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1 Introduction and Peliminary Notions

The payoff function appearing in minimax theorems is usually assumed to have two typical
properties: continuity and convexity. The purpose of this paper is to investigate general
properties of the payoff function related to the convexity which guarantee the minimax
equation.

It is well known that convex subsets of a linear topological space are topologically
connected, and the intersections of convex subsets are also convex. We shall establish
minimax theorems for a payoff function whose level sets are connected in a sense and
are closed in the operation of intersection. The connectedness is a generalized version of
topologically connectedness, which was introduced by Wallace[ll] in a different context
from the theory of minimax theorems.

A pair $(S, )$ of a set $S$ and a binary relation $|$ between two subsets of $S$ is called a
weak separation space (cf. [11]) if the following axioms hold:

(1) $A|B\Rightarrow B|A$ .

(2) $A|B\Rightarrow A\cap B=\emptyset$ .

(3) $A|B,$ $A_{1}\subset A\Rightarrow A_{1}|B$ .

Wallace listed another axiom for the weak separation space, but it is not important in
our discussion.

Two subsets $A$ and $B$ of $S$ are said to be separated provided $A|B$ , and a subset
$A$ of $S$ is said to be s-connected provided that it is not the union of two nonempty
separated subsets of $S$ . Note that if $S$ is a topological space and, for $A,$ $B\subset S,$ $A|B$

means $(\overline{A}\cap B)\cup(A\cap\overline{B})=\emptyset$ , then the s-connectedness is equivalent to the topological
connectedness.

The following proposition is proved in [11]:
If $A$ is s-connected and contained in $B\cup C$ and $B|C$ , then $A\subset B$ or $A\subset C$ .

Given $f$ : $X\cross Yarrow R$ , where $X$ and $Y$ are sets, a set of the form $\{x\in X : f(x, y)\geq\alpha\}$

for some $y\in Y$ and $\alpha\in R$ is called a level set of $f$ in $X$ , and similarly a set of the form
$\{y\in Y : f(x, y)\leq\beta\}$ for some $x\in X$ and $\beta\in R$ is called a level set of $f$ in $Y$ . We can
regard $X$ and $Y$ as weak separation spaces respectively in the following way:
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Let $A$ and $B$ be subsets of $X$ (resp. $Y$ ). Then $A|B$ means there are two families $\{L_{i}\}$

and $\{L_{j}’\}$ (resp. $\{M_{i}\}$ and $\{M_{j}’\}$ ) of arbitrarily many level sets of $f$ in $X$ (resp. $Y$ ) such
that

$A \subset\bigcap_{i}$ L. $B \subset\bigcap_{j}L_{j}’$
,

(resp. $A \subset\bigcap_{i}M_{i}$ $B \subset\bigcap_{i}M_{j}’,$
)

and
$\bigcap_{i}L_{i}\cap\bigcap_{j}L_{j}’=\emptyset$

.

(resp. $\cap M;\cap\bigcap_{j}M_{j}’=\emptyset.$
)

2 Main Theorem

According to the previous section, when a function $f$ is given on the product of two sets $X$

and $Y,$ $f$ induces the structures of weak separation spaces to both $X$ and $Y$ . A subset $A$

of $X$ is called connected with respect to $f$ if $A$ is s-connected with respect to the structure
of the weak separation space on $X$ . Similarly we can define the connectedness of subsets
of $Y$ with respect to $f$ .

We say that $f$ is compact in $X$ (resp. $Y$ ) if a family of level sets of $f$ in $X$ (resp. $Y$ )
which has the finite intersection property has a nonempty intersection.

Lemma 2.1 Suppose that any intersection of finitely many level sets of $f$ in $X$ is con-
nected with respect to $f$ and any intersection of arbitrarily many level sets of $f$ in $Y$ is
connected with respect to $f$ . Let $y_{1}$ and $y_{2}$ be two elements of $Y$ and let $L$ be $X$ or a
nonempty intersection of finitely many level sets of $f$ in X. Then it follows that

$\inf_{y\in Y}\sup_{x\in L}f(x, y)\leq\sup_{x\in L}\min\{f(x, y_{1}), f(x, y_{2})\}$.

Proof Suppose that

$\sup_{x\in L}\min\{f(x, y_{1}), f(x, y_{2})\}<\alpha<\inf_{y\in Y}\sup_{x\in L}f(x, y)$ .

