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1. Introduction

Decomposition of large-scale problems is a dassical topic of optimization [5], still

attracting serious attention of many researchers. In particular, recent advances of

parallel computers have demanded efficient algorithms that can take full advantage

of a certain separable structure the problem to be solved may have. (See [2] and the

references cited therein.)

The purpose of this paper is to present a new decomposition algorithm for solving

the separable convex programming problem

(P) minimize $\sum_{j=1}^{n}f_{j}(x_{j})$

subject to $\sum_{j=1}^{n}c_{ij}(x_{j})\leq 0$ , $i=1,$ $\ldots,m$ ,

$x_{j}\in X_{j}\subset R^{d_{j}}$ , $j=1,$ $\ldots,$
$n$ ,

where $f_{j}$ : $R^{d_{j}}arrow R$ and $c_{ij}$ : $R^{d_{j}}arrow R$ are convex functions and $X_{j}$ are nonempty

closed convex subsets of $R^{d_{j}}$ for all $i=1,$ $\ldots,$
$m$ and $j=1,$ $\ldots,$

$n$ . In the following, all

vectors are understood to be column vectors, but we shall often write as $x=(x_{1}, \ldots,x_{n})$

instead of $x=(x_{1}, \ldots,x_{n})^{T}$ or $x=(x_{1}^{T}, \ldots, x_{n}^{T})^{T}$ in order to simplify the notation.

There are numbers of approaches to the solution of problem (P), but dual methods

seem to be most popular among others. Let $y\in R^{m}$ be a vector of Lagrange multipliers

and define the Lagrangian $L:R^{d}xR^{m}arrow R$ by

$L(x,y)$ $=$ $\sum_{j=1}^{n}f_{j}(x_{j})+\langle y,\sum_{j=1}^{n}c_{j}(x_{j})\rangle$

$=$ $\sum_{j=1}^{n}\{f_{j}(x_{j})+\langle y, c_{j}(x_{j})\rangle\}$, (1.1)

where $d= \sum_{j=1}^{n}d_{j},$ $x=(x_{1}, \ldots,x_{n}),$ $c_{j}(x_{j})=(c_{1j}(x_{j}), \ldots, c_{mj}(x_{j})),$ $j=1,$ $\ldots,$
$n$ , and

\langle $\cdot,$

$\cdot$ ) denotes the inner product. Then the Lagrangian dual of (P) is the problem

maximize $g(y)$ subject to $y\geq 0$ ,

where the function $g:R^{m}arrow[-\infty, +\infty$ ) is defined by
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$g(y)= \inf_{x\in X}L(x, y)$ (1.2)

with $X=X_{1}\cross\cdots\cross X_{n}\subset R^{d}$ . In the separable case, by (1.1) and (1.2), we may

rewrite the dual problem as

(D) maximize $\sum_{j=1}^{n}g_{j}(y)$ subject to $y\geq 0$ ,

where $g_{j}$ : $R^{m}arrow[-\infty, +\infty$ ) are defined by

$g_{j}(y)= \inf_{x_{j}\in X_{j}}\{f_{j}(x_{j})+(y, c_{j}(x_{j})\rangle\},$ $j=1,$ $\ldots,$
$n$ . (1.3)

Thus the evaluation of the function $g$ decomposes into evaluations of the $n$ functions

$g_{j}$ , which can be done in parallel by solving $n$ independent minimization problems

involving each individual variable $x_{j}$ only.

The dual problem (D) is a concave maximization problem. Moreover, if the infi-

mum on the right-hand side of (1.3) is always attained uniquely for each $j$ , which is

particularly the case if the functions $f_{j}$ are strictly convex and co-finite in the sense of

[7, p. 116], then the dual functions $g_{j}$ are not only finite-valued everywhere but also

continuously differentiable, so that various descent methods can be applied to problem

(D). Detailed discussions on dual descent methods for the case of linear constraints

may be found in Tseng [12]. In the general case, however, the functions $g_{j}$ are not

necessarily differentiable, and further, it is quite likely that $g_{j}(y)$ may take the value

$-\infty$ somewhere. A natural approach to such a problem would therefore be to use a

carefully designed nondifferentiable optimization technique [6].

