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Abstraction

This paper presents a framework of obtaining a natural deduction proof of a given logic formulae
based on similarity among formulas under the assumption that similar formulas have similar
solutions. A formulae to which a proof has already been given is called a guiding problem. From a
guiding problem, a schema which is applicable to a class of similar formulas is constructed by
abstraction. A schema acts as a specification of proofs and any object formulae having the same type
to a schema can be obtained according to the typed proof structure. The analogical reasoning based on

this idea is formalized using typed language in the framework of higher order logic. Finally, we show

that this analogical reasoning procedure can be realized based on higher order unification within the
computable scope.

I.Introduction

In order to realize an intelligent system on machine, one of the most important problem is to
introduce a reasoning mechanism which break through the wall of present deductive theorem proving
paradigm. The analogical reasoning is a mechanism to reason by finding certain similarity with
some already known problem, and is considered as a most essential mechanism which supports the
creative thinking of human beings. It has been proposed several kinds of models for analogical
reasoning systems(610131, Among them , the reasoning system based on the generalized knowledge
produced from already known formulae by abstraction is called the abstraction based
analogyl3458.14.16] In this paper,an abstraction based analogical reasoning system for LK proving
will be formalized as illustrated in Fig.1. Where,the proof of a guiding problem is known and this
~proof structure is abstracted as proof schema. Then a new formulae ? is proved using the similarity
between ? and some guiding problem. By this arialogical reasoning process,we can expect to reduce

the nondeterministic aspects from the processing and to realize certain non-deductive reasoning.

2 LK system and natural deduction proof

2.1 LK system
The LK system is a logic system which consists of the following inference rules.
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proof structure

Schema
(abstracted formula)

Fig.1 Proof construction by analogy

(or-L) A.T50 BI5O (©or-R) [I20.A. B (andL) A.BI2O_  (@d-RI2A T'—5B
~ AVBI'-0 I'-6,AvB AABI'-0 T'-AAB
(imp-L) 20 A BA A (imp-R) [LA2O.B (l-L) Alx=l. 20 @I-R)I=20, Alxi=yl
IA DB,A—0 A I'-6A-B VxA®x),[—0O -6, VxARX)
(some-L)A[x:=y] , [0 (some-R) 50 Alx:=t]  (thin-L) I'-20 (thin-R) I'—©
IXAX), -0 I'-0,3xAx) ATl'-0 I'-6A
(not-L) I'—O0, A (or-R) AI'—50 Cu) ' A AAS A
~A, -0 I'-~A,0 IA—-0,A

A sequent A—A is trivially true and is called an axiom. A LK natural deduction proof is produced

by applying the inference rules in nondeterministic, and can be represented by a derivation tree.

q(a) - ga)
p@) —p@ g@) — Ixqx) qd) — qb)
.nﬁa)_‘nv(a)_:_q(a)_—dm(m_ qb) - Ixq(x)
D@ VX (p(x) oq0N—> Ixq(x)  qd).Vx (p(x) oq(x) — Ixq(x)

p@) vqb) , Vx (p(x) oqx)— Ixq(x)

(p(a) vadNAVX (p(x) oq(x)) —3xq(x)
—p@) vgbIAVx (p(x) Dq(x)) S3xq(x)

Fig.2 A natural deduction proof.

A formulae is provable if there exists a proof tree whose root and leaves are labeled with the
formulae and certain axioms respectively. In Fig.2, an example of LK proof of the following

formulae is shown: —(p(a) vq(b))AVx (p(x) Dq(x)) >Ixq(x)

2.2 Term representation of LK proof

Each inference rule is looked upon a function which maps from the assumptions given in the upper
side of the rule to the conclusion given in the lower side of the rule. For example, the or-L rule
corresponds to a function with the type [A, T-0]—[BI-0]-[AVBI'-0 .

