goooboooogn
0 7900 19920 215-221

215

PRt Ry & 2 058
FFe4i4r 1992.1.29-31

LOTOSIZ & AV ATF LADEHEIRER) — FD
BifEROaR - MMM E | TV TY XA L1220 T -

HUFRIR, ZARBE

L

KB AT L S H L 2

Service Specification and Protocol Specifications in LOTOS
- Equivalence and Synthesis -

Teruo Higashino, Keiichi Yasumoto and Kenichi Taniguchi
Department of Information and Computer Sciences
Osaka University, Osaka 560 Japan

Abstract

LOTOS is a language developed within ISO for the
formal description of communication protocols and
distributed systems. In LOTOS, requirements for a
distributed system are called a "service specification". Each
node exchanges synchronization messages to ensure the
temporal ordering for the execution of events in a service
specification. The actions of each node are described as a
"protocol specification”. In this paper, we introduce a
method to derive protocol specifications from a service
specification written in a LOTOS based language. In order
to derive the protocol specifications, we make the syntax
tree of a given service specification and give some attributes
for each node in the tree. The protocol specifications are
derived automatically by evaluating these attributes. The
derived protocol specifications satisfy the given service
specification. We also explain a LOTOS simulator for the
execution of derived protocol specifications.

1. Introduction

LOTOS(1-4) is a language developed within ISO for the
formal description of communication protocols and
distributed systems. Recently, the specifications of many
OSI protocols(S) are described in LOTOS(2,6),
Requirements for a distributed system are described as a
"service speciﬁcation"(7). In LOTOS, service primitives of
each node in a distributed system are called "events", and
the temporal ordering of the execution of events are
described as a service specification. On the protocol level,
several nodes cooperate to provide the required service.
They exchange synchronization messages to ensure the
temporal ordering of the execution of events through a
communication medium. In the communication medium,
we assume that there is a communication channel from each
node "i" to any other node "j", and that the communication
channel is modeled as a FIFO queue whose capacity is
infinite. The actions of each node are described as a
"protocol specification”. That is, a protocol specification of
a node specifies the temporal ordering of the execution of
both the events of the node and sending/receiving
interactions of synchronization messages.

In order to get protocol specifications satisfying a given
service specification, there are two techniques : (1)analysis
and (2)synthesis. Verification and testing are analysis
techniques. These techniques are used for detecting design
errors such as deadlocks, unspecified receptions and so on.
Although some analysis techniques have been proposed to
determine whether given protocol specifications satisfy a
service specification, usually it takes much time to ensure
that given protocol specifications satisfy a service
specification. As a technique to design distributed systems,
it is desirable that the designer-describes only a service
specification and protocol specifications can be derived from
the service specification automatically. Some synthesis

techniques have been proposed(8'14). In this paper, we
will introduce a synthesis technique to derive protocol
specifications from a service specification written in a
LOTOS based language. This synthesis technique uses
only service specifications and it does not require any
further information. The technique has been proposed in
Ref. (15) and extended in Ref. (16-21). This paper gives a
survey for this synthesis technique.

In order to observe the execution of LOTOS programs,
some LOTOS simulators (interpreters) have been
developed(4’22’23). These simulators are used for
simulating the execution of service specifications. In order
to simulate the execution of protocol specifications, we need
the facility for the exchange of synchronization messages in
addition to the ordinary facilities of LOTOS simulators. We
have developed a LOTOS simulator PROSPEX (PROtocol
SPecification EXecutor) for the execution of protocol
specifications(24). Suppose that there are N nodes in a .
distributed system. We use N PROSPEX to simulate N
protocol specifications. That is, each PROSPEX simulates
a protocol specification and exchanges synchronization
messages each other.

In Section 2, we introduce a LOTOS based language for
describing service specifications. In Section 3, a method
for deriving protocol specifications from a service
specification is explained. Our. LOTOS simulator
PROSPEX is introduced in Section 4.

2. Service Specifications
2.1 LOTOS

In LOTOS, a distributed system is described as a
collection of processes. A special process is treated as the
main process. A process consists of a behavior expression
(a sequence of events and operators) where some operators
define the temporal ordering of the execution of events. Let
P and B be a process and a behavior expression,
respectively. A process definition is described as "P := B".
If the process P is invoked, then the events in the behavior
expression B are executed. The following operators are
used in behavior expressions.

