
175

歩行を実現するグラフ構成問題について

丸山修 (Osamu Maruyama)\dagger
九州大学大学院総合理工学研究科

Abstract

A walk of an edge-colored undirected graph G is a path which contains all
edges in G . We prove results concerning the computational tractability of some
problems related to inferring the smallest edge-colored graph from walks. We
show an $O(n\log n)$ time algorithm for inferring a tree from a walk which realizes
the given walk. If the alphabet of colors is fixed, the algorithm runs in $O(n)$

time. Further, we consider the problem of finding the smallest tree from partial
walks, where a partial walk of G is a path in G . We prove that the problem
turns to be NP-complete. We also show that inferring the smallest linear chain
from partial walks is NP-complete, while the problem of inferring the smallest
linear chain from a single walk is known to be solvable in polynomial time.

1. Introduction

Aslam and Rivest [4] considered the problem of inferring the smallest undirected edge-
colored graph of bounded degree k consistent with the sequence of edge-colors seen in
a walk of the graph. By proving Church-Rosser property of a certain set of rewriting
rules, they gave an $O(n^{5})$ time algorithm for inferring a linear chain or a cycle from
a walk. Raghavan [11] improved their algorithm to an $O(n\log n)$ time algorithm for
the case $k=2$. Further, he showed that the problem is NP-complete for all $k\geq 3$.
Angluin [1] and Gold [7] also have discussed a problem closely related to this graph
inference. They considered the problem of identifying the smallest finite automaton
consistent with given input/output behaviors. This can be regarded as the case that
an edge-colored directed graph is to be inferred from strings. They showed that the
problem is, in general, NP-complete. Further, Pitt and Warmuth [10] have shown an
interesting negative result on approximation algorithms for this problem.

This paper solves the -problem for trees. The tree inference from a walk is, for
a sequence of edge-colors, to infer the smallest undirected edge-colored tree which
produces a walk with the given sequence of edge-colors. We do not put any restriction

i Mailing address: Research Institute of Fundamental Information Science, Kyushu University 33, Fukuoka 812,
Japan.

Email: maru@rifis.sci.kyushu-u.ac.jp

数理解析研究所講究録
第 790巻 1992年 175-193

176

on the degree bound. We show an $O(n\log n)$ time algorithm for inferring the tree
from a walk which realizes the given walk. When the alphabet of colors is fixed, the
algorithm runs in $O(n)$ time.

Apartial walk ofagraphG isapath inGwhilea walk ofagraphG must contain
all edges in G . In Section 4 we consider the problem of finding the smallest tree from
partial walks. In this problem, the number of partial walks is finite but not bounded.
Formally, the problem is, for sequences of edge-colors, to infer the smallest undirected
edge-colored tree which allows all paths with the given sequences as labels. We do not
put any restriction on the degree bound. In contrast with the case of a single walk,
we prove that the problem turns NP-complete. Finally, we consider the problem of
inferring a linear chain from partial walks. It has been shown that the linear chain
inference from a walk is solvable in polynomial time $[4, 11]$. We show, however, that
the problem of linear chain inference from partial walks is also NP-complete.

This paper is organized as follows. Section 2 contains some necessary notations.
Section 3 shows how rewrite rules can be used to find the smallest tree consistent with
a given walk. Finally, Section 4 concentrates on the problem of finding the smallest
tree and linear chain consistent with a finite number of sequences of edge-colors.

2. Preliminaries

Let Σ be a finite alphabet. We call an element in Σ a color. We define an undirected
edge-colored graph as $G=(V, E, c)$ with a vertex set V , an edge set E and an edge-
coloring c : $Earrow\Sigma$. Hereafter a graph means an undirected edge-colored graph
without any notice.

A linear chain is an undirected edge-colored graph $l=(V, E, c)$ with $V=\{v_{1},$ v_{2} ,
. . . , v_{n} } and $E=\{\{v_{1}, v_{2}\}, \{v_{2}, v_{3}\}, \ldots, \{v_{n-1}, v_{n}\}\}$. We denote the sequence of edge-
colors $c(v_{1}, v_{2}),$ $c(v_{2}, v_{3}),$

)
$c(v_{n-1}, v_{n})$ by a string label $(l)\in\Sigma^{+}$. Let $\Gamma_{1c},$ Γ_{tree} and

$\Gamma_{k- dg}$ be classes of linear chains, trees and graph with degree at most k , respectively.

A partial walk w on a graph G is a path in G . If a partial walk contains all edges
of G , it is called a walk. The scene in a partial walk w , denoted scene(w) , is defined
as the sequence of colors of the edges traversed in the walk. For a finite set R of
strings from Σ^{+} and a graph G , we say that G realizes all partial walks for R if G

allows a partial walk w_{x} with scene$(w_{x})=x$ for all $x\in R$.
$Letarrow be$ a binary relation on a set S , i.e., a subset of $S\cross S$. We denote $(x, y)\inarrow$

by $xarrow y$. The identity relation is $\iota=\{(x, x)|x\in S\}$. The union of two $relationsarrow$

and ι is denoted $byarrow\epsilon$. The composition of two binary relation is defined in a usual
way. The reflexive and transitive closure $ofarrow is$ denoted $byarrow^{*}$. An element $x\in S$ is
called irreducible if there is no $y\in S$ with $xarrow y$. If $xarrow^{*}y$ and y is irreducible, then
we say that y is a normal form of x , denoted \hat{x} . A binary $relationarrow is$ noetherian
if there is no infinite sequence $x_{1}arrow x_{2}arrow\cdotsarrow x_{n}arrow\cdots$ A binary $relationarrow is$

confluent if $warrow^{*}x$ and $warrow^{*}y$ imply that there is z witlr $xarrow^{*}z$ and $yarrow^{*}z$ for any
$w,$ $x,$ y . A binary relation\rightarrow is locally confluent if $warrow x$ and $warrow y$ imply that

177

there is z with $xarrow^{*}z$ and $yarrow^{*}z$ for any w,x,y . Let $|x|$ denote the size of x . A binary
$relationarrow is$ strictly decreasing with respect to the size $|x|$ if $xarrow y$ implies $|y|<|x|$

for any $x,$ y .
The following results are well known [8].

