D%}@DDDDDDD
O 0 19920 50-56

R MBEERBREXEDET— 5o DFEE

Learning Frontier-to-Root Lexical-Functional Grammars from Positive Data

FRER, EEHEH, —0E

Naoaki Shimizu, Tetsuro Nishino, and Shin Hitotsumatsu

WHERAT BITEE HFaplEs

Department of Information Sciences, Tokyo Denki University

Abstract

It is known that the class of languages generated by frontier-to-root lexical-
functional grammars properly includes the class of context-free languages and is in-
cluded in the class of context-sensitive languages. In this paper, we show an algorithm
which identifies a structurally equivalent frontier-to-root lexical-functional grammar
in the limit and generates a conjecture in polynomial time in the sum of the sizes of
the input data.

1 Introduction

N. Chomsky proposed transformational grammars in 1965 in order to specify the syntax
of natural languages. It is shown, however, that transformational grammars can generate
recursively enumerable sets, that is, the generative capability of transformational gram-
mars is too powerful. Since then, various grammars whose generative capability is weeker
than transformational grammars have been proposed. As one of such grammars, in 1982,
R. M. Kaplan and J. Bresnan proposed Lexical-Functional Grammars (LFGs) by extend-
ing context-free grammars (CFGs). In 1982, R. C. Berwick showed, however, that the
membership problem for LFGs is NP-hard. Furthermore, some other results showing com-
putational intractabilities of LFGs have been proved [4, 7]. So in 1990, T. Nishino pro-
posed Frontier-to-Root LFGs (FRLFGs) as a subclass of LFGs meeting the dual demands
of parsability and learnability from computational theoretic points of view [5]. FRLFGs
are defined by attaching functional assignments to each production of CFGs. The class of
languages generated by FRLFGs properly includes the class of context-free languages and
is included in the class of context-sensitive languages [6].

In 1988, Y. Sakakibara showed an algorithm which generates a conjecture from struc-
tural descriptions of trees in polynomial time and identifies the unknown CFGs in the limit
(8, 9]. Here, a structural description of a tree is a tree whose internal nodes are labeled
by a single symbol. In this paper, we show an efficient learning algorithm for FRLFGs by
extending the Sakakibara’s algorithm.

2 Basic Definitions
In this section, we describe basic concepts in formal language theory. For details, see 2, 3].

Let ¥ be an alphabet. The set of all finite length strings over ¥ is denoted by £*. Each
string w in ¥* has a finite length. A string of the length 0 is called an empty string, which is

denoted by €. Let N be the set of non-negative integers, and Ny = N —{0}. Forz,y € N},
z < y iff there exists 2 € N} such that y =2z, and s < yiff 2 <y and 2 # y.

A ranked alphabet ¥ is an alphabet associated with a finite relation rs C £ x N. If
(a,n) € rg, a is called a symbol of the rank n. We will denote the set of symbols of rank
n by £,. A symbol in the set X is called a constant symbol.

Definition 1 A tree over ¥ is a mapping ¢ from Dom(t) into T, where the domain
Dom(t) is a finite subset of N} satisfying the following conditions :

1. If z € Dom(t) and y < z, then y € Dom(t),
2. If yi € Dom(t) for i € N, then yj € Dom(t) for j € Ny, 1 <7< 1,
3. I t(z) € &, then zi € Dom(t) fori € Ny, 1< i< n.

An element of Dom(t) is called a node in t. If {(z) = a, then a is said to be the label of
the node 2 in ¢. The set of all trees over ¥ is denoted by 7 s.

Let t € T5. A node z in t is a terminal node or a leaf iff for all y € Dom(t), z £ y.
While a node z in ¢ is an internal node iff z is not a terminal node. Especially, a node
e € Dom(t) is called a root of t.

Definition 2 A ranked alphabet £ uniquely determines a set T'erm(%Z) of terms over &
defined to be the least subset of X* satisfying the following conditions :

1. o C Term(%),
2. f feX, and ty, ta, ..., t, € Term(X), then f(t1, t2, ..., tn) € Term(Z).