Another interesting way of dealing with problem (P) under the general setting is

to modify the problem by adding a quadratic term to the objective function, thereby

obtaining a strictly convex objective function. A typical example is the proximal point

method $[8, 9]$ , of which each iteration consists of solving a subproblem of the form (P)

with objective function replaced by $\sum_{j=1}^{n}\{f_{j}(x_{j})+(r/2)||x_{j}-x_{j}^{(k)}||^{2}\}$ , where $r>0$

is a given constant and $x_{j}^{(k)}$ are components of the current iterate $x^{(k)}$ . Since this

problem has a strongly convex objective function, its dual is a differentiable concave

maximization problem, to which various descent type algorithms can be applied.



54

A different but closely related approach is to utilize the method of multipliers [1].

Though straightforward application of the latter method to problem (P) generally

loses the separable structure of the problem, careful reformulation of the problem

may still lead to implementation that preserves the inherent separability for some

special classes of problems. Specifically, Bertsekas and Tsitsiklis [2, pp. 249-251]

consider the separable problem with linear constraints and show how the method of

multipliers can be applied without destroying the separable structure of the given

problem. Moreover, in [2, p. 254], it is shown that the same class of problems can

also be dealt with effectively by the alternating direction method of multipliers $[3, 4]$ ,

which may be viewed as a variant of the method of multipliers. (See also $[13, 14]$ for

related methods.) Note that those methods do not require the strict convexity of the

functions $f_{j}$ , but assume that the coupling constraints are all linear.

In this paper, we consider applying the alternating direction method of multipliers

to the dual problem (D), rather than the primal problem (P) as is done in [2]. The

objective functions $f_{j}$ are not assumed strictly convex and the constraint functions

$c_{j}$ are not assumed affine. Of course, none of the functions are supposed to be dif-

ferentiable. Interestingly, the resulting algorithm resembles the method of Spingarn

[11] that is derived from a variant of the proximal point method [10]. The difference

between the Spingarn’s algorithm and the present one might well be compared to that

between the proximal method of multipliers [9] and the method of multipliers [1].

2. Preliminaries

In this section, we briefly review the alternating direction method of multipliers. For

more detail, the reader may refer to [2, 3, 4].

The method is designed to solve a problem of the form

minimize $G_{1}(y)+G_{2}(z)$ (2.1)

subject to $Ay– z=0,$ $y\in C_{1},$ $z\in C_{2}$ ,
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where $G_{1}$ : $R^{s}arrow(-\infty, +\infty$ ] and $G_{2}$ : $R^{t}arrow(-\infty, +\infty$ ] are closed proper convex

functions, $A$ is a $t\cross s$ matrix, and $C_{1}$ and $C_{2}$ are nonempty closed convex subsets of $R^{s}$

and $R^{t}$ , respectively. The iteration of the alternating direction method of multipliers

may be written as

$y^{\langle k+1)}$ $:=$ $\arg\min_{y\in C_{1}}\{G_{1}(y)+\langle p^{(k)}, Ay\rangle+\frac{r}{2}||Ay-z^{(k)}||^{2}\}$, (2.2)

$z^{(k+1)}$ $:=$ $\arg\min_{z\in C_{2}}\{G_{2}(z)-(p^{(k)}, z\rangle+\frac{r}{2}||Ay^{(k+1)}-z||^{2}\}$ , (2.3)

$p^{(k+1)}$ $;=$ $p^{(k)}+r(Ay^{(k+1)}-z^{(k+1)})$ , (2.4)

where $r$ is a positive constant and the initial vectors $p^{(0)}$ and $z^{(0)}$ may be chosen

arbitrarily. Note that (2.2) and (2.3) correspond to a single cycle of the (block)