Proposition 1.
(1) For a noetherian relation, it is confluent if and only if it is locally confluent.
(2) If a binary relation is confluent, then a normal form of any element, if it

exists, is unique.

Proposition 2. If a binary $relationarrow is$ confluent and strictly decreasing, then $xarrow^{*}$

y implies $|y|\geq|\hat{x}|$ for any $x,$ y .

3. Smallest Graph from a Walk

In this section, we consider the problem of constructing from a given string $x\in\Sigma^{+}$

the smallest tree which allows a walk w with scene$(w)=x$.

Example 1. The graph in Fig. 1 is the smallest tree which produces a walk with
the scene aaabccbbccbdeefff.

Figure 1: The smallest tree which allows a walk with scene aaabccbbccbdeefff.

Definition. Let Γ be a class of graphs.

ISGW(F) (Inferring the Smallest Graph from a Walk)
INSTANCE: A finite alphabet Σ and $x\in\Sigma^{+}$.
PROBLEM: Find a graph $G=(V, E, c)\in\Gamma$ such that G allows a walk w with

scene$(w)=x$ and $|E|$ is the smallest.

Proposition 3 (Aslam and Rivest[4]). ISGW$(\Gamma_{2- dg})$ is solvable in $O(n^{5})$ time.

178

Proposition 4 (Raghavan[ll]). ISGW$(\Gamma_{2- dg})$ is solvable in $O(n\log n)$ time.

Definition. Let Γ be a class of graphs.

$V- SGW(\Gamma)$ (Vertex-Smallest Graph from a Walk)
INSTANCE: A finite alphabet $\Sigma,$ $x\in\Sigma^{+}$ and a positive integer K .
QUESTION: Is there a graph (V, $E,$ c) $\in\Gamma$ which allows a walk w with scene$(w)=$

x and $|V|\leq K$?

Proposition 5 (Raghavan[ll]). For $k\geq 3,$ $V- SGW(\Gamma_{k- dg})$ is NP-complete.

The main result in this section is the following theorem:

Theorem 1. ISGW(Γ_{tree}) is solvable in $O(n\log n)$ time. Furthermore, if Σ is a
fixed finite alphabet, the problem is solvable in $O(n)$ time.

Let $g_{i}=(V_{i}, E_{i}, c_{i})(1\leq i\leq n)$ be subgraphs of $\mathcal{G}=(\mathcal{V}, \mathcal{E}, c)$ with $c:\mathcal{E}arrow\Sigma$. The
uniongraph of $g_{1},g_{2},$ \ldots,g_{n} , denoted union $(g_{1}, g_{2}, \ldots, g_{n})=(V, E, c’)$, is the graph
defined as follows:

(1)
$V= \bigcup_{1\leq i\leq n}V_{i}$

.

(2)
$E= \bigcup_{1\leq i\leq n}E_{i}$

.

(3) c’ : $Earrow\Sigma$ is the restriction of $c:\mathcal{E}arrow\Sigma$ to E .

The following lemma is straightforward and its proof is omitted.

Lemma 1. Let w be a walk on a tree t . Then there exist linear chains $l_{i}(1\leq i\leq n)$

in t satisfying the following conditions:

(1) The rightmost edge of l_{j} is the mirror image of the leftmost edge of l_{j+1} , i.e.,
these edges are the same and the rightmost vertex of l_{j} is the same as the
leftmost vertex of l_{i+1} , for $1\leq j\leq n-1$ (see Fig. 2).

(2) union $(l_{1}, l_{2}, \ldots , l_{n-1}, l_{n})=t$.

(3) scene$(w)=label(l_{1})label(l_{2})\cdots label(l_{n})$.

Further, these linear chains $l_{1},$

$\ldots,$
l_{n} are unique for w and t .

179

v_{p} v_{q}

l_{j1} $=$ 0r科...........0-一一科

l_{j} $=$

$\mapsto^{\mathcal{V}_{p}}v_{q}\ldots\ldots\ldots..\mapsto^{v_{s}v_{\ell}}$

v_{ℓ} v_{s}

l_{j+1} $=$ 一一\leftrightarrow \supset 0 一一科

Figure 2: $v_{p},$ $v_{q},$ v_{s} and v_{t} are vertices.

(a) t_{1} (b) t_{2}

Figure 3: $T_{1},$ T_{2} and T_{3} are arbitrary trees and a is an arbitrary color in Σ .