Let $\beta(x)=\max\{f(x, y_{1}), f(x, y_{2})\},$ $x\in L$ and $W= \bigcap_{x\in L}\{y\in Y : f(x, y)\leq\beta(x)\}$ . Then
we have $y_{1},$ $y_{2}\in W$ and $W$ is connected with respect to $f$ . Let $L(w)=\{x\in L$ : $f(x, w)\geq$

$\alpha\}$ and $l(w)=\{x\in L:f(x, w)>\alpha\}$ for any $w\in W$ . It is easily seen that $l(w)\neq 0$ and
$L(w)$ is connected with respect to $f$ for any $w\in W$ . Let $U=\{w\in W : l(w)\subset L(y_{1})\}$

and $V=\{w\in W : l(w)\subset L(y_{2})\}$ . It is easily seen that $y_{1}\in U$ and $y_{2}\in V$ , and $U\cap V=\emptyset$

as $L(y_{1})\cap L(y_{2})=\emptyset$ . Since $L(w)\subset L(y_{1})+L(y_{2})$ according to the definition of $\beta$ and
$W$ , we have $L(w)\subset L(y_{1})$ or $L(w)\subset L(y_{2})$ by the proposition mentioned in the previous
section. Hence we have $W=U+V$ .

On the other hand, we have

$U= \bigcap_{x\in L\backslash L(y_{1})}\{w\in W : f(x, w)\leq\alpha\}$
and

$V= \bigcap_{x\in L\backslash L(y_{2})}\{w\in W : f(x, w)\leq\alpha\}$
.

This contradicts the assertions $W=U+V,$ $y_{1}\in U$ , and $y_{2}\in V$ , since $W$ is connected
with respect to $f$ .
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Lemma 2.2 Suppose that any intersection of finitely many level sets of $f$ in $X$ is con-
nected with respect to $f$ and any intersection of arbitrarily many level sets of $f$ in $Y$ is
connected with respect to $f$ . Let $y_{1},$ $\ldots,$

$y_{n}$ be finitely many elements of Y. Then it follows
that

$\inf_{y\in Y}\sup_{x\in X}f(x, y)\leq\sup_{x\in X}\min\{f(x, y_{1}), \ldots, f(x, y_{n})\}$ .

Proof The assertion is trivial for $n=1$ , and for $n=2$ it is nothing more than
Lemma 2.1. We assume $n\geq 3$ and the assertion holds for $n-1$ . Take any $\alpha$ with
$\alpha<\inf_{y\in Y}\sup_{x\in X}f(x, y)$ . Then we have

$\alpha<\sup_{x\in X}\min\{f(x, y_{1}), \ldots, f(x, y_{n-2}), f(x, y)\}$

for any $y\in Y$ by the assumption. Define a nonempty connected set $L$ with respect to $f$

by

$L=\overline{\bigcap_{1=1}^{n2}}\{x\in X : f(x, y_{i})\geq\alpha\}$.

Then we have $\alpha<\sup_{x\in L}f(x, y)$ for any $y\in Y$ , and hence

$\alpha\leq\inf_{y\in Y}\sup_{x\in L}f(x, y)$ .

By Lemma 2.1, $\alpha\leq\sup_{x\in L}\min\{f(x, y_{n-1}), f(x, y_{n})\}$ , and hence

$\alpha\leq\sup_{x\in X}\min\{f(x, y_{1}), \ldots, f(x, y_{n})\}$.

Theorem 2.1 Suppose that any intersection of finitely many level sets of $f$ in $X$ is
connected with respect to $f$ , any intersection of arbitrarily many level sets of $f$ in $Y$ is
connected with respect to $f$ and $f$ is compact in X. Then it follows that

$\inf_{y\in Y}\max_{x\in X}f(x, y)=\max_{x\in X}\inf_{y\in Y}f(x, y)$ .

Moreover if any intersection of arbitrarily many level sets of $f$ in $X$ is connected with
respect to $f$ and $f$ is compact in $Y$ , then $f$ has a saddle point and it follows that

$\min_{y\in Y}\max_{x\in X}f(x, y)=\max_{x\in X}\min_{y\in Y}f(x, y)$ .