Gauss-Seidel method to minimize the augmented Lagrangian

$\Lambda_{r}(y, z,p^{(k)})=G_{1}(y)+G_{2}(z)+\langle p^{(k)}, Ay-z\rangle+\frac{r}{2}||Ay-z||^{2}$

for problem (2.1), while (2.4) is the ordinary multiplier update in the method of

multipliers. The minimum on the right-hand side of (2.2) is uniquely attained when-

ever rank$(A)=s$ , while the minimum on the right-hand side of (2.3) is always at-

tained uniquely. Therefore the above method is well defined under the assumption

rank$(A)=s$ . Moreover, under the same assumption, it can be shown that the se-

quence $\{(y^{(k)}, z^{(k)},p^{(k)})\}$ generated by $(2.2)-(2.4)$ is bounded and every limit point

of $\{(y^{(k)}, z^{(k)})\}$ is a solution of problem (2.1), whenever the solution set of the latter

problem is nonempty. In addition, the sequence $\{(z^{(k)},p^{(k)})\}$ has a unique limit point.

(For a proof of these results, see Proposition 4.2 and its proof in [2, Chapter 3].)

3. Algorithm

In this section, we show how the alternating direction method of multipliers applied

to the dual problem (D) yields a decomposition algorithm for solving problem (P).

Throughout this section, we make the following assumption:
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Assumption. Problems (P) and (D) have nonempty solution sets. Moreover, the

solution set of (P) is bounded.

In applying the alternating direction method of multipliers to (D), we adopt a

technique used in Bertsekas and Tsitsiklis [2, p. 246 and p. 256]. First we rewrite (D)

in the following equivalent form:

$(\hat{D})$ maximize $\sum_{j=1}^{n}g_{j}(z_{j})$

subject to $y-z_{j}=0$ , $j=1,$ $\ldots,$
$n$ ,

$z_{j}\geq 0$ , $j=1,$ $\ldots,$
$n$ ,

where $z_{j}\in R^{m},$ $j=1,$ $\ldots,$
$n$ , are artificial variables. We then apply the alternating

direction method of multipliers $(2.2)-(2.4)$ to problem $(\hat{D})$ with the following identifi-

cations:

$G_{1}(y)=0$ , $C_{1}=R^{m}$

$A=\{\begin{array}{l}II|I\end{array}\}\in R^{nm\cross m},$

$’ z=(z_{1}, z_{2}, \ldots, z_{n})\in R^{nm}$

, (3.1)

$G_{2}(z)=- \sum_{j=1}^{n}g_{j}(z_{j})$ , $C_{2}=\{z\in R^{nm}|z_{j}\geq 0, j=1, \ldots, n\}$ .
Partitioning the multiplier vector $p\in R^{nm}$ as

$p=(p_{1}, p_{2}, p_{n})$ ,

where $p_{j}\in R^{m},$ $j=1,$ $\ldots,$
$n$ , we may write the altemating direction method of multi-

pliers for $(\hat{D})$ as follows:

$y^{(k+1)}$ $:=$ $\arg\min_{y\in R^{m}}\{\langle\sum_{j=1}^{n}p_{j}^{(k)}, y\rangle+\frac{r}{2}\sum_{j=1}^{n}||y-z_{j}^{(k)}||^{2}\}$ , (3.2)

$z_{j}^{(k+1)}$ $;=$ $\arg\max_{z_{j}\geq 0}\{g_{j}(z_{j})+\langle p_{j}^{(k)}, z_{j}\rangle-\frac{r}{2}||y^{(k+1)}-z_{j}||^{2}\}$ , $j=1,$ $\ldots,$ $n,$ $(3.3)$

$p_{j}^{(k+1)}$ $;=$ $p_{j}^{(k)}+r(y^{(k+1)}-z_{j}^{(k+1)})$ , $j=1,$ $\ldots,$
$n$ , (3.4)

where $r$ is a positive constant and the initial vectors $p_{j}^{(0)},$ $j=1,$ $\ldots,$
$n$ , and $z_{j}^{\{0)},$ $j=$

$1,$
$\ldots,$

$n$ , may be chosen arbitrarily. Note that, by the separability of $(\hat{D})$ , the updates
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$(3.3)-(3.4)$ of variables $z=(z_{1}, \ldots, z_{n})$ and $p=(p_{1}, \ldots,p_{n})$ can be performed in parallel

for $j=1,$ $\ldots,$
$n$ .