180

Definition. Let t_{1} be a tree of the form shown in Fig. 3 (a) consisting of subtrees
$T_{1},$ T_{2} and T_{3} with roots $v_{1},$ $v_{2},$ v_{3} , respectively, which are joined by edges $\{v_{1}, v_{2}\}$

and $\{v_{2}, v_{3}\}$ with the same color $a\in\Sigma$. Then let t_{2} be the tree shown in Fig. 3 (b)
obtained from t_{1} by identifying v_{1} with v_{3} together with the adjacent edges. We say
that t_{2} is an edge-folding of t_{1} . The $relationarrow F$ consists of the pairs (t_{1}, t_{2}) such that
t_{1} is a tree of the form in Fig. 3 (a) and t_{2} is an edge-folding of t_{1} .

For a tree t , the size $|t|$ is the number of edges in t . Clearly, $arrow F$ is strictly
decreasing with respect to $|t|$ since $t_{1}arrow_{F}t_{2}$ implies $|t_{2}|<|t_{1}|$.

Definition. Let $g_{1}=(V_{1}, E_{1}, c_{1})$ and $g_{2}=(V_{2}, E_{2}, c_{2})$ be graphs with $v_{1}\in V_{1}$ and
$v_{2}\in V_{2}$. Let $g_{1}’=(V_{1}’, E_{1}’, c_{1}’)$ and $g_{2}’=(V_{2}’, E_{2}’, c_{2}’)$ be disjoint copies of g_{1} and g_{2} with
$V_{1}’\cap V_{2}’=\emptyset$, respectively. The graph $\{g_{1}\triangleright v_{1}ov_{2}\triangleleft g_{2}\}$ is the graph obtained from $g_{1}’$

and $g_{2}’$ by identifying $v_{1}’$ with $v_{2}’$, where $v_{1}’$ and $v_{2}’$ are vertices corresponding to v_{1} and
v_{2} , respectively.

Lemma 2. Let t be a tree and x be a string in Σ^{+} . The following statements are
equivalent:

(a) The tree t allows a walk w with scene$(w)=x$.
(b) The linear chain l with label$(l)=x$ satisfies $larrow_{F}^{*}t$.

Proof. $(a)\Rightarrow(b)$: Let w be a walk on t with scene$(w)=x$. Then there exist linear
chains $l_{1},$ $l_{2},$

$\ldots,$
l_{n} in t satisfying (1) $-(3)$ of Lemma 1. For $1\leq k\leq n$, let $l_{1}\cdots l_{k}$

be the linear chain which concatenates $l_{1},$
$\ldots,$

l_{k} by identifying the rightmost vertex
of l_{i} with the leftmost vertex of l_{i+1} for $1\leq i<k-1$. We show by induction on k

that $l_{1}\cdots l_{k}arrow^{*}Funion(l_{1}, \ldots, l_{k})$ holds for $1\leq k\leq n$. The case of $k=1$ is trivial.
Assume $l_{1}\cdots l_{k-1}arrow_{F}^{*}union(l_{1}, \ldots, l_{k-1})$. Let v_{1} be the rightmost vertex of l_{k-1} and
v_{2} be the leftmost vertex of l_{k} . By definition, $l_{1}\cdots l_{k-1}l_{k}=\{l_{1}\cdots l_{k-1}\triangleright v_{1}ov_{2}\triangleleft l_{k}\rangle$.
Since $l_{1}\cdots l_{k-1}arrow_{F}^{*}union(l_{1}, \ldots, l_{k-1})$, we can see (Fig. 4)

(union $(l_{1}, \ldots, l_{k-1})\triangleright v_{1}ov_{2}\triangleleft l_{k}$ } $arrow_{F}^{*}union(l_{1}, \ldots, l_{k-1}, l_{k})$.

Thus $l_{1}\cdots l_{n}arrow^{*}Funion(l_{1}, l_{2}, \ldots, l_{n})$. By (2) of Lemma 1, union $(l_{1}, l_{2}, \ldots, l_{n})=t$.
Hence $l_{1}\cdots l_{n}arrow_{F}^{*}t$. By (3) of Lemma 1, label $(l_{1})label(l_{2})\cdots label(l_{n})=scene(w)$.
Since label$(l_{1})label(l_{2})$. . . label $(l_{n})=label(l_{1}\cdots l_{n})$, the linear chain $l=l_{1}\cdots l_{n}$

satisfies (b).
$(b)\Rightarrow(a)$: Let t_{1} and t_{2} be trees such that $t_{1}arrow_{F}t_{2}$ as shown in Fig. 3 (a) and

(b), respectively. It suffices to show that for any walk w_{1} on t_{1} there is a walk w_{2} on t_{2}

with scene$(w_{2})=scene(w_{I})$. There are several cases to consider. For example, if w_{1}

contains a path $v_{1}-v_{2}a-av_{3}$ in t_{1} , then we replaced it by a path $v_{3}-v_{2}a-V_{3}a$ in t_{2} .
This replacement does not change the scene of walks. Fig. 5 shows the replacements
in all cases. Let l be a linear chain with label$(l)=x$ such that $larrow_{F}^{*}t$. Clearly, there
is a walk w on l with scene$(w)=x$. Therefore by the above argument there is a walk
w

‘ on t with scene$(w’)=scene(w)=x$. \square

181

union $(l_{1}, \cdots, l_{k-\iota}, l_{k})$ $=$ union(l_{1}, \cdots, l_{k-1})

and the leftmost vertex of l_{k}

if $T=$ union (l_{1}, \cdots,l_{k-1})

then $Tarrow^{*}Funion(l_{1}, \cdots,l_{k-1}, l_{k})$

Figure 4: The relation of union $(l_{1}, \ldots , l_{k-1})$ and union $(l_{1}, \ldots, l_{k-1}, l_{k})$

182

Figure 5: $T_{1},$ T_{2} and T_{3} are arbitrary trees and a is an arbitrary color in Σ .