A, TG BI'-© (orl)
AvBI'—0

This can be represented as the following term:
[AVBI'—0] = or-L([A, '-6],[BI'—8])

In the similar way, any LK proof is able to be represented by a term. In the followings, we denote the
term representation of a proof for sequent '-© as proof'—®), and call it as a proof term..
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The labels of any leaves of completed proof are the axioms, that is, the sequents in the form [A,
r'—6,A] or equivalently in the form [A—A]. Thus,the proof term of each completed proof is the form
such that term(...,term(A—A),...,term(B—-B)). A proof in which some parts are not completed is
called a partial proof. It is noted that the sequents at the leaves of partial proofs are not always

axioms. For example, let us consider the proof given in Fig.3,which is a proof of Fig.2 in which the
subproofs for the formulas [p(a) ,V x(p(x)2q(x))—3xq(x)] and [q(b)—3Ixq(x)] are not completed.

qa®) — Ixq(x) _ (thin_L)
D@ Vx (p(x) ogN)—> Ixq(x) __ q®),Vx ((x) og(x) - Ixq(x) . (v_L)
—p@) vqb) . Vx (p(x) oq0N—> Ixq(x)  (»_L)
—(pa) vgdNAYX (p(x) DqON) —>3xq(X) . (5_R)
—>(p(a) vgbIAVx (p(x) Dq(x)) D3xq(x)
Fig.3 A partial proof of Fig.2

A term representation of this partial proof is given as follows:
AX AY. imp-R(and-L(or-L(X,thin-L(Y))))
,where X and Y represent the partial proof for [p(a),Vx (p(x) 2q(x))—> 3xq(x)] and [q(b)— Ixq(x)]
respectively. Therefore, the partial proof given in Fig.3 implies the proof having the type
[p(a),Vx(p(x) 2q(x))— Ixq(x)]-[ q(b)— Ixq(x)]- [=(p(a) va(b))AVx (p(x) Dq(x)) DIxq(x)].

We can consider that the proofs whose proof tree are different only at the leaves are similar together.

Basing on this idea, an analogical reasoning system will be designed.

3 Schemata for Proof Analogy
3.1 Simple Schema as proof types

We call a formulae whose proofs have already been known to be a guiding formulae or guiding
problem.We assume that some guiding problems are collected as a database. A schema constructed
from guiding problem g is defined as a formulae in which some predicates of g are abstracted as
predicate variables. A simple schema is a schema which is constructed from g by simply replacing

several predicates appearing in g with predicate variables. For example, let g be a formulae such that

g =[p@)v q(®)IAVx(p(x) D q(x))> Ix.q(x).

Q@) - @
P@) 5> P@ Q@) — Ix0x) 00 - 0b)
P(a) P(a) o IxO(x Qb)) — IxO(x)
P(a) .Vx (P(x) 206N — IxQ(x) Q). Vx P(x) Q) — IxQ(x)
—P(a) vOm) , ¥x (P(x) 20(N— IxQx)
(P(a) vOONIAVX (P(x) 200)) —IxOQ(x)

-(P(a) vVQ)AVX (P(x) 2Q(x)) oIxQ(x)
Fig.4 A simple shema construction

Then the following formulae is a simple schema.
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schema, = (P(a)v Q(b))AVx(P(x) D Q(x))> 3x.Q(x)
,where P,Q are 2nd order predicate variables. The proof tree for schema, is given by replacing the

predicates p, q with P, Q as illustrated in Fig.4.
This means that the type of schema, is the following.

[P(2)—P(2)] - [Q@)—-Q@)]-[Qb)->QMb)] - [~ (P(a)vQ(b)) A Vx (P(x) 2 Q(x)) D Ix Q(x)]
and the proof term of schema, is given as follows:
proof(schcmas)=imp-R(and-L(or-L(all—L(imp-L(P(a)—>P(a),some-R(Q(a)—-)Q(a))),

thin-L(some-R(Q(b)—-Q(b)) ))))).

From this schema, , the proof of any formulae obtained by replacing the symbols P,Q of schema,
with any formulas can be derived. This depends on the following well-known property.

[Proposition 3.1:Formulae substitution rule]
If a sequent '—>A is provable, then the substituted formulae I'[P:=p(x,,X,,...,X,)]—> A[P:=p(x;,X,,
...,X )] is also provable, where [P:=p(x;,X,,...,X,)] is a substitution of the formulae in the form of

P(tl,tzz,...,%) in F and A With p(X1:=tl,X2:=t2,...,xn:=tn) .

Example 3.1 The piuof of the following formulae h which is obtained from schema, by substituting P and Q by p
Or and sA trespgcﬁvely has similar proof structure to schema, as shown in Fig.5.
h=[ - ((p@>r®OIV(s®)A BNAVX(PX) D) (s(x)A 1(x)) D Ix.(s(x)A Kx))]

Its proof term is obtained as proof(h)=[proof(schema](p > r)Xsat ).