Now let us go into details of the computation. First observe that, by (3.2), $y^{(k+1)}$

is explicitly written as

$y^{(k+1)}= \frac{1}{n}\sum_{j=1}^{n}z_{j}^{\langle k)}-\frac{1}{nr}\sum_{j=1}^{n}p_{j}^{\langle k)}$ .

Next we consider (3.3). By the definition (1.3) of $g_{j}$ , we have

$\max_{z_{j}\geq 0}\{g_{j}(z_{j})+\langle p_{j}^{(k)}, z_{j}\rangle-\frac{r}{2}||y^{(k+1)}-z_{j}||^{2}\}$

$=$ $\max_{zj\geq 0_{x_{j}\in X_{-}}^{\inf_{j}\{f_{j}(x_{j})}}+\langle z_{j},p_{j}+c_{j}(x_{j})\rangle-\frac{r}{2}||y^{(k+1)}-z_{j}||^{2}$}. (3.5)

Under the standing assumption that (P) has a nonempty bounded solution set, we

can show that $z_{j}^{(k+1)}=(z_{1j}^{(k+1)}, \ldots,z_{mj}^{(k+1)})$ is given by

$z_{ij}^{(k+1)}= \max\{0, y_{i}^{(k+1)}+\frac{1}{r}(p_{ij}^{(k)}+c_{ij}(x_{j}^{(k+1)}))\}$ , $i=1,$ $\ldots,$
$m$ , (3.6)

where $x_{j}^{(k+1)}$ is a solution of the minimization problem

minimize $f_{j}(x_{j})+ \frac{r}{2}\sum_{i=1}^{m}[\max\{0, y_{i}^{\{k+1)}+\frac{1}{r}(p_{ij}^{(k)}+c_{ij}(x_{j}))\}]^{2}$ (3.7)

subject to $x_{j}\in X_{j}$ .

To see this, first notice that if the solution set of problem (P) is nonempty and

bounded, then the functions $\sum_{j=1}^{n}f_{j},$ $\sum_{j=1}^{n}c_{ij},$ $i=1,$ $\ldots,$
$m$ , and the set $X=X_{1}\cross$

$...\cross X_{n}$ have no direction of recession in common in the sense of [7, p. 61 and p. 69].

By the separability of the problem, this implies that the same is true for the functions

$f_{j},$ $c_{ij},$ $i=1,$ $\ldots,$
$m$ , and the set $X_{j}$ for each $j$ .

Let us consider the saddle function $K$ : $R^{d_{j}}\cross R^{m}arrow[-\infty, +\infty]$ defined by

$K(x_{j}, z_{j})=\{\begin{array}{l}f_{j}(x_{j})+\langle z_{j},p_{j}^{(k)}+c_{j}(x_{j})\rangle-\frac{r}{2}||y^{(k+1)}-z_{j}||^{2},ifx_{j}\in X_{j},z_{j}\geq 0+\infty,ifx_{j}\not\in X_{j},z_{j}\geq 0-\infty,ifz_{j}\not\geq 0\end{array}$
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Then, by the preceding arguments, it is seen that the convex function $K(\cdot, z_{j})$ has no

direction of recession for any $z_{j}>0$ , while the convex function $-K(x_{j}, \cdot)$ trivially has

no direction of recession for any $x_{j}\in X_{j}$ . Therefore it follows from [7, Theorems 37.3

and 37.6] that

$\sup_{z_{j}\geq 0^{x}j}\inf_{\in X_{j}}K(x_{j}, z_{j})=\inf_{x_{j}\in X_{j}}\sup_{z_{j}\geq 0}K(x_{j}, z_{j})<\infty$

and that the function $K$ actually has a saddle point $(x_{j}^{-},\overline{z}_{j})\in X_{j}\cross\{z_{j}|z_{j}\geq 0\}$ such

that

$K(x_{j}^{-}, \overline{z_{j}})=\max_{zj}\min_{\geq 0x_{j}\in X_{j}}K(x_{j}, z_{j})=\min_{x_{j}\in X_{j}}\max_{z_{j}\geq 0}K(x_{j}, z_{j})$ . (3.8)