(1) The sequential execution of simple interactions ";"

A behavior expression "a ; B" represents that the
behavior expression "B" is executable after the event "a" is
executed.

(2) Non-deterministic choice of alternatives "[]"

A behavior expression "B} [] B2" represents that only
one of the behavior expressions "B1" and "B2" is executed.
If an event in "B1" is executed, then only the events in "B}"
are executable and the events in "B2" are not executed.

(3) Independent parallelism "IIi"

A behavior expression "B Il B2" represents that both
behavior expressions "B1" and "B2" are executable in
parallel. The events in "B1" and "B2" are executed

independently.

216

(4) Dependent parallelism with rendezvous interactions "II"

A behavior expression "B l[g1,..,gn]l B2" represents
that both behavior expressions "B1" and "B2" are
executable in parallel. The events in "B1" and "B2"
belonging to {g1,..,.gn} must be executed as rendezvous
interactions. If all events in "B1" and "B2" are contained in
{g1,--.gn}, then "By l[g1,...gn]l B2" may be described as
"B1 Il B2".

(5) Sequential composition ">>"

A behavior expression "B1 >> B2" represents that the
behavior expression "B2" is executable after the execution
of the behavior expression "B1" is finished successfully.

(6) Disabling operator "[>"

Disabling operator "[>" represents the interruption of a
particular sequence of events by a disabling event. A
behavior expression "B [> B2" represents that the behavior
expression "B1" is executable until an event "d" of the
behavior expression "B2" is executed. If "d" is executed,
then only the events in "B2" are executable.

As another operator, there is the hiding operator (see
Ref. (1,4)). An algebraic language ACT ONE(25) is used
to represent the values and data structures in LOTOS. A
sub-language ignoring the values and data structures in
LOTOS is called "Basic LOTOS".

2.2 Language to Describe Service Specifications

The specification language used in our derivation
algorithm is functionally equivalent to Basic LOTOS, except
that the disabling operator and hiding operator are not
supported. The language is used to describe both service
specifications and derived protocol specifications.

Suppose that a LOTOS program L consists of the tuple
L=<P1,P2,..,Pn> of n processes P1, P2,...,Pn, and that
the first process P is the main process. We define the
syntax of each process definition using the production rules
(1)~(12) in Table 1. In Table 1, "Process_def" is the
starting symbol. "Proc_Id" and "Event_Id" must be defined
as identifiers using some terminal symbols. The keywords
"process"”, ":=" and "endproc" and the operators ">>", "I",
", "[1", ;" and "exit" are treated as terminal symbols.
"Event_subset” is a set of "Event_Id". A "Proc_Id" denotes
a process, which is written as an "Identifier". An
"Event_Id" may denote either:

- a service primitive interaction : It is written as

“IdentifierNode" where "Identifier” denotes the service

primitive itself and "Node" denotes the node name at

which the interaction takes place. For example, "a2"
denotes the service primitive "a" at the node 2 (here, we
assume that each interaction takes place at only one
node).

- an interaction of sending message : It is written as "sj(m)"
which means the sending of the message "m" to the node
"ill.

- an interaction of receiving message : It is written as
“rij(m)" which means the receiving of the message "m"
from the node "i".

Interactions of sending/receiving messages are only used in

protocol specifications.

2.3 Example of Service Specifications

Let us consider an example in Fig. 1. In Fig. 1, there are
3 nodes. Suppose that the user wants to copy some
elements in a file of the node 1 into another file of the node
3, but the reverse order. At the node 1, we can only execute
"read!" which is a service primitive interaction reading a
element from the file. At the node 3, we can only execute
"write3" which is a service primitive interaction writing a
receiving element into the file. The node 2 has a stack. At
the node 2, we can execute either "push2" or "pop2".
"Push2" inserts the last receiving element in the local stack.

"Pop2" extracts the past-pushed element from the local
stack. For simplicity of the explanation, we do not consider
the contents of the elements. A service specification of this
example is written as follows using the production rules in
Table 1:

L =<A>

process A := (read] ; push? ; A >> pop? ; write3 ;exit)

[] read! ; write3 ; exit endproc

) push

1 read 2 Pop 3 write

T 1 I
node 1 node 2 node 3

IH v vd

communication medium’ |

Fig. 1: Example of Service

3. Derivation of Protocol Specifications

In this section, we will explain a method for the
derivation of protocol specifications. The derivation
algorithm of this paper is the extended version of those in
Ref. (15,18). For more complex service specifications
containing the disabling operator and data parameters, see
the derivation algorithms in Ref. (19,20).

