that the reversion can be detected.

Fig.10

Next, we shall propose the second improved algorithm. In this
algorithm, we use a sphere passing the solution point which has just been
computed. Fig.11 illustrates this algorithm. The centre of the sphere is
always determined by (the first or second order) extrapolation. 1In this
case, we can also detect the reversion.

=

B

Fig.11

In the basic form of the spherical algorithm, the radius of the
spheres determines how far the algorithm moves in one step. 1In the second

improved algorithm, the diameter determines the stepsize as shown in
Fig.12.
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(@) (b)
Fig.12

Now we shall compare the first and the second improved algorithms. As
shown in Fig.12, the second algorithm uses smaller spheres if the stepsize
of the predictor is the same.

In all of the predictor-corrector algorithms, the following potential
dangers can occur; the algorithm goes to a different solution curve; it
cycles; it attaches itself to a loop as shown in Fig.13.

(a) (®) ©
Fig.13

As shown in Fig.14, the second algorithm uses smaller spheres and this
reduces the possibility that those dangers occur.

Fig.14
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However, in the second algorithm, the centre of the sphere is always
determined by ‘xtrapolation. As shown in Fig.15, the centre may be far
away from the solution curve in the vicinity of sharp turning points.
Therefore, the second algorithm will require a good predictor.

(N

Fig.15
V. THE ELLIPTIC ALGORITHM

In this section, we shall consider an algorithm which uses ellipses.
Fig.16 illustrates the algorithm. The use of ellipses which are long in
suitable directions (for example, the direction of the variable which
exhibits the maximum variation in the predictor step) is often more
effective than the spherical algorithms.

éa«,.

Fig.16

The elliptic algorithm is not a new algorithm because it is a variant
of the first order BDF algorithm. Mr. Yasuaki Inoue of Sanyo Electric Co.,
Ltd. also condidered the use of ellipses. In this section, we show that it
is possible to prevent the reversion phenomenon in the elliptic algorithm.

Consider an (n+l)-dimensional ellipse centred at xo with radii s, Ays,

"» AxyS (the radius in the x; direction is 2;s). Then the equation
describing the ellipse is

052 0.2 _40
[Xl xl) +[x2 X2} PR +[Xn+l Xn+1)2 =1. (9)
5 A8 Ang S )
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Let xP be the previously obtained solution. Given points xU, xP and the
ratio A9, ",Ap41» let us now determine the the ellipse which passes the
point xP. Substituting xP to Eq.(9), we have

O .
[ _Xl] [Xg ] [g+l n+1]2 1 (10)
S A2 S )mls

and

XE x? [ 8 ] +[§§il:§gi%r. (11)

Ant

Therefore all radii can be determined from (11), and it 1is possible to
prevent the reversion phenomenon alsoc in the elliptic algorithm .

VI. NUMERICAL EXAMPLE

We have applied the homotopy methods using the spherical algorithms to
various types of nonlinear resistive circuits including the simple multi-
tunnel diode circuit and the four-transistor multi-state circuit discussed
in [13].

When we applied the basic spherical algorithm: (which is equivalent to
the first order BDF algorithm) to these circuits, the reversion phenomenon
sometimes occured. In these cases, the curve tracing went back to t=0 and
solutions could not be obtained. However, when we applied the improved
spherical algorithms, the reversion occured but it was always detected, and
the solution was obtained in most of the examples. In a few examples, the
phenomena described in Fig.13 occured and solution could not be obtained.

The computational efficiency of the algorithms depended largely on the
parameters such as the starting point, the initial stepsize, and the
maximum stepsize. It was not clear which algorithm was the most efficient
and it seemed to be case by case.

We shall show one experimental result. The example circuit is the
four-transistor multi-state circuit in [13] which is described by a system
of 8 equations. We used the Newton homotopy as a homotopy, and used the
following parameters; the starting point=0; the initial stepsize=0.05; the
maximum stepsize=1; the order of the predictor=1; and the maximum number of
Newton iterations in one trial=20. Then the total numbers of Newton
iterations were 101 in the first algorithm and 108 in the second aigorithm.
These numbers include the numbers for divergence. The numbers of spheres
we used were 18 and 19, respectively.
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VII. CONCLUSION

In this paper, we have proposed some simple algorithms for tracing the
solution curves. The spherical algorithms are geometrically clear and can
be easily programmed, so they will be widely used by many engineers. Also,
the proposed spherical algorithms can prevent the reversion of the curve
tracing. The next subject we should consider is to develop a technique
which prevent the phenomena described in Fig.13. 'Perhaps the spherical
interpretation makes it easy to find such a technique.
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