
50

根方向型語彙機能文法の正データからの学習
Learning Frontier-to-Root Lexical-Functional Grammars from Positive Data

清水直昭, 西野哲朗, 一松信
Naoaki Shimizu, Tetsuro Nishino, and Shin Hitotsumatsu

東京電機大学理工学部情報科学科
Department of Information Sciences, Tokyo Denki University

Abstract

It is known that the class of languages generated by frontier-to-root lexical-
functional grammars properly includes the class of context-free languages and is in-
cluded in the class of context-sensitive languages. In this paper, we show an algorithm
which identifies a structurally equivalent frontier-to-root lexical-functional grammar
in the limit and generates a conjecture in polynomial time in the sum of the sizes of
the input data.

1 Introduction
N. Chomsky proposed transformational grammars in 1965 in order to specify the syntax
of naturaJ languages. It is shown, however, that transformational grammars can generate
recursively enumerable sets, that is, the generative capability of transformational gram-
mars is too powerful. Since then, various grammars whose generative capability is weeker
than transformational grammars have been proposed. As one of such grammals, in 1982,
R. M. Kaplan and J. Bresnan proposed Lexicd-Functional Granunars (LFGs) by extend-
ing context-bee grammars (CFGs). In 1982, R. C. Berwick showed, however, that the
membership problem for LFGs is NP-hard. Furthermore, some other results showing com-
putational intractabilities of LFGs have been proved $[4, 7]$. So in 1990, T. Nishino pro-
posed $Frontier- toarrow Root$ LFGs (FRLFGs) as asubclass of LFGs meeting the dual demands
of parsability and learnability from computational theoretic points of view [5]. FRLFGs
are defined by attaching functional assignments to each production of CFGs. The class of
languages generated by FRLFGs properly includes the class of context-free languages and
is included in the class of context-sensitive languages [6].

In 1988, Y. Sakakibara showed an algorithm which genelates aconjecture from $st_{1}\cdot uc-$

tural descriptions of trees in polynomial time and identffies the unlcnown CFGs in the limit
$[8, 9]$. Here, astructural descliption of atree is atree whose internal nodes are labeled
by asingle symbol. In this paper, we show an efficient learning algorithm for FRLFGs by
extending the $Sakal<ibara’ s4gorithm$.

2 Basic Definitions
In this section, we describe basic concepts in formal language theory. For details, see $[2, 3]$.
Let Σ be an alphabet. The set of all finite length strings over Σ is denoted by Σ^{*} . Each
string w in Σ^{*} has a finite length. A string of the length 0 is called an empty string, which is

数理解析研究所講究録
第 790巻 1992年 50-56

51

denoted by ϵ . Let N be the set of non-negative integers, and $N_{+}=N-\{0\}$. For $x,$ $y\in N_{+}^{*}$,
$x\preceq y$ iff there exists $z\in N_{+}^{*}$ such that $y=xz$, and $x\prec y$ iff $x\preceq y$ and $x\neq y$.

A ranked alphabet Σ is an alphabet associated with a finite relation $r_{\Sigma}\subseteq\Sigma\cross N$. If
$(a, n)\in r_{\Sigma},$ a is called a symbol of the rank n . We will denote the set of symbols of rank
n by Σ_{n} . A symbol in the set Σ_{0} is called a constant symbol.

Definition 1 A tree over Σ is a mapping t from $Dom(t)$ into Σ , where the domain
$Dom(t)$ is a finite subset of N_{+}^{*} satisfying the following conditions :

1. If $x\in Dom(t)$ and $y\prec x$, then $y\in Dom(t))$

2. If $yi\in Dom(t)$ for $i\in N_{+}$, then $yj\in Dom(t)$ for $j\in N_{+},$ $1\leq j\leq i$,

3. If $t(x)\in\Sigma_{n}$, then $xi\in Dom(t)$ for $i\in N_{+},$ $1\leq i\leq n$.

An element of $Dom(t)$ is called a node in t . If $t(x)=a$, then a is said to be the label of
the node x in t . The set of all trees over Σ is denoted by \mathcal{T}_{Σ} .