Since the finite trees over ¥ can be identified with terms over X, we will represent trees as
terms.

Let o be a special symbol. A skeletal alphabet ¥ = U™, Z; with the maximal rank n
is a ranked alphabet such that &; = {o} for each i, 1 < ¢ < n. A tree over a skeletal
alphabet is called a skeleton. The structural description of a tree ¢, which is denoted by
5(t), is a skeleton with Dom(s(t)) = Dom(t) which satisfies the following condition : if z
is a terminal node in ¢ then s(t)(z) = ¢(z) else s(t)(z) = 0. The skeleton set corresponding
a set T' of trees, which is denoted by K(T), is {s(t) | t € T'}.

A context-free grammar (CFG for short) Gr is a 4-tuple (NA,T'A, P, S), where N A,
TA, P, and S are nonterminals, terminals, productions, and a start symbol, respectively.
We assume that NANTA = . A production in P is of the form A — B;--- B,, where
n>1 A€ NA and B, € NAUTA (1 <¢<n). Ifn=1 B; may be an empty
string . If A — B € P, then for any o,y € (NAUTA)*, we write oAy = afy, where
B € (NAUTA)*. = is the reflezive and transitive closure of =. The language generated
by Gr, which is denoted by L(Gr), is the set {w | w € TA* and S & w}. A language L
is called a context-free language if L = L(Gr) for some CFG Gr.

Definition 3 Let Gr = (NA,TA, P,S) be a CFG. For A € NAUTA U {e}, the set
D4(Gr) of derivation trees of Gr from A is recursively defined to be a set of trees over
NAUTA as follows :

pary= ({4} fACTAUL),
A - {A(tl,..t,tk)lA-ﬁBl'--BkGP, f,‘EDBi(GT) fOI‘lSiS/C} ifAe NA.

51

52

For the set Dg(Gr) of derivation trees of Gr from the start symbol S, the S-subscript
will be abbreviated. A derivation tree is said to be complete iff its root is labeled by S and
all its leaves are labeled by terminal symbols or €’s. A structural description of a CFG Gr
is a skeleton in K(D(Gr)). Two CFGs Gry and Gr, is said to be structurally equivalent iff
K(D(Gry)) = K(D(Gry)).

A CFG Gr = (NA,TA, P,S) is said to be invertible iff A — o and B — « in P implies
A = B. ACFGGr = (NA,TA,P,S) is said to be reset-free iff, for B,C € NA and
a,f € (NAUTA)*, B = C whenever A — aBf and A — oCf in P. A CFG Gr is said
to be reversible iff Gr is invertible and reset-free. A CFG Gr = (NA,TA, P, S) is said to
be eztended reversible iff, for PP= P —{S —a|a€TAU{e}}, Gr'= (NA,TA P',S)is
reversible. An extended reversible CFG is a normal form for CFGs [9].

3 Frontier-to-Root Lexical-Functional Grammars

In order to specify the syntax of natural languages, T. Nishino introduced frontier-to-root
lexical-functional grammars (FRLFGs for short) in 1990 [5]. An FRLFG is defined by
attaching functional assignments to each production of a CFG.

An FRLFG describes a set of grammatical sentences by using two types of trees, con-
stituent trees (c-trees) and functional trees (f-trees). A c-tree is a derivation tree of a
CFG. An f-tree is a rooted ordered tree whose nodes are labeled by a special symbol $,
function names, and-function values. First, we give a formal definition of an FRLFG. For
details, see [5, 6].

Definition 4 A frontier-to-root lezical-functional grammar (FRLFG for short) Gis a
6-tuple (NA, TA, S, FN, FV, AR) consists of 1-6 as follows :

1. NA is a nonterminal alphabet.

2. TAis a terminal alphabet. We assume that NANTA = §.
S € NA is a start symbol.

FN is a finite set of function names.