Proof Note that the maximum $\max_{x\in X}f(x, y)$ is attained for each $y\in Y$ from the
comapctness of $f$ in $X$ and set $\alpha=\inf_{y\in Y}\max_{x\in X}f(x, y)$ . We put $X_{y}=\{x\in X$ :
$f(x, y)\geq\alpha\}$ for any $y\in Y$ . Let $y_{1},$

$\ldots,$
$y_{n}$ be any finitely many elements of $Y$ and let

$A_{m}= \{x\in X : \min\{f(x, y_{1}), \ldots, f(x, y_{n})\}\geq\alpha-\frac{1}{m}\}$

for any positive integer $m$ . Then we have

$A_{m}= \bigcap_{i=1}^{n}\{x\in X : f(x, y_{i})\geq\alpha-\frac{1}{m}\}$,
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and $\{A_{m}\}_{m=1}^{\infty}$ has the finite intersection property by Lemma 2.2. Hence $\{A_{m}\}_{m=1}^{\infty}$ has a
common point $\overline{x}\in X$ by the compactness of $f$ in $X$ , and we have

$\alpha\leq\min\{f(\overline{x}, y_{1}), \ldots, f(\overline{x}, y_{n})\}$ .

Thus the family $\{X_{y}\}_{y\in Y}$ has the finite intersection property and hence there exists $x_{0}$ in
$X$ with $x_{0} \in\bigcap_{y\in Y}X_{y}$ , which means

$\alpha\leq\inf_{y\in Y}f(x_{0}, y)\leq\sup_{x\in X}\inf_{y\in Y}f(x, y)\leq\alpha$.

Hence we have $\alpha=\max_{x\in X}\inf_{y\in Y}f(x, y)=\inf_{y\in Y}f(x_{0}, y)$ .
If, in addition, any intersection of arbitrarily many level sets of $f$ in $X$ is connected

with respect to $f$ and $f$ is compact in $Y$ , then the similar argument leads to the existence
of $y_{0}\in Y$ such that $\alpha=\max_{x\in X}f(x, y_{0})$ . It is easily seen that $(x_{0}, y_{0})$ is a saddle point
of $f$ and

$\max_{x\in X}\min_{y\in Y}f(x, y)=\min_{y\in Y}\max_{x\in X}f(x, y)=f(x_{0}, y_{0})$.

Example 2.1 Consider the sets

$X=$ { $x_{1},$ $x_{2}$ , X3, $x_{4}$ }, $Y=\{y_{1}, y_{2}, y_{3}, y_{4}\}$ .

A function $f$ on $X\cross Y$ defined by the diagram

satisfies the hypothesis of Theorem 2.1 and actually has a saddle point $(x_{2}, y_{2})$ . Note that
this example cannot be covered by the minimax theorem of Kindler and Trost for interval
spaces (cf. [2]).

Example 2.2 Let $X=[0,1]$ and $Y=[0,2\pi]$ , and let $f(x, y)=x\sin y$ for $x\in X$ and
$y\in Y$ . Then the minimax equation

$\min_{y\in Y}\max_{x\in X}f(x, y)=0=\max_{x\in X}\min_{y\in Y}f(x, y)$

holds. This example satisfies the hypothesis of Theorem 2.1, but level sets of $f$ in $Y$ are
not necessarily topologically connected.

Corollary 2.1 Let $X$ be a compact topological space, $Y$ a topological space and $f$ :
$X\cross Yarrow R$ upper semicontinuous on $X$ and lower semicontinuous on Y. Suppose
that any intersection of finitely many level sets of $f$ in $X$ is topologically connected and
any intersection of infinitely many level sets of $f$ in $Y$ is topologically connected. Then it
follows that

$\inf_{y\in Y}\max_{x\in X}f(x, y)=\max_{x\in X}\inf_{y\in Y}f(x, y)$ .

Moreover if any intersection of arbitrarily many level sets of $f$ in $X$ is topologically con-
nected and $Y$ is compact, then $f$ has a saddle point and it follows that

$\min_{y\in Y}\max_{x\in X}f(x, y)=\max_{x\in X}\min_{y\in Y}f(x, y)$ .
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3 Connectedness of Intersection of Infinitely Many Level Sets

In the hypothesis of Theorem 2.1, it is not known whether the connectedness with respect
to $f$ of interesections of infinitely many level sets in $Y$ can be replaced by the connectedness
with respect to $f$ of intersections of finitely many level sets. The following is the partial
answer to this question.