Let $t\in \mathcal{T}_{\Sigma}$. A node x in t is a terminal node or a leaf iff for all $y\in Dom(t),$ $x\# y$.
While a node x in t is an internal node iff x is not a terminal node. Especially, a node
$\epsilon\in Dom(t)$ is called a root of t .
Definition 2 A ranked alphabet Σ uniquely determines a set Term(Σ) of terms over Σ

defined to be the least subset of Σ^{*} satisfying the following conditions :

1. $\Sigma_{0}\subseteq.Term(\Sigma)$,

2. If $f\in\Sigma_{n}$ and $t_{1},$ $t_{2},$
$\ldots,$

$t_{n}\in Term(\Sigma),$ ’ then $f(t_{1}, t_{2}, \ldots, t_{n})\in Term(\Sigma)$.

Since the finite trees over Σ can be identified with terms over Σ , we will represent trees as
terms.

Let σ be a special symbol. A skeletal alphabet $\Sigma=\bigcup_{i=0^{\Sigma}:}^{n}$ with the maximal rank n

is a ranked alphabet such that $\Sigma_{i}=\{\sigma\}$ for each $i,$ $1\leq i\leq n$. A tree over a skeletal
alphabet is called a skeleton. The structural description of a tree t , which is denoted by
$s(t)$, is a skeleton with $Dom(s(t))=Dom(t)$ which satisfies the following condition : if x

is a terininal node in t then $s(t)(x)=t(x)$ else $s(t)(x)=\sigma$. The skeleton set corresponding
a set T of trees, which is denoted by $K(T)$, is $\{s(t)|t\in T\}$.

A context-free grammar (CFG for short) Gr is a 4-tuple $(NA, TA\rangle P, S)$, where NA ,
TA, P , and S are nonterminals, terminals, productions, and a start symbol, respectively.
We assume that $NA\cap TA=\emptyset$. A production in P is of the form $Aarrow B_{1}\cdots B_{n}$, where
$n\geq 1,$ $A\in NA$, and $B_{i}\in NA\cup TA(1\leq i\leq n)$. If $n=1,$ B_{1} may be an empty
string ϵ . If $Aarrow\beta\in P$, then for any $\alpha,$ $\gamma\in(NA\cup TA)^{*}$, we write $\alpha A\gamma\Rightarrow\alpha\beta\gamma$, where
$\beta\in(NA\cup TA)^{*}$. \Rightarrow^{*} is the reflexive and transitive closure $of\Rightarrow$. The language generated
by Gr , which is denoted by $L(Gr)$, is the set { $w|w\in TA^{*}$ and $S\Rightarrow^{*}w$ }. A language L

is called a context-free language if $L=L(Gr)$ for some CFG Gr .

Definition 3 Let $Gr=-$ ($NA,$ TA, $P,$ S) be a CFG. For $A\in NA\cup TA\cup\{\epsilon\}$, the set
$D_{A}(Gr)$ of derivation trees of Gr from A is recursively defined to be a set of trees over
$NA\cup TA$ as follows :

$D_{A}(Gr)=\{\begin{array}{l}\{A\}ifA\in TA\cup\{\epsilon\}\{A(t_{1},\ldots,t_{k})|Aarrow B_{1}\cdots B_{k}\in P,t_{i}\in D_{B},(Gr)br l\leq i\leq k\} if A\in NA\end{array}$

52

For the set $D_{S}(Gr)$ of derivation trees of Gr from the start symbol S , the S-subscript
will be abbreviateG. A derivation tree is said to be complete iff its root is labeled by S and
all its leaves are labeled by terminal symbols or $\epsilon’ s$. A structural description of a CFG Gr

is a skeleton in $K(D(Gr))$. Two CFGs Gr_{1} and Gr_{2} is said to be structurally equivalent iff
$K(D(Gr_{1}))=K(D(Gr_{2}))$.