Al(a) = A
p@or@ —pR o (@  s@At@ — IxEEIA) sMIAtD)—> s(bIalb)
Y. X A A \% A Al
Dr(@)v A Vx (p(x)or(x)) DsGIAG))—> Ixs(X)IALX

Sr@)v Al AV X ((P()r(XNDSCOALX)) —Txs(XIALX
—[( p@>r()) v (sOALNIAVX ( p(x)2r(x)) DAs()AL(X))) DIx.(S(X)ALX))
Fig.5 The proof of h by analogy .

3.2 Schema with constraints

In this section,we shall discx_lss the relation between the proof terms of schemata with constraints ?.nd
their instances. Let form(g(A)) be a formula whose proof has already been derived as proof(g(A)),
and let form(g()'()) and prooi(g().()) be the formula and proof term obtained from form(g(A)) and
proofg(A)) by replacing some of the symbols in A with the.symbols in X respectively, where A and
X are the list of predicates in form(g(A)) and form(g(X)). It is noted that proof(g().()) is not always
completed. We denote a completed proof of proot(g()'()) by probf*(g()'()). In the followings, we take
form(g(f{)) as a schema constructed from g, and sometimes denote form(g()'()) as schema,.For
example, let form(g(p.9))=[p(a)v qb)IAVx(p(x) O q(x))> 3Ix.q(x). Then we have schema=
form(g(®, E,¥, 9)) = (@) v ¥b)) AV(EX) DQx))> Ix.O(x) as one of the schemata. The
proof term of this schema proofg(®, E,¥,0)) is obtained as follows.
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D(3 3 Q(3 xO(x

Constraints:
QA I@OD IO O - Ixx) D(a) - E@
D(a) Vx (Ex) oOx)— Ix(x) Y (b).Vx (Z(x) 20(x)) — IxX(x) ¥ (b) —» &)
O(a) vO(b) , Vx (Ex) oOxN— IxO(x) Q@) - @)

( D) v P ONAVX (E(x) DO(X)) —»TxEXx)
- (@) v Y(O)HAVX (E(x) DQX)) D3 xO(x)
Fig.6 proof schema.

It is noted that each leaf of prooi(g(.&)) is of the form A, T - A,A, and the corresponding sequents

of proot(g(f()) may be partial proof. That is,the sequents at the leaves of the proof tree are the
subproofs which should be proved further. They are called the constraints. In the example of Fig.6,

we have to prove the constraints and combine with proof(g(®,E,%¥,0)) to obtain the complete proof
proof¥(g(®,2,¥,0)) from proof(ig(P,E,¥,0)).

Let constr(g(}'(:A)) be the set of constraints between fonn(g(A)) and fozm(g()'()) . For example, the
formulae form(g(p,q,r,s))=(p(a)vq(a))AV x(r(x)Ds(x))>3x.t(x) is provable if the constraints

p(a)—s(a), r(b) —t(b), r(a)—>t(b) are all provable.This intuitive meaning is given in the following
inference rule.
r X nstr(g(X:A
Proof*(g(X))

[(Theorem 3.2] If form(g(A)) is provable, then the proof of schema fozm(g()k)) is provable. The proof

proof*(g(X)) is given by patching the proof(g(X)) with the proof of constraints prooficonstr(g(X:A)))
which are introduced according to the used inference rules.

4. Schema Construction by Abstraction
A schema is a meta representation for formulas which are syntactically similar, and its proof term

répresents the proof type. We can cdnsider the proof term of each schema as the specification of
proofs. The proofs of the instances of the schema have the similar structure. This means that each
instance formulae of a schema is a realization of the specification corresponding to the schema and its
proof is an instance of the proof schema. As we have observed in the previous section, the
generalization for g,h is performed by transforming them to proof term representations proof(g),
proofth) using higher order unification algorithm. Concerning to the higher order unification
algorithm, the other articles should be referred 791215, We observe this by an example.
Let h be a formula such that

h= ((p(a)Ar(a))v(q@)Ar(@) AV x(p(x) > q(x))> 3x.q(x).

Here, we assume that we want to solve this by the analogy with g.
g =[p(@)v qd]AVx(p(x) > q(x))> 3x.q(x).