Lemma 3. The binary $relationarrow F$ is confluent.

Proof. $Sincearrow F$ is strictly decreasing, by Proposition 1 (1) we need only to show
$thatarrow F$ is locally confluent. $Forarrow F$ to be locally confluent, we must have that if
$tarrow_{F}t_{1}$ and $tarrow_{F}t_{2}$ then there exists some tree $t’$ with $t_{1}arrow_{F}^{*}t’$ and $t_{2}arrow_{F}t’*$.

If $tarrow Ft_{1}$, let $\{v_{1}, v_{2}\}$ and $\{v_{2}, v_{3}\}$ be the edges in t that are folded in the
derivation $tarrow Ft_{1}$. For $tarrow Ft_{2}$, let $\{v_{4}, v_{5}\}$ and $\{v_{5}, v_{6}\}$ be the folded edges in t .
We must consider the following three cases. In the case that $\{\{v_{1}, v_{2}\}, \{v_{2}, v_{3}\}\}\cap$

$\{\{v_{4}, v_{5}\}, \{v_{5}, v_{6}\}\}=\emptyset$, it is trivial that there exists some tree $t’$ with $t_{1}arrow_{F}^{*}t’$ and
$t_{2}arrow_{F}^{*}t’$. In the case that $\{\{v_{1}, v_{2}\}, \{v_{2}, v_{3}\}\}=\{\{v_{4}, v_{5}\}, \{v_{5}, v_{6}\}\}$, it is also trivial.
When $|\{\{v_{1}, v_{2}\}, \{v_{2}, v_{3}\}\}\cap\{\{v_{4}, v_{5}\}, \{v_{5}, v_{6}\}\}|=1$, without loss of generality, we
may assume that $v_{2}=v_{4}$ and $v_{3}=v_{5}$. We can draw t as a tree of the form shown in
Fig. 6(a). Then t_{1} and t_{2} are the trees shown in Fig. 6(b) and (c), respectively. Let
$t’$ is the tree shown in Fig. 6 (d). Then we can easily see that $t_{1}arrow_{F}t’$ and $t_{2}arrow_{F}t’$.
Thus we have shown $thatarrow F$ is confluent. \square

Lemma 4. For a string x of colors, the normal form $\wedge l$ of the linear chain l with
label$(l)=x$ is the smallest tree that allows a walk w with scene$(w)=x$.

Proof. Since $larrow^{*}F^{\wedge}l$ and l allows a walk with scene x , it follows from Lemma 2 that
$\wedge l$ also allows a walk with the same scene x . Let t be a tree which allows a walk with
scene x . By Lemma 2, the linear chain l satisfies $larrow_{F}^{*}t$. Since the binary relation

183

(b) (c)

(d)

Figure 6: $T_{1},$ $T_{2},$ T_{5} and T_{6} are arbitrary trees and a is an arbitrary color in Σ .

$arrow F$ is confluent by Lemma 3 and strictly decreasing, we see from Proposition 2 that
$|t|\geq|l|\wedge$. Hence $\wedge l$ is the smallest tree that allows a walk w with scene$(w)=x$. \square

184

Input: string x $:=x_{1}x_{2}\cdots x_{n}$ in Σ^{+}

Output: tree $t=(V, E, c)$ with a coloring $c:Earrow\Sigma$

Procedure:
$V:=\{v_{0}\};E:=\emptyset$;
v $:=v_{0}$

for i $:=1$ to n

if there is a vertex $v’\in V$ with $\{v, v’\}\in E$ and $\cdot c(\{v, v’\})=x_{i}$

$/*see$ Fig. 7 $(a)*/$

then v $:=v’$ $/*_{See}$ Fig. 7 $(b)*/$

else
Let u be a new vertex;
V $:=V\cup\{u\}$;
E $:=E\cup\{\{u, v\}\}$;
$c(\{u, v\}):=x_{i}$; $/*_{See}$ Fig. 7 (c) $*/$

v $:=u$

endif
end

Algorithm 1: Algorithm for obtaining the normal form of x .

(a) (b) (c)

Figure 7: $T_{1},$ $T_{2},$
\ldots , T_{m} are arbitrary trees and $z_{1},$ $z_{2},$ $\ldots,$ z_{m} are arbitrary distinct

colors.

Lemma 5. On input $x=x_{1}x_{2}\cdots x_{n}(x_{1}, x_{2}, \ldots , x_{n}\in\Sigma)_{f}$ Algorithm 1 produces the
tree in the normal form allowing a walk with scene x .

Proof. Let $t_{i}=(V_{i}, E_{i}, c_{i})$ and v_{i} be the resulting tree and the content of v just after
the ith iteration of the for-loop of Algorithm 1, respectively. Let $l_{i,j}$ be the linear
chain with label $(l_{i,j})=x_{i}x_{i+1}\cdots x_{j}$ and $lmv(l_{i,j})$ be the leftmost vertex of $l_{i,j}$ for

185

$1\leq i\leq j\leq n$. In particular, $l=l_{1,n}$. Clearly, $t_{1}=l_{1,1}$ and $\{t_{i-1}\triangleright v_{i-1}olmv(l_{i,i})\triangleleft l_{i,i})$

$arrow F\epsilon t_{i}$ for any $i>1$. Thus, $l=\{t_{1}\triangleright v_{1}olmv(l_{2,n})\triangleleft l_{2,n}\}arrow F\epsilon\{t_{2}\triangleright v_{2}olmv(l_{3,n})\triangleleft$