Theorem 3.1 Let $X$ and $Y$ be two compact topological spaces and let $f$ : $X\cross Yarrow R$ be
jointly continuous. Suppose that any intersection of finitely many level sets of $f$ in $X$ are
connected with respect to $f$ and that any intersection of finitely many level sets of $f$ in $Y$

are connected with respect to $f$ . Then it follows that

$\min_{y\in Y}\max_{x\in X}f(x, y)=\max_{x\in X}\min_{y\in Y}f(x, y)$ .

We need some lemmas to prove Theorem 3.1.

Lemma 3.1 Let $X$ and $Y$ be topological spaces and let $f$ : $X\cross Yarrow R$ be jointly contin-
uous. Then for any $x\in X$ , any compact subset $K$ of $Y$ and any open interval]a, $b$ [ with
$f(x, K)\subset]a,$ $b$ [, there exists a neighborhood $M$ of $x$ with $f(M,$ $K)\subset$ ] $a,$ $b[$ .

Proof For any $y\in K$ , take a neighborhood $M_{y}$ of $x$ and a neighborhood $N_{y}$ of $y$ with
$f(M_{y}, N_{y})\subset]a,$ $b$ [. Since $K= \bigcup_{y\in K}N_{y}$ and $K$ is compact, there are $y_{1},$ $\ldots,$

$y_{n}\in K$ with
$K= \bigcup_{i=1}^{n}N_{yi}$ . The set $M= \bigcap_{i=1}^{n}M_{yi}$ is the desired one. In fact, for any $(x, y)\in M\cross K$ ,
there is $i$ with $(x, y)\in M_{y;}\cross N_{y_{i}}$ , and hence $f(x, y)\in$] $a,$ $b[$ .

Lemma 3.2 Let $X$ and $Y$ be compact topological spaces and let $f$ : $X\cross Yarrow R$ be jointly
continuous. Then for any $\epsilon>0$ , there is a finite subset $F$ of $X$ such that for any $x\in X$

there is $x’\in F$ such that $|f(x, y)-f(x’, y)|<\epsilon$ for all $y\in Y$ ,

Proof Fix a point $x\in X$ . For any $y\in Y$ , let

$Y_{y}^{x}=\{z\in Y : |f(x, z)-f(x, y)|<\epsilon\}$ .

Then $Y= \bigcup_{y\in Y}Y_{y}^{x}$ and $Y$ is compact, hence there are $y_{1},$ $\ldots,$
$y_{n}\in Y$ with $Y= \bigcup_{i=1}^{n}Y_{y:}^{x}$ .

Since $\overline{Y_{y^{x_{*}}}}$ is compact, and

$|f(x, z)-f(x, y_{i})|<2\epsilon$ , $z\in\overline{Y_{y^{x_{i}}}}$ ,

there is a neighborhood $M_{i^{x}}$ of $x$ such that

$|f(w, z)-f(x, y_{i})|<2\epsilon$ , $w\in M_{i}^{x}$ , $z\in Y_{y:}^{x}$ ,

by Lemma 3.1. Set $M^{x}= \bigcap_{i=1}^{n}M_{i^{x}}$ , then

$|f(w, z)-f(x, y_{i})|<2\epsilon$ , $w\in M^{x}$ , $z\in Y_{y:}^{x}$ , $i=1,2,$ $\ldots,$
$n$ .
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Since $X= \bigcup_{x\in X}M^{x}$ , there are $x_{1},$ $\ldots,$
$x_{m}\in X$ with $X= \bigcup_{j=1}^{m}M^{x_{j}}$ . The finite set

$F=\{x_{1}, \ldots, x_{m}\}$ is the desired one. In fact, for any $x\in X$ , there is $x_{j}$ with $x\in M^{x_{j}}$ .
For any $y\in Y$ , there is $y_{i}$ with $y\in Y_{y:}^{x_{j}}$ . Hence we have

$|f(x, y)-f(x_{j}, y.)|<2\epsilon$ , $|f(x_{j}, y)-f(x_{j}, y_{t})|<2\epsilon$ .

Therefore we have
$|f(x, y)-f(x_{j}, y)|<4\epsilon$ , $y\in Y$.