A CFG $Gr=$ ($NA,$ TA, $P,$ S) is said to be invertible iff $Aarrow\alpha$ and $Barrow\alpha$ in P implies
$A=B$. A CFG $Gr=$ ($NA,$ TA, $P,$ S) is said to be reset-free iff, for $B,$ $C\in NA$ and
$\alpha,$ $\beta\in(NA\cup TA)^{*},$ $B=C$ whenever $Aarrow\alpha B\beta$ and $Aarrow\alpha C\beta$ in P . A CFG Gr is said
to be reversible iff Gr is invertible and reset-free. A CFG $Gr=$ ($NA,$ TA, $P,$ S) is said to
be extended reversible iff, for $P’=P-\{Sarrow a|a\in TA\cup\{\epsilon\}\},$ $Gr‘=$ ($NA,$ TA, $P’,$ S) is
reversible. An extended reversible CFG is a normal form for CFGs [9].

3 Frontier-to-Root Lexical-Functional Grammars
In order to specify the syntax of natural languages, T. Nishino introduced frontier-to-root
lexical-functional grammars (FRLFGs for short) in 1990 [5]. An FRLFG is defined by
attaching functional assignments to each production of a CFG.

An FRLFG describes a set of grammatical sentences by using two types of trees, con-
stituent trees (c-trees) and functional trees (f-trees). A c-tree is a derivation tree of a
CFG. An f-tree is a rooted ordered tree whose nodes are labeled by a special symbol $,
function names, and function values. First, we give a formal definition of an FRLFG. For
details, see $[5, 6]$.

Definition 4 A frontier-to-root lexical-functional grammar (FRLFG for short) G is a
6-tuple ($NA,$ TA, $S,$ $FN,$ $FV,$ AR) consists of 1-6 as follows :

1. NA is a nonterminal alphabet.

2. TA is a terminal alphabet. We assume that $NA\cap TA=\emptyset$.

3. $S\in NA$ is a start symbol.

4. FN is a finite set of function names.

5. FV is a finite set of function values. We assume that $FN\cap FV=\emptyset$.
6. AR is $a\cdot finit$ set of annotated phrase structure rules. An annotated phrase structure

rule is of the form

$Aarrow(B_{1}, E_{1})(B_{2}, E_{2})\cdots(B_{n}, E_{n})$,

where $n\geq 1,$ $A\in NA$, and $B_{i}\in NA\cup TA(1\leq i\leq n)$. We assume that at least
one of $B_{1},$ $B_{2},$

$\ldots,$
B_{n} is a nonterminal symbol if $n\geq 2$. If $n=1,$ B_{1} may be an

empty string ϵ . E_{i} is a set of functional assignments. A functional assignment is a
statement of one of the following forms :

i . (in the case when $B_{i}\in NA$)
$((\uparrow F_{1})F_{2}):=\downarrow$, $(\uparrow F_{1}):=\downarrow$, $\uparrow:=1$,

ii. (in the case when $B_{i}\in TA\cup\{\epsilon\}$)
$((\uparrow F_{1})F_{2}):=V$, $(\uparrow F_{1}):=V$, $\uparrow;=V$,

53

.
$

KK K

$|$ $|$ $|$

$ $ $– $rightarrow$ \wedge

X K X K X K

$|$ $|$
$|$ $|$ $|$ $|$

0 $ 0 $ 0 $
$|$ $|$ $|$

XX X

$|$ $|$ $|$

0 0 0

$((\backslash)$ (b)

Figure 1: A derivation of a string $x=aabbcc$, (a) an annotated phrase structure tree for
x , (b) a well-formed f-tree $f(x)$.

where $F_{1},$ $F_{2}\in FN$ and $V\in FV$. The symbols \uparrow and 1 are called metavariables.
Annotated phrase structure rules of the forms $Aarrow(b, E)$ and $Aarrow(\epsilon, E)$ are espe-
cially called a lexical insertion rule and an e-rule respectively, where $b\in TA$ and E

is a nonempty finite set of functional assignments of $t1_{1}e$ forms in ii. We ass‘ume that
each set of functional assignments is a singleton except the sets attached to the lexical
insertion rules and the e-rules.