3.1 Example of Protocol Specifications
First, we will give an example of protocol specifications.
For the service specification L in Section 2.3, we derive the
following protocol specifications L, L2 and L3. Here,
some integers such as 8, 14 and 17 are used as the
synchronization messages.
Node 1:
L1 =<A>
process A := readl; s2(14); 12(17); A
[) read!; $3(35); s2(8); exit endproc
Node 2:
L2 =<A>
process A := (r1(14); push2; (s1(17); exit lll s3(17); exit)
>> A>>r13(11); popz; $3(25); exit)
[1r1(8); exit endproc
Node 3:
L3=<A>
process A := (r2(17); A >> s2(11); r2(25); write3; exit)
[1r1(35); write3; exit endproc
Fig.2 represents an execution process of these protocol
specifications. The dotted lines in Fig. 2 denote the
exchange of synchronization messages.

Node 1
A : -
T i
NS 1
Node2 | | | fred, 1
A L ! -
| Tpush A 1 e pop, |
'l ‘pushi a* | 1 pop |y
1 1
Node 3 T i |l]
A ‘ ;]] , |
l YA ' 1 VT Ve
| Yar ¢ Vwitd]

Fig. 2: An Execution Process of Protocol
Specifications

217

Table 1: Syntax of Specification Language and Attribute Evaluation Rules

Nr. Production Rules Attribute SP (Starting Places)
(1) | Process_def --> process Proc_Id := e endproc SP(Process_def) = SP(e)

(2)]e -> Par >> ep SP(e;) = SP(Par)

(3)]e --> Par SP(e) = SP(Par)

(4) | Pary --> Choice I[event_subset]l Pary SP(Pary) = SP(Choice) U SP(Parjp)
(5) | Parg --> Choice |l Pary SP(Par;) = SP(Choice) U SP(Parp)
(6) | Par --> Choice SP(Par) = SP(Choice)

(7) | Choicey -> Seq [] Choicey SP(Choice{) = SP(Seq) = SP(Choice;)
(8) | Choice --> Seq SP(Choice) = SP(Seq)

(9) | Seqy --> Event_Id ; Seqp SP(Seq;) = {place(Event_ld)}

(10) | Seq --> Event_Id ; exit SP(Seq) = {place(Event Id)}

(11)] Seq --> Event Id ; Proc_Id 'SP(Seq) = ({place(Event Id)}

(12)] Seg > (e) SP(Seq) = SP(e)

Attributes EP (Ending Places) and AP (All Places)

EP

AP

(1) |EP(Process_def) = EP(e)

AP(Process_def) = AP(e)

(2) [EP(ep) = EP(ep)

AP(e]) = AP(Par) U AP(e))

(3) |EP(e) = EP(Par)

AP(e) = AP(Par)

(4) |EP(Par;) = EP(Choice) U EP(Parp)

AP(Par;) = AP(Choice) U AP(Parj)

(5) |EP(Par)) = EP(Choice) U EP(Parp)

AP(Par)) = AP(Choice) U AP(Parp)

(6) |EP(Par) = EP(Choice)

AP(Par) = AP(Choice)

(7) |EP(Choicey) = EP(Seq) = EP(Choicey)

AP(Choice1) = AP(Seq) U AP(Choicey)

(8) |EP(Choice) = EP(Seq)

AP(Choice) = AP(Seq)

(9) |EP(Seq)) = EP(Seqy)

AP(Seqq) = {place(Event_Id)] U AP(Seqy)

(10) |EP(Seq) = ({place(Event Id)} AP(Seq) = {place(Event_Id)}
(11) |EP(Seq) =EP(Proc_Id) AP(Seq) = {place(Event Id)} u AP(Proc_ld)
(12) |EP(Seq) = EP(e) AP(Seq) = AP(e)

(Here, place(ldenﬁﬁerNOde) =Node)

3.2 Principles for Deriving Protocol
Specifications

In this section, we will explain the principles for deriving

protocol specifications. The basic idea of the derivation is to

use the notion of "projection”. That is, first, the events of a

node "p" are selected from a given service specification, and

then the sending/receiving interactions of synchronization

"n_n

messages between the node "p” and other nodes are added.