FV is a finite set of function values. We assume that FN N FV = §.

I A T

AR is afinit set of annotated phrase structure rules. An annotated phrase structure
rule is of the form

A— (BI; El)(B’Z; EZ) (Bm En);

wheren > 1, A€ NA,and B; € NAUTA (1 < i< n). We assume that at least
one of By, By, ..., B, is a nonterminal symbol if n > 2. If n = 1, B; may be an
empty string €. E; is a set of functional assignments. A functional assignment is a
statement of one of the following forms :

i. (in the case when B; € NA)
(T F1)F) =], (T F) =], T:=1,

ii. (in the case when B; € TAU {e})
(T F)F2) =, (TFh):=V, 1=V,

S $
K K Fe
(1K) =1 (TK) =] (1 K) =] | | |
A $ $ $
~—1 —1
X kK X K X K
A'-l A IK) = N
(rX)—o"(r\r)-o (1X)—o°_' R TR A
¢ X X X
(TX) =0 (TX) (TX):=0 | 1 ‘
a b ¢ 0 0 0

(a) (1,)

Figure 1: A derivation of a string z = aabbce, (a) an annotated phrase structure tree for
z, (b) a well-formed f-tree f(z).

where Fy, F; € FN and V € I'V. The symbols T and | are called metavariables.
Annotated phrase structure rules of the forms A — (b, E) and A — (e, E) are espe-
cially called a lezical insertion rule and an e-rule respectively, where 6 € TA and F
is a nonempty finite set of functional assignments of the forms in ii. We assume that
each set of functional assignments is a singleton ezcept the sets attached to the lezical
insertion rules and the e-rules.

For an FRLFG G = (NA,TA,S,FN, FV, AR), the CFG Gr = (NA,TA, P, S) is called
the underlying context-free grammar of G, where

P= {A — B;\Bz v Bn I A— (Bl,E1)(B2, Ez) v (B,;_,En) € AR}

For #n annotated phrase structure rule r : A — (B, E;)(Bz, E3) - -+ (B, E,), the produc-
tion A — By B, B, is called the underlying rule of r. For any FRLFG, we assume the
followings.

o The underlying CFG is cycle-free and extended reversible.

o There are no two distinct annotated phrase structure rules having the same underlying
rule.

A c-tree is a derivation tree of an underlying CFG of an FRLFG. An annotated phrase
structure tree is a tree obtained by attaching functional assignments to a c-tree. Fig.1 (a)
illustrates an example of an annotated phrase structure tree. An f-tree f is a rooted ordered
tree satisfying the following conditions : the root of f is labeled by a special symbol $; each
internal node in f, excluding the root, is labeled by $ or a function name; and the leaves of
f are labeled by function values. Fig.1 (b) illustrates an example of an f-tree. A $-free-iree
corresponding to an f-tree f is an f-tree obtained by removing all internal nodes of f,
excepting the root of f, whose labeles are §. We assume that each internal node in an
annotated phrase structure tree is associated with an f-tree. An f-tree associated to the
root of an annotated phrase structure tree for a string z, which is denoted by f(z), is called
the f-tree assigned to z.

In the FRLFG theory, three well-formedness conditions, called uniqueness, complete-
ness, and coherency are defined on f-trees. For details of the well-formedness conditions,

53

94

see [6]. The f-tree shown in Fig.1 (b) satisfies the well-formedness conditions. An f-tree
f is said to be well-formed iff f satisfies well-formedness conditions. A terminal string z
is said to be grammatical only if it has a valid c-tree and is assigned a well-formed f-tree
f(z). A language generated by an FRLFG G, which is denoted by L(G), is a set of the
grammadtical strings of G. If the underlying CFG of G is ambiguous, in order to decide
whether z € L(G), we need to check the well-formedness on f-trees for all c-trees of z.
If z is assigned at least one well-formed f-tree f(z) then z € L(G), else 2 ¢ L(G). The
class of languages generated by FRLFGs is denoted by Lrrrrg. Let CFL be the class of
context-free languages, and C'SL be the class of context-sensitive languages. T. Nishino
has shown the following theorem about the generative power of FRLFGs.