$l_{3,n}\ranglearrow F\epsilon\ldotsarrow t_{n}\epsilon_{F}$. Hence $larrow_{F}^{*}t_{n}$.
We show by induction that t_{i} is irreducible for all $i=1,$ \ldots,n . Clearly, $t_{1}=l_{1,1}$

is irreducible. Assume that that t_{i-1} is irreducible. Consider the if-condition of
Algorithm 1 that checks whether $x_{i}=z_{j}$ for some $j=1,$ \ldots,m . If it is true, then
$t_{i}=t_{i-1}$. Otherwise, t_{i} is of the form as in Fig. 7 (c). Since t_{i-1} is irreducible, t_{i-1}

does not contain a subgraph of the form in Fig. 8 for any $a\in\Sigma$. Furthermore, since
$x_{i}\neq z_{j}$ for all $j=1,$ $\ldots,$

m , no subgraph of the form in Fig. 8 can appear in t_{i} . Hence
t_{i} is also irreducible.

Thus, we have shown that $larrow_{F}^{*}t_{n}$ and t_{n} is irreducible which means that t is the
normal form of l . By Lemma 2, t_{n} allows a walk with scene x since the linear chain l

does. \square

a a

Figure 8:

It is not hard to implement Algorithm 1 so that it runs in $O(n\log n)$ time using a
balanced binary tree for keeping colors at each vertex. If Σ is a fixed finite alphabet,
it can be implemented in $O(n)$ time.

4. Smallest Graph from Partial Walks

Instead of dealing with a single walk, we consider in this section the problem of finding
the smallest tree from a finite number of partial walks.

Example 2. The graph in Fig. 9 is the smallest linear chain which allows partial
walks with scenes abbaabcdeedc, cdebccbeddebbe, ecbeebccbbcee.

$abcdebce\ovalbox{\tt\small REJECT}$

Figure 9:

Definition. Let Γ be a class of graphs.

SGPWs(F) (Smallest Graph from Partial Walks)

186

INSTANCE: A finite alphabet Σ , a finite set R of strings from Σ^{+} and a positive
integer K .

QUESTION: Is there a graph (V, $E,$ c) $\in\Gamma$ which allows a partial walk w_{x} with
scene$(w_{x})=x$ for each $x\in R$ with $|E|\leq K$?

4.1. Inferring a Tree from Partial Walks

We prove the following theorem:

Theorem 2. SGPWs(Γ_{tree}) is NP-complete.

Proof. The vertex cover problem (VC) [6] is to decide if, given a graph $G=(V, E)$
and a positive integer K , there is a vertex cover of size K or less for G , that is, a
subset $V’\subseteq V$ such that $|V$

‘ $|\leq K$ and, for each edge $\{u,v\}\in E$, at least one of u

and v belongs to $V’$.
We will reduce VC to SGPWs(Γ_{tree}) . Let $G=(V, E)$ and K be a graph and an

integer which forms an instance in VC, where $V=\{v_{1}, \ldots, v_{n}\}$ and $E=\{e_{1}, \ldots, e_{m}\}$.
From G and K , we define a finite alphabet Σ , a finite set R of strings from Σ^{+}

and a positive integer $K’$. The finite alphabet Σ is defined as
$\Sigma=$ $\{w_{i}|1\leq i\leq W\}$ \cup

$\{v_{i}^{j}|1\leq i\leq n, 1\leq j\leq N\}$ \cup

$\{e_{k}^{j}|1\leq k\leq m, 1\leq j\leq S\}$ \cup

$\{\theta\}$,

where integers $W,$ N and S shall be defined later.
Next, we define the finite set R of strings from Σ^{+} . In order to define R , we

introduce the following notations for strings.
$[w]$ $=$ $w_{1}w_{2}\cdots w_{W}$: weight-block

$[e_{k}]$ $=$ $e_{k}^{1}e_{k}^{2}\cdots e_{k}^{S}$ for each edge e_{k} : edge-block

$[v_{i}]$ $=$ $v_{i^{1}}v_{i}^{2}\cdots v_{i}^{N}$ for each vertex v_{i} : vertex-block

$[\theta]$ $=$ θ : θ -block
R consists of the following strings:

Base string: $[w][v_{1}][w][v_{2}][w]\cdots[w][v_{n}]$

Edge strings: $[e_{k}][v_{i}][\theta][v_{j}]^{R}[e_{k}]^{R}$ for each edge $e_{k}=\{v_{i}, v_{j}\}\in E$

Connector strings: $[w][e_{k}]^{R}$ for each edge $e_{k}\in E$

We define $N=K+1,$ $S=(|V|+|E|+1)(K+1)$, and $W=2|E|(|V|+|E|+$
$1)(K+1)+(|V|+|E|)(K+1)+K+1$. Then the following inequalities hold:

(1) $W>2|E|S+(|V|+|E|)N+K$.

187

(2) $S>(|V|+|E|)N+K$.

(3) $N>K$.

Finally, let $K’=|V|W+2|E|S+(|V|+|E|)N+K$. This transformation can be
done in polynomial time.

We claim that G has a vertex cover of the size of at most K if and only if there
is a tree $t=(V_{t}, E_{t}, c_{t})\in r_{tree}$ with $|E_{t}|\leq K’$ which allows a partial walk w_{x} with
scene$(w_{x})=x$ for each $x\in R$.