Consequently, it follows from (3.5) that

$\max_{z_{J}\geq 0}\{g_{j}(z_{j})+\langle p_{j}^{(k)}, z_{j}\rangle-\frac{r}{2}||y^{(k+1)}-z_{j}||^{2}\}$

$=$ $\min_{x_{j}\in X_{j}}\max_{z_{j}\geq 0}\{f_{j}(x_{j})+\langle z_{j},p_{j}+c_{j}(x_{j})\rangle-\frac{r}{2}||y^{(k+1)}-z_{j}||^{2}\}$ . (3.9)

But, for any fixed $x_{j}$ , the maximum on the right-hand side of (3.9) is uniquely attained

by

$z_{j}=[y^{(k+1)}+ \frac{1}{r}(p_{j}^{(k)}+c_{j}(x_{j}))]_{+}$ ,

where $[\cdot]_{+}$ denotes the orthogonal projection of a vector onto the nonnegative orthant,

i.e.,

$z_{ij}= \max\{0, y_{i}^{(k+1)}+\frac{1}{r}(p_{ij}^{(k)}+c_{ij}(x_{j}))\}$ , $i=1,$ $\ldots,$
$m$ . (3.10)

We may thus substitute (3.10) into the function on the right-hand side of (3.9) to

eliminate the variables $z_{j}$ . As a result, we obtain the objective function of problem

(3.7). Therefore, if a solution $x_{j}^{(k+1)}$ of problem (3.7) is found, we can determine $z_{j}^{(k+1)}$

by (3.6). Clearly such $(x_{j}^{(k+1)}, z_{j}^{(k+1)})$ is a saddle point $(\overline{x}_{j},\overline{z_{j}})$ of $K$ satisfying (3.8).

(Note that the previous arguments guarantee the existence of a solution of problem

(3.7).)

To summarize, we state the algorithm as follows:
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Algorithm 1.

Step 1: Choose a constant $r>0$ and initial vectors $(p_{j}^{(0)}, z_{j}^{(0)}),$ $j=1,$ $\ldots,$
$n$ , arbitrar-

ily. Set $k:=0$.

Step 2: Compute

$y^{(k+1)}= \frac{1}{n}\sum_{j=1}^{n}z_{j}^{(k)}-\frac{1}{nr}\sum_{j=1}^{n}p_{i}^{(k)}$. (3.11)

Step 3: For each $j=1,$ $\ldots,$
$n$ , find a solution $x_{j}^{(k+1)}$ of the minimization problem

minimize $f_{j}(x_{j})+ \frac{r}{2}\sum_{i=1}^{m}[\max\{0, y_{i}^{(k+1)}+\frac{1}{r}(p_{ij}^{(k)}+c_{ij}(x_{j}))\}]^{2}$

subject to $x_{j}\in X_{j}$ ,

and determine $z_{j}^{(k+1)}=(z_{1j}^{(k+1)}, \ldots,z_{mj}^{(k+1)})$ by

$z_{ij}^{(k+1)}= \max\{0, y_{i}^{(k+1)}+\frac{1}{r}(p_{ij}^{(k)}+c_{ij}(x_{j}^{(k+1)}))\}$ , $i=1,$ $\ldots,$
$m$ . (3.12)

Step 4: For each $j=1,$ $\ldots,$
$n$ , compute

$p_{j}^{(k+1)}=p_{j}^{(k)}+r(y^{(k+1)}-z_{j}^{(k+1)})$ .