Theorem 1 [6] CFL g; ‘CFH.LFG g CSL O

Let G and G’ be FRLFGs. And let Gr and Gr' be the underlying CFGs of G and G,
respectively. G is said to be equivalent to G’ iff
(1) L(Gr) = L(Gr'), and
(2) G assignes f-trees whose $-free-trees are the same as the ones of f-trees which G'
assignes to every string. 4
And G is said to be structurally equivalent to G' iff
(1) K(D(Gr)) = K(D(Gr")), and
(2) G assignes f-trees whose $-free-trees are the same as the ones of f-trees which G’
assignes to every skeleton.

4 The Learning Algorithm

In [1], E. M. Gold introduced a fundamental concept in inductive inference called identifi-
cation in the limit. An inference machine M identifies a set of rules R in the limit iff, given
a set of examples of R, an output sequence which M generates converge to some expression
7 for a set of rules, and 7 is a correct expression for R. In [8, 9], Y. Sakakibara proposed
an algorithm identifying a CFG which is structurally equivalent to an unknown CFG Gr
from a set of structural descriptions of Gr. This algorithm generates a conjecture in poly-
nomial time in the sum of the sizes of the input skeletons. In this section, we show that an
unknown FRLFG is learnable in the limit by extending the Sakakibara’s algorithm. Before
we show our learning algorithm LA for FRLFGs, we define some related terminologies.

Let Sa be a finite set of skeletons. We define the primitive contezt-free grammar
Gr(Sa) = (NA,TA, P,S) for Sa as follows :

NA (Sub(Sa) — (TAU{e}))U{S},
P = {O'(Al,...,Ak)ﬁAl"'Ak|O’(A1,...,Ak)€NA}
U{S—>A1“-Ak I U(Al,...Ak) GSa},

where Sub(Sa) is the set of subtrees of the elements in Sa. Then Gr(Sa) is a CFG such
that K(D(Gr(Sa))) = Sa.

Let ¢ = UL, T'¢ be a ranked alphabet such that I'§ = FV, I'f = FN U {8} and
¢ ={$} (2<i<m) Andlett € Trs. Now we define a new operation GETF as
follows :

t if ROOT(t) € FV U {8},

CETE(t) = { GETF() if ROOT(t) € FN,

where t' is a subtree of ¢ whose root is the unique son of the root of t and ROOT(t) denotes
the label of the root of ¢.

We describe an outline of our learning algorithm LA for FRLFGs. Let Gy = (NA, T A,
S,FN,FV,AR) be an unknown FRLFG and Gr be the underlying CFG of Gy. It is
assumed that the learner knows T A, F'V, FN, and the maximum length m of the right hand
side of the productions in Gr. The learner is presented pairs of a structural description ¢
of a complete c-tree and an f-tree associated to the root of ¢, which are generated by Gy.
That is, the learner is presented only positive data of Gy.

Our learning algorithm LA consists of the folowing two step.

Step 1. Learning of the underlying CFG of Gy.
Step 2. Learning of the set of functional assignments of Gy .

An outline of the learning process of the underlying CFG Gr of Gy is as follows (for
details, see [8, 9]). Let Sa be a finite set of structural descriptions of c-trees. We first con-
sider the case when skeletons of the form o(z) (z € TAU{e}) are not included in Sa. Given
an input Sa, LA first constructs the primitive CFG Gry = Gr(Sa) = (NAq, T A, P, So)
for Sa. Then it merges two distinct nonterminal symbols A and B repeatedly if one of the
following conditions is satisfied.

1. There exist two productions of the forms A — « and B — «.
2. There exist two productions of the forms C — aAf and C — aBp.

When there no longer remains a pair of nonterminal symbols satisfying the above 1 or
2, the resulting grammar is the underlyning CFG of an FRLFG which LA outputs as a
conjecture.