Suppose that G has a vertex cover $V’$ with $|V$‘ $|\leq K$. We shall define from V‘ a
tree $t=(V_{t}, E_{t}, c_{t})$ with $|E_{t}|\leq K’$ which realizes all partial walks for R . Since any
$x\in R$ is irreducible with respect to the binary $relationarrow F$, we can see from Lemma
2 that the linear chain l_{x} with label $(l_{x})=x$ is a unique tree which allows a walk w_{x}

with scene$(w_{x})=x$. Therefore a tree which realizes all partial walks for R must
contain such linear chains l_{x} as subgraphs for all $x\in R$. Hereafter a block or string
x means the linear chain l_{x} with label $(l_{x})=x$ without any notice. For graphical
representation, we can represent the linear chain $l_{[w]}$ for a weight-block $[w]$ by $arrow^{[w]}$

$andavetex- b1ock[v_{i}],werepesentthecorresponding1inearchainsbyarrow andarrow sincethe_{1^{\backslash }}symbo1sdefining[w]_{1^{\backslash }}aremutua11ydistinct.Simi1ar1y,foraned_{[e][v:1^{k}}g_{k}e- b1ock[e]$

respectively. On the other hand, we represent the linear chain $l_{[\theta]}$ for a θ-block $[\theta]$ by
$[\theta]$

since it is symmetric.

Initially, we are given the collection $l(R)$ of the linear chains l_{x} for all $x\in R$. We
construct the tree t by overlapping these linear chains each other.

First, we consider the connector strings and the edge strings. For each edge
$e_{k}=\{v_{i}, v_{j}\}\in E$, either v_{i} or v_{j} is in $V’$. If v_{i} is in $V’$, we make a tree by overlapping
the edge-block $[e_{k}]$ of the connector string $[w][e_{k}]^{R}$ with the $[e_{k}]$ of the edge string
$[e_{k}][v_{i}][\theta][v_{j}]^{R}[e_{k}]^{R}$ which is adjacent to the vertex-block $[v_{i}]$ as shown in Fig. 10.
These two edge-blocks match exactly by reversing the direction appropriately. We
denote the resulting tree by $t(v_{i}, e_{k})$ which means that the endpoint v_{i} is chosen from
e_{k} in $V’$. If v_{j} is in $V’$, we can define $t(v_{j}, e_{k})$ similarly. We construct either $t(v_{i}, e_{k})$

or $t(v_{j}, e_{k})$ for e_{k} , and call the tree the endpoint selection tree for e_{k} .
Next, we consider the endpoint selection trees for edges and the base string $[w]$

$[v_{1}][w][v_{2}][w]\cdots[w][v_{n}]$. For an edge $e_{k}=\{v_{i}, v_{j}\}$, let the endpoint selection
tree be $t(v_{i}, e_{k})$. Then we overlap the consecutive blocks $[w][v_{i}]$ of $t(v_{i}, e_{k})$ with the
consecutive blocks $[w][v_{i}]$ of the base string $[w][v_{1}][w][v_{2}][w]$.. . $[w][v_{n}]$. The
resulting tree looks like Fig.11. We call the location of the base string between $[w]$

and $[v_{i}]$ the vertex-selection point.

Finally, for each vertex-selection point, we overlap the θ-blocks of the endpoint
section trees which share the same vertex-selection point each other as shown in
Fig.12. Then the resulting tree gives the tree t to be constructed. It is obvious from
the construction of t that t realizes all partial walks for R .

188

Figure 10: The endpoint selection trees for e_{k}

Figure 11: Overlapping of the endpoint selection trees with the base string

189

Figure 12: Tree realizing all partial walks for R

The number of vertex-selection points which are adjacent to θ-blocks is at most
K since $|V’|\leq K$. Then it can be easily checked that t contains at most $K’$ edges.

Conversely, let $t=(V_{t}, E_{t}, c_{t})$ be a tree with $|E_{t}|\leq K’$ which realized all partial
walks for R . Such tree t can be obtained by overlapping the linear chains in $l(R)$.
Without loss of generality, we may assume that t is one of the smallest such trees.
Since the collection l$(R)oflinearchainsforRcontains(|V|+|E|)W+3|E|S+(|V|+$
$2|E|)N+|E|$ edges, at least $|E|W+|E|S+|E|N+(|E|-K)$ edges must be eliminated
from $l(R)$ by overlapping edges in $l(R)$.

In overlapping these linear chains, it should be noticed that two blocks (weight-
blocks, edge-blocks, vertex-blocks, or θ-blocks) of the linear chains must overlap com-
pletely in t , if they do, since t is assumed to be the smallest one. Note also that
distinct blocks do not share any symbols.

1. We consider the connector strings for edges and the base string. We show
that every connector string must overlap with the base string by the part of weight
blocks $[w]$ as shown in Fig.13. If there is a connector string $[w][e_{k}]^{R}$ whose weight-
block $[w]$ is not overlapped with the base string $[w][v_{1}][w][v_{2}][w]$.. . $[w][v_{n}]$ in
the tree t , then t contains at least $|V|\cdot W+W$ edges. By (1), W is chosen so that
$W>2|E|S+(|V|+|E|)N+K$. This contradicts the assumption that t contains at
most $K’$ edges. Let $t’$ be the resulting graph formed from the base string and the
connector strings. At this point, $|V|\cdot W$ edges are eliminated from $l(R)$ by overlapping.