Set $k:=k+1$ and go to Step 2. $\square$

Since the matrix $A$ defined by (3.1) has full column rank, it follows from the fact

mentioned in the previous section that the sequence $\{(y^{(k)}, z^{(k)},p^{(k)})\}$ generated by

Algorithm 1 is bounded. Moreover, every limit point of $\{(y^{(k)}, z^{(k)})\}$ is a solution of

problem $(\hat{D})$ , and the sequence $\{(z^{(k)},p^{(k)})\}$ has a unique limit point. It now remains

to establish convergence of the sequence $\{x^{(k)}\}$ .

Theorem 3.1 Suppose that problems (P) and (D) have nonempty solution sets, and

that the solution set of (P) is bounded. Then the sequence $\{x^{(k)}\}$ generated by Algo-

rithm 1 is bounded and every limit point of $\{x^{(k)}\}$ is a solution of (P).
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Proof. Since $\{(z^{(k)},p^{\{k)})\}$ has a unique limit point, and since any limit point of

$\{(y^{\langle k)}, z^{\langle k)})\}$ is a solution of problem $(\hat{D})$ , the sequence $\{y^{(k)}\}$ also has a unique limit

point, which is equal to that of $\{z_{j}^{(k)}\}$ for any $j$ . That is, we have

$y^{(k)}arrow y^{*}$ , (3.13)

$z_{j}^{(k)}arrow y^{*}$ , $j=1,$ $\ldots,$
$n$ , (3.14)

$(k)$

$p_{j}$
$arrow p_{j}^{*}$ , $j=1,$ $\ldots,$

$n$ , (3.15)

for some $y^{*}\in R^{m}$ and $p_{j}^{*}\in R^{m},$ $j=1,$ $\ldots,$
$n$ , where in particular $y^{*}$ is a solution of

problem (D).

For each $j$ , let us define the functions $F_{j}^{\langle k)}$ : $R^{d_{J}}arrow(-\infty, +\infty$ ], $k=1,2,$ $\ldots$ , and

$F_{j}^{*}:$ $R^{d_{J}}arrow(-\infty, +\infty$ ] by

$F_{j}^{(k)}(x_{j})=f_{j}(x_{j})+ \frac{r}{2}\sum_{i=1}^{m}[\max\{0, y_{i}^{(k)}+\frac{1}{r}(p_{ij}^{(k-1)}+c_{ij}(x_{j}))\}]^{2}+\delta(x_{j}|X_{j})$

and

$F_{j}^{*}(x_{j})=f_{j}(x_{j})+ \frac{r}{2}\sum_{i=1}^{m}[\max\{0, y_{i}^{*}+\frac{1}{r}(p_{ij}^{*}+c_{ij}(x_{j}))\}]^{2}+\delta(x_{j}|X_{j})$ ,

respectively, where $\delta(\cdot|X_{j})$ is the indicator function of the set $X_{j}$ . Note that the

sequence $\{F_{j}^{(k)}\}$ of closed convex functions e-converges (epi-converges) to the closed

convex function $F_{j^{*}}$ in the sense of [15]. Moreover, since (P) has a nonempty bounded

solution set, the functions $f_{j},$ $c_{ij},$ $i=1,$ $\ldots,$
$m$ , and the set $X_{j}$ have no direction of

recession in common, which in turn implies that the function $F_{i}^{*}$ has no direction

of recession and hence has a compact solution set. Since $x_{i}^{(k)}$ is a minimum of the

function $F_{i}^{(k)}$ for each $k$ , it follows from [15, Theorem 9] that the sequence $\{x_{j}^{(k)}\}$ is

bounded and every limit point belongs to the set of minima of $F_{j^{*}}$ .
Now let $x_{i}^{*}$ denote an arbitrary limit point of $\{x_{j}^{(k)}\}$ for each $j$ . Since $x_{j}^{*}$ minimizes

the function $F_{j^{*}}$ , we have

$0$ $\in$ $\partial F_{j}^{*}(x_{i}^{*})$

$=$ $\partial f_{j}(x_{j}^{*})+\sum_{i=1}^{m}\max\{0, y_{i}^{*}+\frac{1}{r}(p_{ij}^{*}+c_{ij}(x_{j}^{*}))\}\partial c_{ij}(x_{j}^{*})+\partial\delta(x_{j}^{*}|X_{j}),$ $(3.16)$
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where $\partial$ denotes the subdifferential operator.