It is easily seen from the discussion in Section 2 that we merely need the following
Lemma 3.3 in order to prove Theorem 3.1.

Lemma 3.3 Let $X$ and $Y$ be two compact topological spaces and let $f$ : $X\cross Yarrow R$ be
jointly continuous. Suppose that any intersection of finitely many level sets of $f$ in $X$ are
connected with respect to $f$ and that any intersection of finitely many level sets of $f$ in $Y$

are connected with respect to $f$ . Let $y_{1}$ and $y_{2}$ be any two elements of $Y$ and let $L$ be $X$

or a nonempty intersection of finitely many level sets of $f$ in X. Then it follows that

$\min_{y\in Y}\max_{x\in L}f(x, y)\leq\max_{x\in L}\min\{f(x, y_{1}), f(x, y_{2})\}$ .

Proof Suppose that

$\max_{x\in L}\min\{f(x, y_{1}), f(x, y_{2})\}<\alpha-2\epsilon<\alpha<\alpha+\epsilon<\min_{y\in Y}$mpx $f(x, y)$
x

Let $\beta(x)=\max\{f(x, y_{1}), f(x, y_{2})\},$ $x\in L$ . Then by Lemma 3.2 there is a finite subset $F$

of $L$ such that for any $x\in L$ there is $x’\in F$ such that

$|f(x, y)-f(x’, y)|<\epsilon$ $y\in Y$ ; $|\beta(x)-\beta(x’)|<\epsilon$ .

Hence we have $\alpha<\min_{y\in Y}\max_{x’\in F}f(x’, y)$ . Let $W= \bigcap_{x\in F}\{y\in Y : f(x’, y)\leq\beta(x’)\}$ .
Then we have $y_{1},$ $y_{2}\in W$ and $W$ is connected with respect to $f$ . Let $\tilde{L}(y_{i})=\{x\in L$ :
$f(x, y_{t})\geq\alpha-2\epsilon\}$ , for $i=1,2$ , and $L(w)=\{x\in L : f(x, w)\geq\alpha\}$ and $l(w)=\{x’\in$

$F$ : $f(x’, w)>\alpha$} for any $w\in W$ . It is easily seen that $l(w)\neq\emptyset$ and $L(w)$ is connected
with respect to $f$ for any $w\in W$ . Moreover we have $L(w)\subset\tilde{L}(y_{1})+\tilde{L}(y_{2})$ . Indeed the
disjointness of $\tilde{L}(y_{1})$ and $\tilde{L}(y_{2})$ is obvious. If there is a point $x\in L(w)$ with $x\not\in\tilde{L}(y_{1})$

and $x\not\in\tilde{L}(y_{2})$ , then there is $x’\in F$ such that

$\alpha\leq f(x, w)<f(x’, w)+\epsilon\leq\beta(x’)+\epsilon$

$<\beta(x)+2\epsilon<\alpha-2\epsilon+2\epsilon=\alpha$ ,

which is a contradiction. Therefore we have $L(w)\subset\tilde{L}(y_{1})$ or $L(w)\subset\tilde{L}(y_{2})$ .
Hence setting $U=\{w\in W : l(w)\subset\overline{L}(y_{1})\}$ and $V=\{w\in W : l(w)\subset\overline{L}(y_{2})\}$, we

have $y_{1}\in U$ and $y_{2}\in V$ , and $U+V=W$.
On the other hand, we have

$U= \bigcap_{F\backslash L(y_{1})}\{w\sim\in W : f(x, w)\leq\alpha\}$
and

$V= \bigcap_{F\backslash L(y_{2})}\{w\sim\in W : f(x, w)\leq\alpha\}$
.

This contradicts the assertions $W=U+V,$ $y_{1}\in U$ , and $y_{2}\in V$ , since $W$ is connected
with respect to $f$ .
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Corollary 3.1 Let $X$ and $Y$ be two compact topological spaces and let $f$ : $X\cross Yarrow R$

be jointly continuous. Suppose that any intersection of finitely many level sets of $f$ in $X$

are topologically connected and that any intersection of finitely many level sets of $f$ in $Y$

are topologically connected. Then it follows that

$\min_{y\in Y}\max_{x\in X}f(x, y)=\max_{x\in X}\min_{y\in Y}f(x, y)$.
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