2. We consider the edge strings.
Claim 1. Every edge string must overlap with $t’$ by the part of edge-blocks.

Proof. For two edges $e_{k_{1}}=\{v_{i_{1}}, v_{j_{1}}\},$ $e_{k_{2}}=\{v_{i_{2}},v_{j_{2}}\}$, the edge-blocks $[e_{k_{1}}]$ of
the edge string $[e_{k_{1}}][v_{i_{1}}][\theta][v_{j_{1}}]^{R}[e_{k_{1}}]^{R}$ cannot overlap with the edge-blocks $[e_{k_{2}}]$

190

Figure 13: Overlapping of the connector strings with the base string

of the edge string $[e_{k_{2}}][v_{i_{2}}][\theta][v_{j_{2}}]^{R}[e_{k_{2}}]^{R}$ since $[e_{k_{1}}]$ and $[e_{k_{2}}]$ have no symbol in
common. If there is an edge string $[e_{k}][v_{i}][\theta][v_{j}]^{R}[e_{k}]^{R}$ none of whose edge-blocks
is not overlapped with the edge-block $[e_{k}]$ of $t’$, then t must contain at least $|V|\cdot W+$

$(2|E|+1)\cdot S$ edges. However, by (2), S is chosen so that $S>(|V|+|E|)N+K$. This
implies that t contains more than $K’$ edges, a contradiction. Therefore one of the
edge-blocks of each edge string is overlapped with the same edge-block of $t’$ as shown
in Fig.14, where the part of an edge string other than the overlapped edge-block is
drawn out temporally. At this point, \cdot $|V|\cdot W+|E|\cdot S$ edges are eliminated from $l(R)$.

Figure 14: Overlapping of the edge-blocks of the edge strings with the base string

Claim 2. Let $[e_{k}][v_{i}][\theta][v_{j}]^{R}[e_{k}]^{R}$ be an edge string. If the left (right) edge-block
$[e_{k}]$ is overlapped with $t’$, then the vertex-block $[v_{i}]([v_{j}])$ of the edge string must be
overlapped with the same vertex-block of t‘.

Proof. By an argument similar to Claim 1, we can show the above claim by.using
the inequality (3) $N\geq K$. At this point, $|V|\cdot W+|E|\cdot S+|E|\cdot N$ edges are eliminated
from $l(R)$.

191

Claim 3. The number of θ-blocks in t is at most K .

Proof. Since t is assumed to be the smallest one, all θ-blocks adjacent to each
vertex-selection point are overlapped into one θ-block as in Fig.12. Since t contains
at most $|V|W+2|E|S+(|V|+|E|)N+K$ edges, we see that the number of the
θ-blocks must be at most K .

It should be clear that the set $V’$ of vertices v_{i} corresponding to the vertex-selection
points in $[w][v_{i}]$ of t which are adjacent to θ-blocks gives a vertex cover of G whose
size is shown at most K .

Thus the problem of inferring a tree from partial walks is NP-hard. Clearly, the
problem is in NP. \square

4.2. Inferring a Linear Chain from Partial Walks

Theorem 3. SGPWs(Γ_{1c}) is NP-complete.

Proof. We show that this problem is a special case of the shortest common super-
string problem [5, 6, 9], which is to decide if, given a finite set R of strings from Σ^{*}

and a positive integer K , there is a string $s\in\Sigma^{*}$ with $|s|\leq K$ such that each string
$x\in R$ is a substring of s .

For a string $x=x_{1}x_{2}\cdots x_{n}(x_{i}\in\Sigma)$, we make a new string $\tilde{x}=abx_{1}abx_{2}ab\cdots$

$abx_{n}ab$ from x using new symbols a and b not in Σ . Now we define an instance of
SGPWs(Γ_{1c}) as follows:

(1) $\Sigma’=\Sigma\cup\{a, b\}$ with $a,$ $b\not\in\Sigma$.
(2) $R’=\{\tilde{x}|x\in R\}$.

(3) $K’=3K+2$.

This transformation can be done in polynomial time.

We claim that there is a common superstring s for R with $|s|\leq K$ if and only
if there is a linear chain $l’$ with $|label(l’)|\leq K’$ which allows a partial walk $w_{\overline{x}}$ with
scene$(w_{\tilde{x}})=\tilde{x}$ for each $\tilde{x}\in R’$.

Suppose that there is a common superstring s for R with $|s|\leq K$. Let s be
$s_{1}s_{2}\cdots s_{n}$ with $s_{i}\in\Sigma$, and let l be the linear chain with label $(l)=abs_{1}abs_{2}ab\cdots abs_{n}ab$.
Then $|label(l)|\leq 3K+2$. We can easily see that the linear chain l allows a partial
walk $w_{\overline{x}}$ with scene $(w_{\overline{x}})=-\tilde{x}$ for each $\tilde{x}\in R’$.

We prove the converse. $Letarrow U$ be the binary relation on $\Sigma^{\prime+}$ defined as follows:

$arrow_{U}=$ $\{(pxx^{R}xq,pxq)|p, q\in\Sigma^{\prime*}, x\in\Sigma^{\prime+}\}$ \cup

$\{(x^{R}xq, xq)|q\in\Sigma^{\prime*}, x\in\Sigma^{J+}\}$ \cup

$\{(pxx^{R}, px)|p\in\Sigma^{J*}, x\in\Sigma^{\prime+}\}$,

192

where x^{R} is the reverse of the string x . It has been shown in [4] that, for any string
$y,$ $z\in\Sigma^{;+},$ $yarrow^{*}U^{Z}$ if and only if the linear chain l with label$(l)=z$ allows a walk w

with scene$(w)=y$. Since any $\tilde{x}\in\tilde{R}$ is irreducible with respect to the binary relation
$arrow U$ we can see that the linear chain l with label $(l)=\tilde{x}$ is the only linear chain which
allows a walk w with scene $(w)=\tilde{x}$.