Incidentally it follows from (3.11) and (3.13)-(3.15) that

$\sum_{j=1}^{n}p_{i}^{*}=0$ . (3.17)

Moreover, (3.12) together with (3.13)-(3.15) implies

$y_{i^{*}}= \max\{0, y_{i}^{*}+\frac{1}{r}(p_{ij}^{*}+c_{ij}(x_{j}^{*})\},$ $i=1,$ $\ldots,$
$m$ , (3.18)

which in turn implies that

$y_{i}^{*}=0$ $\Rightarrow$ $p_{ij}^{*}+c_{ij}(x_{j}^{*})\leq 0$ ,
(3.19)

$y_{i^{*}}>0$ $\Rightarrow$ $p_{ij}^{*}+c_{ij}(x_{j}^{*})=0$ .

Then it follows from (3.16) and (3.18) that

$0 \in\partial f_{j}(x_{j}^{*})+\sum_{i=1}^{m}y_{i}^{*}\partial c_{ij}(x_{j}^{*})+\partial\delta(x_{j}^{*}|X_{j})$ . (3.20)

Since (3.20) holds for each $j$ , we have

$0$ $\in$ $\sum_{j=1}^{n}\partial f_{j}(x_{j}^{*})+\sum_{i=1}^{m}y_{i}^{*}\sum_{j=1}^{n}\partial c_{ij}(x_{j}^{*})+\sum_{j=1}^{n}\partial\delta(x_{j}^{*}|X_{j})$

$=$ $\partial(\sum_{j=1}^{n}f_{j}(x_{j}^{*}))+\sum_{i=1}^{m}y_{i}^{*}\partial(\sum_{j=1}^{n}c_{ij}(x_{j}^{*}))+\partial(\sum_{j=1}^{n}\delta(x_{j}^{*}|X_{j}))$ , (3.21)

where the last equality follows from [7, Theorem 23.8]. On the other hand, the relation

(3.19) implies that the inequalities

$p_{ij}^{*}+c_{ij}(x_{j}^{*})\leq 0$

hold for all $i$ and $j$ , so that

$\sum_{j=1}^{n}p_{ij}^{*}+\sum_{j=1}^{n}c_{ij}(x_{j}^{*})\leq 0$ , $i=1,$ $\ldots,m$ .

Therefore, by (3.17), we have

$\sum_{j=1}^{n}c_{ij}(x_{j}^{*})\leq 0$ , $i=1,$ $\ldots,m$ . (3.22)

Moreover, by (3.19) and (3.17), we have
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$y_{i}^{*}>0$ $\Rightarrow$

$\sum c_{ij}(x_{j}^{*})n=0$ . (3.23)
$j=1$

Since (3.21)-(3.23) imply that $x^{*}=(x_{1}^{*}, \ldots,x_{n}^{*})$ together with the Lagrange multiplier

vector $p^{*}=(p_{1}^{*}, \ldots,p_{m}^{*})$ satisfies the Karush-Kuhn-Tucker optimality conditions for

problem (P), the proof is complete. $\square$

4. Discussion

The algorithm presented in the previous section solves at each iteration the following

$n$ independent subproblems:

minimize $f_{j}(x_{j})+ \frac{r}{2}\sum_{i=1}^{m}[\max\{0, y_{i}^{(k+1)}+\frac{1}{r}(p_{ij}^{(k)}+c_{ij}(x_{j}))\}]^{2}$ (4.1)

subject to $x_{j}\in X_{j}$ .

We remark that the objective function of problem (4.1) looks like an augmented

Lagrangian for the problem

minimize $f_{j}(x_{j})$

subject to $c_{ij}(x_{j})\leq-p_{ij}^{(k)}$ , $i=1,$ $\ldots,m$ ,

$x_{j}\in X_{j}$ .

with the Lagrange multiplier vector $y^{(k+1)}\in R^{m}$ that is common to all $j=1,$ $\ldots,$
$n$ .