For an FRLFG $G=$ ($NA,$ TA, $S,$ $FN,$ $FV,$ AR), the CFG $Gr=$ ($NA,$ TA, $P,$ S) is called
the underlying context-free grammar of G , where

$P=\{Aarrow B_{1}B_{2}\cdots B_{n}|Aarrow(B_{1}, E_{1})(B_{2}, E_{2})\cdots(B_{n}, E_{l})\in AR\}$.
For an annotated phrase structure rule $r:Aarrow(B_{1}, E_{1})(B_{2}, E_{2})\cdots(B_{n}, E_{n})$, the produc-
tion $Aarrow B_{1}B_{2}\cdots B_{n}$ is called the underlying rule of ’. For any FRLFG, we assume the
followings.. The underlying $C\Gamma^{l}G$ is cycle-free and extended reversible.. There are no two distinct annotated phrase structure rules having the same underlying

rule.
Λc-tree is aderivation tree of an underlying CFG of an FRLFG. An annotated phrase

$st\uparrow\uparrow\iota cture$ tree is atree obtained by attaching functional $assig_{11}ments$ to a c-tree. Fig. 1(a)
illnstrates an example of an annotated phrase structure tree. An f-tree f is arooted ordered
$t\iota\cdot ec$ satisfying the foUowing conditions:the root of f is labeled by aspecial symbol $; each
intornal node in $f,$ excluding.the root, is labeled by $or ∂ function name; and the le.aves of
$fa\iota\cdot e$ labeled by function values. Fig. 1(b) illustrates an example of an f-tree. A$-free-tree
corresponding to an f-tree f is an f-tree obtained by removing all internal nodes of f ,
excepting the root of f , whose labeles are $. We assulne that each internal node in an
annotated phrase structure tree is associated $wit1_{1}$ an f-tree. An f-tree associated to the
root of an $a\iota lnotated$ phrase structure tree for astring x , which is denoted by $f(x)$, is caJled
the f-tree assigned to x .

In the FRLFG theory, three $w.ell- for\uparrow nedness$ conditions, called uniqueness, complete-
ness, and coherency are defined on f-tr es. $\Gamma^{t}or$ details of the well-formedness conditions,

54

see [6]. The f-tree shown in Fig.1 (b) satisfies the well-formedness conditions. An f-tree
f is said to be well-formed iff f satisfies well-formedness conditions. A terminal string x

is said to be grammatical only if it has a valid c-tree and is assigned a well-formed f-tree
$f(x)$. A language generated by an FRLFG G , which is denoted by $L(G)$, is a set of the
grammatical strings of G . If the underlying CFG of G is ambiguous, in order to decide
whether $x\in L(G))$ we need to check the well-formedness on f-trees for all c-trees of x .
If x is assigned at least one well-formed f-tree $f(x)$ then $x\in L(G)$, else $x\not\in L(G)$. The
class of languages generated by FRLFGs is denoted by \mathcal{L}_{FRLFG} . Let CFL be the class of
context-free languages, and CSL be the class of context-sensitive languages. T. Nishino
has shown the following theorem about the generative power of FRLFGs.

Theorem 1 [6] $CFL\subseteq_{r}\mathcal{L}_{FRLFG}\subseteq CSL$ 口

Let G and $G’$ he FRLFGs. And let Gr and $Gr’$ be the underlying CFGs of G and $G’$,
respectively. G is said to be equivalent to $G’$ iff

(1) $L(Gr)=L(Gr’)$, and
(2) G assignes f-trees whose $-free-trees are the same as the ones of f-trees which $G’$

assignes to every string.
And G is said to be structurally equivalent to $G’$ iff

(1) $K(D(Gr))=K(D(Gr’))$, and
(2) G assignes f-trees whose $-free-trees are the same as the ones of f-trees which $G’$

assignes to every skeleton.