Let l be a linear chain with $|label(l)|\leq K’$ which allows a partial walk $w_{\tilde{x}}$ with
scene $(w_{\overline{x}})=\tilde{x}$ for each \tilde{x} in $R’$. Then the string $s’=label(l)$ satisfies 1 $s’|\leq K’$ and \tilde{x}

or \tilde{x}^{R} is a substring of s
‘ for all \tilde{x} in R‘. Without loss of generality, we may assume

that l is one of the shortest such linear chains and s
‘ begins with ab .

For strings $\tilde{x}=abx_{1}abx_{2}ab\cdots abx_{m}ab$ and $\tilde{y}=aby_{1}aby_{2}ab\cdots aby_{n}ab$, we can
see that \tilde{x} and \tilde{y}^{R} can overlap maximally with the form either $ab\tilde{x}’aba\tilde{y}^{\prime R}ba$ or
$ba\tilde{y}^{\prime R}bab\tilde{x}’ab$. On the other hand, \tilde{x} and \tilde{y} can overlap at least as $abx_{1}abx_{2}ab\cdots$

$abx_{m}aby_{1}aby_{2}ab\cdots aby_{n}ab$. This overlapped string is one symbol shorter than
$ab\tilde{x}’aba\tilde{y}^{JR}ba$ and $ba\tilde{y}^{;R}bab\tilde{x}’ab$. By this observation, we can conclude that s

‘ is of
the form $s’=abs_{1}abs_{2}ab\cdots abs_{t}ab$ with $s_{i}\in\Sigma$. Therefore $s’$ contains all strings
\tilde{x} in $R’$. Hence $s=s_{1}s_{2}\cdots s_{t}$ is a common superstring for R . Further, since
$|s’|=3|s|+2\leq K’=3K+2$, we see $|s|\leq K$. Thus SGPWs (Γ_{1c}) is NP-hard.
Clearly, the problem is in NP. \square

5. Toward Bioinformatics

Our motivation of this work comes from knowledge acquisition from amino acid se-
quences of proteins and DNA sequences which are strings from 20 symbols and four
symbols (A,T,C,G) , respectively. One of the important topics in Molecular Biology is
to develop systematic methods which discover new knowledge about these sequences.
The approach in this paper is based on the following principle: The smallest hypoth-
esis which explains given data exhibits the knowledge. With this principle, we have
developed two methods for amino acid sequences of proteins with quite successful
results $[2, 3]$.

Aslam and Rivest [4] deals with linear chains and cycles. Raghavan [11] considers
graphs with degree at most k . This paper established the results for trees. However,
there are a various kinds of graph families which are remained for investigation. We
believe that graph inference from walks may provide a new method for discovering
knowledge in Molecular Biology or in another fields which confront with the problem
of knowledge acquisition. We are now in the process of applying our algorithm for
trees and the algorithms for linear chains by $[4, 11]$ to various amino acid sequences
and DNA sequences.

193

6. Acknowledgment

The authors would like to thank Ayumi Shinohara for a great amount of helps and
suggestions in attacking the problems discussed in this paper. Especially, his sug-
gestion of using the common superstring problem for the linear chain inference from
partial walks is appreciated very much.

References

[1] D. Angluin, On the complexity of minimum inference of regular sets, Inform.
Contr. 39 (1978) 337-350.

[2] S. Arikawa, S. Kuhara, S. Miyano, A. Shinohara and T. Shinohara, A learning
algorithm for elementary formal systems and its experiments on identification of
transmembrane domains, to appear in Proc. 25th Hawaii International Confer-
ence on System Sciences.

[3] S. Arikawa, S. Kuhara, S. Miyano, A. Shinohara and T. Shinohara, Identification
of transmembrane domains by decision trees over regular patterns, RIFIS-TR-
CS-44, Research Institute of Fundamental Information Science, Kyushu Univer-
sity, August, 1991 (to be presented at 2nd Int. Symposium on Artificial Intelli-
gence and Mathematics, Florida, January, 1992).

[4] J.A. Aslam and R.L. Rivest, Inferring graphs from walks, Proc. 3rd Computa-
tional Learning Theory 359-370, 1990.

[5] J. Gallant, D. Maier, J. A. Storer, On finding minimal length superstrings, J.
Comput. System Sci. 20 (1980) 50-58.

[6] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the
Theory ofNP-Completeness, W. H. Freeman and Company, San Francisco, 1979.

[7] E.M. Gold, Complexity of automaton identification from given data, Inform.
Contr. 37 (1978) 302-320.

[8] G. Huet, Confluent reductions: abstract properties and applications to term
rewriting systems, J. Assoc. Comput. Mach. 27 (1980) 797-821.

[9] M. Li, Towards a DNA sequencing theory, Proc. $31st$ IEEE Symposium on Foun-
dations of Computer Science, 125-134, 1990.

[10] L. Pitt and M.K. Warmuth, The minimum consistent DFA problem cannot be
approximated within any polynomial, Proc. $21stACM$ Symposium on Theory of
Computing, 421-432, 1989.

[11] V. Raghavan, Bounded degree graph inference from walks, Proc. 4th Computa-
tional Learning Theory 354-366, 1991.