Their proof terms are given in the following forms, where axiom parts of proofth) are arranged
according to the proof structure.



114

g====> proof{g)=imp-R (and-L(or-L(all-L(imp-L(p(a)—p(a),some-R(q(a)—q(a)))),

thin-L(some-R(q(b)—q(b)) ))))).
H generalization

h====>proof(h)= imp-R (and-L(or-L(all-L((imp-L((p(a)Ar(a))—p(a),some-R(q(a)—q(a)))),
thin-L(some-R((q(2)Ar(a))—q(a)) ).
By the generalization, we get the following proof schema.
imp-R(and-L(or-L(all-L((imp-L(®(a)—P(a),some-R(Q(a)—Q(a)))),
thin-L(some-R(¥(2)—Q(a)) ).
Then we get the following schema schema,
schcmag= (D (a) V¥()) A Vx(Px)DQX)) D Ix.Q(x)
constraints: ®(a) — P(a), ¥ () - Q)
, where @ and ¥ are predicate variables. The proot(schemag) and proof(constr( ®(a) — P(a),¥(b)
— Q(b) ) are obtained as in Fig.7(a),(b).

O@) - O ' P(a) > P

@@ -oP@ . Q@—-3x0Qx) EM o Q) Constraints: = _P@.R@-—-P@).

®(a) Pa) o Qa) - IxQ(x) Y1) — IxQ(x) d(a) — P(a) P(a)AR(a)—P(a)
©(a) .Vx (P(x x))— IxOK ¥ (b).Vx (P(x ) = Ix0O(x ¥ (b) - Q)
_ 9@ vOb) , Vx P(x) DO(x))— IxQ(x) a) — (a

AVYX P(x) OGN —IxOKX O@R@—->Xa)

= (@(@) v Y O)AVX (P(x) Qx)) 23xQ(x) Q@AR(@—Q@)

(a) Proofs for schema (b) Proofs for constraints.

2
Fig.7 Schema with constraints for proving h.

5.Proving by Analogy

The rough sketch of this procedure is given as follows. We assume that standard schema have
already been obtained as schema database, and let its elements be S,,S,,...,S,.Firstly, a given target
problem w is checked if some similar guiding problem exists or not. There are two cases for this
step. One is to construct a schema from g and w by generalization. The other is to search a schema on
the schema database which is unifiable both with g and w. We are intending to develop a system
which combine "ie both cases. This similarity check is examined using 2nd order matching
algorithm. If there exists a schema S which match to w, then a unifier is produced. The proof of w is

derived by o(proof(S))+proof(constraints).

Procedure
input: w (formulae) ;output: proof(w);
begin
Find a schema S which match with w
(1) if there is no such schema then stop and output " prove by yourself™
(2) else choose (in nondetermistic ) a schema S;
(2-1)compute unifier such that 6(S)= w
(2-2) check if it satisfies the constraints
ifit satisfies then output ofproof(S)]+proof(constraint)

else " prove by yourself”
end
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It is noted that the procedure uses only 2nd order matching, it is realized in the computable scope.
[Theorem 4.1] The analogical proof reasoning procedure proposed here for LK is computable.

In the previous example in Section 4, we get a substitution o={®:=par, ¥:=qAr,P:=p,Q:=q} by the
matching of h with schema, as typed terms, Then the proof(h) is derived as
proofh)=[A DAL FAPAN pmoi(sch (pAr)(qAr)(p)(r}b[ltbl‘PkPlQ prooficonst(®—P, ¥—Q))] (pAr)(qAr)(p)(r)

6.Discussions

We proposed an analogical reasoning for LK proof system based on higher-order abstraction. By
this approach, a kind of proof system by analogy can be realized in natural way. Especially, it holds a
similar interpretation of the analogy to the formulae as type concept such that the schemata
corresponds to specifications and object proofs to their realizations. The procedure proposed here
can be realized using the higher order unification algorithm for typed terms in the computable scope.

However, there exist several important problems to be solved . The most essential one is to design
an efficient unification algorithm.The other problem is that the schema expressed by second order
variables are too general for many cases. Hence undesirable unifiers will be output sometimes. In
order to specify the schema more precisely, some additional axioms should be attached to such
schema. Further,the obtained proof by this method is not always good. To translate the obtained
proof to a better proof form is one of the interesting problems concerning to this topic.
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