Therefore, the vector $p_{j}^{(k)}=(p_{1j}^{(k)}, \ldots,p_{mj}^{(k)})$ may be thought of as the (negative) amount

of the resources assigned to the $jth$ subsystem. After solving subproblems (4.1), the

algorithm updates the Lagrange multiplier vector separately for each $j$ based on the

respective solutions of (4.1). At this stage, there are $n$ different estimates $z_{j}^{(k+1)}$

of Lagrange multipliers for $j=1,$ $\ldots,$
$n$ . Using this information, the algorithm then

$(k+1)$reallocates the resources by updating $p_{j}$ , and proceeds to the next iteration. At

the beginning of the new iteration, the different values $z_{j}^{(k+1)}$ of Lagrange multiplier

estimates are integrated to the single Lagrange multiplier vector $y^{\langle k+1)}$ , which is again

common to all subsystems. In this manner, the algorithm successively updates not
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only Lagrange multipliers (prices) for the coupling constraints but also the amount of

resources to be assigned to each subsystem.

A decomposition method with similar nature has been proposed by Spingarn [11]

for the same class of separable problems (P). Though the original notation and formu-

lation of [11] are somewhat different from ours, suitable transformation of variables

and rearrangement reveal that Spingarn’s algorithm, which is called Algorithm 4 in

[11], may be restated as follows:

Step 1: Choose a constant $r>0$ and initial vectors $(z_{j}^{(0)},p_{j}^{(0)}),$ $j=1,$ $\ldots,$
$n$ , such that

$\sum_{j=1}^{n}p_{j}^{(0)}=0$ . Set $k:=0$ .

Step 2: Compute

$y^{(k+1)}= \frac{1}{n}\sum_{j=1}^{n}z_{j}^{(k)}$ .

Step 3: For each $j=1,$ $\ldots,$
$n$ , find the unique solution $x_{j}$

$(k+1)$ of the minimization

problem

minimize $f_{j}(x_{j})+ \frac{1}{2n^{2}r}||x_{j}-x_{j}^{(k)}||^{2}+\frac{r}{2}\sum_{i=1}^{m}[\max\{0, y_{i}^{(k+1)}+\frac{1}{r}(p_{ij}^{(k)}+c_{ij}(x_{j}))\}]^{2}$

subject to $x_{j}\in X_{j}$ ,

and determine $z_{j}^{(k+1)}=(z_{1j}^{(k+1)}, \ldots,z_{mj}^{(k+1)})$ by

$z_{ij}^{(k+1)}= \max\{0, y_{i}^{(k+1)}+\frac{1}{r}(p_{ij}^{(k)}+c_{ij}(x_{j}^{(k+1)}))\}$ , $i=1,$ $\ldots,$
$m$ .

Step 4: For each $j=1,$ $\ldots,$
$n$ , compute

$\hat{p}_{j}^{(k+1)}=p_{j}^{(k)}+r(y^{(k+1)}-z_{j}^{(k+1)})$

and

$p_{j}^{(k+1)}= \hat{p}_{j}^{(k+1)}-\frac{1}{n}\sum_{\ell=1}^{n}\hat{p}_{f}^{(k+1)}$ .

Set $k:=k+1$ and go to Step 2. $\square$
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This algorithm differs from Algorithm 1 in two respects. First, each subproblem

solved at Step 3 contains the extra quadratic term $\frac{1}{2n^{2}r}||x_{j}-x_{j}^{(k)}||^{2}$ , which is peculiar to

methods of the proximal point type. Second, Step 4 contains an additional update of

the multiplier vectors $p_{j}^{(k)}$ in order to maintain the condition $\sum_{j=1}^{n}p_{j}^{(k)}=0$ throughout

the iterations. In the special case where $n=1$ , Spingarn’s algorithm reduces to the

proximal method of multipliers [9], while Algorithm 1 is nothing but the ordinary

method of multipliers [1].
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