4 The Learning Algorithm
In [1], E. M. Gold introduced a fundamental concept in inductive inference called identifi-
cation in the limit. An inference machine M identifies a set of rules R in the limit iff, given
a set of examples of R , an output sequence which M generates converge to some expression
τ for a set of rules, and τ is a correct expression for R . In $[8, 9]$, Y. Sakakibara proposed
an algorithm identifying a CFG which is structurally equivalent to an unknown CFG Gr

from a set of structural descriptions of Gr . This algorithm generates a conjecture in poly-
nomial time in the sum of the sizes of the input skeletons. In this section, we show that an
unknown FRLFG is learnable in the limit by extending the Sakakibara’s algorithm. Before
we show our learning algorithm LA for FRLFGs, we define some related terminologies.

Let Sa be a finite set of skeletons. We define the primitive context-free grammar
$Gr(Sa)=$ ($NA,$ TA, $P,$ S) for Sa as follows:

NA $=$ (Sub$(Sa)-(TA\cup\{e\})$) $\cup\{S\}$,
P $=$ $\{\sigma(A_{1}, \ldots, A_{k})arrow A_{1}\cdots A_{k}|\sigma(A_{1}, \ldots, A_{k})\in NA\}$

$\cup\{Sarrow A_{1}\cdots A_{k}|\sigma(A_{1}, \ldots A_{k})\in Sa\}$,

where Sub(Sa) is the set of subtrees of the elements in Sa. Then $Gr(Sa)$ is a CFG such
that $K(D(Gr(Sa)))=Sa$.

Let $\Gamma^{G}=\bigcup_{j=0}^{m}\Gamma_{j}^{G}$ be a ranked alphabet such that $\Gamma_{0}^{G}=FV,$ $\Gamma_{1}^{G}=FN\cup\{}$ and
$\Gamma_{\dot{l}}^{G}=\{}$ $(2 \leq i\leq m)$. And let $t\in \mathcal{T}_{\Gamma^{G}}$. Now we define a new operation GETF as
follows :

GETF$(t)=\{tGETF(t’)ifROOT(t)ifROOT(t)\in FN\in FV\cup\{}$

55

where $t’$ is a subtree of t whose root is the unique son of the root of t and ROOT (t) denotes
the label of the root of t .

We describe an outline of our learning algorithm LA for FRLFGs. Let $G_{U}=(NA,$ TA,
$S,$ $FN,$ $FV,$ AR) be an unknown FRLFG and Gr be the underlying CFG of G_{U} . It is
assumed that the learner knows TA, $FV,$ FN , and the maximum length m of the right hand
side of the productions in Gr . The learner is presented pairs of a structural description t

of a complete c-tree and an f-tree associated to the root of t , which are generated by G_{U} .
That is, the learner is presented only positive data of G_{U} .

Our learning algorithm LA consists of the folowing two step.
Step 1. Learning of the underlying CFG of G_{U} .
Step 2. Learning of the set of functional assignments of G_{U} .

An outline of the learning process of the underlying CFG Gr of G_{U} is as follows (for
details, see $[8, 9]$). Let Sa be a finite set of structural descriptions of c-trees. We first con-
sider the case when skeletons of the form $\sigma(x)(x\in TA\cup\{\epsilon\})$ are not included in Sa . Given
an input Sa, LA first constructs the primitive CFG $Gr_{0}=Gr(Sa)=$ ($NA_{0},$ TA, $P_{0},$ S_{0})
for Sa . Then it merges two distinct nonterminal symbols A and B repeatedly if one of the
following conditions is satisfied.

1. There exist two productions of the forms $Aarrow\alpha$ and $Barrow\alpha$.

2. There exist two productions of the forms $Carrow\alpha A\beta$ and $Carrow\alpha B\beta$.

When there no longer remains a pair of $nonternlinal$ symbols satisfying the above 1 or
2, the resulting grammar is the underlyning CFG of an FRLFG which LA outputs as a
conjecture.

Next we consider the case when skeletons of the form $\sigma(x)(x\in TA\cup\{\epsilon\})$ are included in
Sa . Let Uni be the set of skeletons of the form $\sigma(x)$ included in Sa . And let $Sa=Sa-Uni$.
First, LA performs the above operation on Sa’. Let $Gr’=$ ($NA’,$ TA, $P’,$ $S’$) be the resulting
CFG. Then, let $P”=\{S’arrow x|\sigma(x)\in Uni\}$. The resulting CFG is ($NA’,$ TA, $P’\cup P’’,$ $S’$).