Next we consider the case when skeletons of the form o(z) (z € TAU{e}) are included in
Sa. Let Uni be the set of skeletons of the form o(z) included in Sa. Andlet Sa' = Sa—Uni.
First, LA performs the above operation on Sa'. Let Gr' = (NA', T'A, P', S') be the resulting
CFG. Then, let P" = { S’ — z | o(z) € Uni }. The resulting CFGis (NVA',TA, P'UP",S").

Next, we describe an outline of Step 2. The sets of functional assignments of the
unknown FRLFG Gy can be obtained in the following way.

Case 1. Let ¢ = o(z) be a structural description of a c-tree suct that z € TA U {¢}, and
8(f1,..., fx) be the f-tree associated to the root of t. And let E be the set of functional
assignments associated to z whose initial value is an empty set . For each 7, 1 <1 <k, if
fi is F1(F3(V)) for some F1,F, € FN and V € FV, then add a functional assignment of
the form ((T F1)F2) := V to E. The other types of f;’s are similarly processed as special
cases when both F; and F; are null or only F is null.

Case 2. Lett = o(ty,...,tx) be astructural description of a c-tree, which was not processed
in Case 1, and $(f1,..., fx) be the f-tree associated to the root of t. And let E; be the set
of functional assignments associated to the root of ¢; for each ¢, 1 < ¢ < k.

1. If t; € TA, then E; is obtained in the same way as Case 1. In this case, F; is a
singleton. :

2. Ift; ¢ TA, LA learns E; according to the following procedure. Note that the f-tree
associated to the root of t; is GETF(f:). If fi—GETF(f;) = Fi(Fs) (F,,F, € FN),
then E; = { ((1 F1)F2) :=]}, where “~” represents a subtree pruning operation. The

95

56

cases when the result of f; — GETF(f;) is A (an empty tree) or F; are similarly
processed.

Theorem 2 The algorithm LA identifies in the limit an FRLFG which is structurally
equivalent to an unknown FRLFG Gy from positive data of Gy. Further, algorithm LA
may be implemented to generate a conjecture in polynomial time in the sum of the sizes of
the input skeletons that have ever been read, where the size of a skeleton is the number of
nodes in it. o

5 Conclusion

In this paper, we described an outline of an efficient learning algorithm for FRLFGs whose
underlying CFGs are extended reversible. In order to guarantee the learnability of any
FRLFG, we have to show that, for any FRLFG G, there exists an FRLFG equivalent to
G such that the underlying CFG is extended reversible. This is a subject for the further
research.

References

(1] E. M. Gold, Language Identification in the Limit. Information and Control, 10, pp.447-
474, 1967.

[2] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages, and
Computation, Addison-Wesley, 1979.

[3] PMHREXRE, SBEF,[+— b=+ vyoBHR], FIIHK, 1983

[4] FHEE—, B, SHE, [ERBEEXEOEREN K VT, 91 EOL A v v R
Yy LEHR, 191F7H.

[5] T. Nishino, An Efficiently Parsable and Learnable Subclass of Lexical-Functional
Grammars, [EICE Technical Report, 90:25, pp.55-64, 1990.

[6] T. Nishino, Formal Methods in Natural Language Syntaz, Doctoral Dissertation,
Waseda University, 1991.

[7} T. Nishino, N. Shimizu, S. Yamada, and T. Yaku, On Normal Forms and Decision
Problems for Lexical-Functional Grammars, IEICE Technical Report, 90:93, pp.21-32,
1991.

[8] Y. Sakakibara, Learning Context-Free Grammars from Structural Data in Polynomial
Time, In Proceedings of 1st Workshop on Computational Learning Theory, pp.330-344,
1988.

[9] Y. Sakakibara, An Efficient Learning of Context-Free Grammars from Positive Struc-
tural Examples, TR-93, IIAS-SIS, Fujitsu Limited, 1989.