Next, we describe an outline of Step 2. The sets of functional assignments of the
unknown FRLFG G_{U} can be obtained in the following way.

Case 1. Let $t=\sigma(x)$ be a structural description of a c-tree suct that $x\in TA\cup\{e\}$, and
$f_{1}, \ldots, f_{k})$ be the f-tree associated to the root of t . And let E be the set of functional
assignments associated to x whose initial value is an empty set \emptyset . For each $i,$ $1\leq i\leq k$, if
f_{i} is $F_{1}(F_{2}(V))$ for some $F_{1},$ $F_{2}\in FN$ and $V\in FV$, then add a functional assignment of
the form $((\uparrow F_{1})F_{2})$ $:=V$ to E . The other types of $f_{i}’ s$ are similarly processed as special
cases when both F_{1} and F_{2} are null or only F_{2} is null.

Case 2. Let $t=\sigma(t_{1}, \ldots, t_{k})$ be a structural description of a c-tree, which was not processed
in Case 1, and $ (f_{1}, \ldots , f_{k}) be the f-tree associated to the root of t . And let E_{i} be the set
of functional assignments associated to the root of t_{i} for each $i,$ $1\leq i\leq k$.

1. If $t_{i}\in TA,$ then E; is obtained in the same way as Case 1. In this case, E_{i} is a
singleton.

2. If $t_{i}\not\in TA,$ LA learns E_{i} according to the following procedure. Note that the f-tree
associated to the root of t_{i} is GETF (f_{i}) . If $f_{\dot{l}}-GETF(f_{i})=F_{1}(F_{2})(F_{1}, F_{2}\in FN)$,
then $E_{i}=\{((\uparrow F_{1})F_{2}) :=\downarrow\}$, where $-$

) represents a subtree pruning operation. The

56

cases when the result of $f_{i}-GETF(f_{i})$ is λ (an empty tree) or F_{1} are similarly
processed.

Theorem 2 The algorithm LA identifies in the limit an FRLFG which is structurally
equivalent to an unknown FRLFG G_{U} from positive data of G_{U} . Further, algorithm LA
may be implemented to generate a conjecture in polynomial time in the sum of the sizes of
the input skeletons that have ever been read, where the size of a skeleton is the number

$\square of$

nodes in it.

5 Conclusion
In this paper, we described an outline of an efficient learning algorithm for FRLFGs whose
underlying CFGs are extended reversible. In order to guarantee the learnability of any
FRLFG, we have to show that, for any FRLFG G, there exists an FRLFG equivalent to
G such that the underlying CFG is extended reversible. This is a subject for the further
research.

References
[1] E. M. Gold, Language Identification in the Limit. Information and Control, 10, pp.447-

474, 1967.

[2] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages, and
Computation, Addison-Wesley, 1979.

[3] 小林孝次郎, 高橋正子,「オートマトンの理論」, 共立出版, 1983.

[4] 中西隆一, 関浩之, 嵩忠雄,「語彙機能文法の生成能力について」, 91 夏の LA シンポ

ジウム資料, 1991年 7月.

[5] T. Nishino, An Efficiently Parsable and Learnable Subclass of Lexical-Functional
GramInars, IEICE Technical Report, 90:25, pp.55-64, 1990.

[6] T. Nishino, Formal Methods in Natural Language Syntax, Doctoral Dissertation,
Waseda University, 1991.

[7] T. Nishino, N. Shimizu, S. Yamada, and T. Yaku, On Normal Forms and Decision
Problems for Lexical-Functional Grammars, IEICE Technical Report, 90:93, pp.21-32,
1991.

[8] Y. Sakakibara, Learning Context-Free Grammars from Structural Data in Polynomial
Time, In Proceedings of 1st Workshop on Computational Learning Theory, pp.330-344,
1988.

[9] Y. Sakakibara, An Efficient Learning of Context-Free Grammars from Positive Struc-
tural Examples, TR-93, IIAS-SIS, Fujitsu Limited, 1989.