3.2.1 Attributes

The information concerning the exchange of
synchronization messages is implicitly defined in each
service specification. This information is found by
assigning some attributes to the nonterminal symbols of the
syntax tree of the service specification. See Ref. (26) for
details of attribute grammars. In this paper, we use the
following three attributes (here, exp(x) represents the
behavior expression which is derived from the nonterminal

symbol "x").

SP(x) : The set of nodes where the first events of exp(x) are
executed. It is called Starting Places of the
nonterminal symbol "x".

EP(x) : The set of nodes where the last events of exp(x) are
executed. Itis called Ending Places of "x".

AP(x) : The set of all nodes where the events of exp(x) are
executed. Itis called All Places of "x".

These attributes are calculated as the synthesized attributes

using the attribute evaluation rules in Table 1. The syntax

tree for the process A described in Section 2.3 and the
attributes for some nonterminal symbols of the tree are
described in Fig. 3. Although the parameter "x" of the
attributes SP(x), EP(x) and AP(x) is a nonterminal symbol,
we may use exp(x) instead of "x". That is, we may use
SP(exp(x)) instead of SP(x) if there is no confusion.

We give the attributes SP(x), EP(x) and AP(x) not only
for the nonterminal symbols but also for the leaves
corresponding to event identifiers and process identifiers. If
"Event_Id" is "IdentifierNode" then we define
SP(Event_ld) = EP(Event_Id) = AP(Event_Id) = {Node}.
The attributes corresponding to process identifiers are
treated as variables. We equate the variables of such a leaf
node, for instance A, with the values obtained by synthesis
for the root node "Process_def" corresponding to the same
process identifier A. If the equation "SP(A) = SP(A) L X"
holds, then "SP(A) = X" is obtained as the solution. For
the process A in Fig. 3, the attribute SP(A), EP(A) and
AP(A) are treated as variables. We find the equations
"SP(A) = {1}", "EP(A) = EP(A) U {3}" and "AP(A) =
AP(A) U {1,2,3}". Therefore, the solutions are "SP(A) =
{1}", "EP(A) = {3}" and "AP(A) = {1,2,3}". These
attributes are used to determine which nodes need to
synchronize their events.

3.2.2 Basic idea of Derivation
(1) The sequential execution ";" and ">>" .

For a behavior expression of the form "a! ; B", we
assume that the node "i" must send some synchronization
messages to the Starting Places of "B" after "al” is
executed, and that the nodes belonging to the Starting
Places of "B" must receive these synchronization messages
before any event of "B" is executed. For example, for the
behavior expression "al ; b2 ; cl ; exit", we derive the
following protocol specifications (here, "m1" and "m2"
represent the synchronization messages).

Node 1:al;so(my); ra(m2); cl; exit

Node2: ry(m]); b2; s1(mp); exit

218

//\

process

The node number
for this node "Par"

\

@ Par/

@ Choice

(@e

/// hN

@ Procee_Def

= e

@Seq\

|
Par

See the table
described below
for the attributes
of these nodes

endproc

Choice ~

\
A
N

A Y

|\@ \\\ read/ \;\eq@)
\\

TN

I | \‘\ write” ; exit
@Seq Choice VSommmmmmm e 4
d//\S Seq

reas 5 eq
push? ; A pop2 ; Seq

AR

write 3

7 exit

process A :=(readl ; push2 ; A >> pop2 ; write3 ;exit)
[1readl ; write3 ; exit endproc

Node # SP EP AP
Lo Lo Lo f3L {123}
38 . [U (P 2 I N € T) I
I SO I o B8 _{L3)

37 {3} {3} {3}

Fig. 3: Syntax Tree of Process A and Attribute Evaluation

For a behavior expression of the form "B >> B2", we

assume that the nodes belonging to the Ending Places of -

"B1" must send some synchronization messages to the
Starting Places of "B2" after the last event of "B1" is
executed, and that the nodes belonging to the Starting
Places of "B2" must receive these synchronization
messages before any event of "B2" is executed.
(2) Non-deterministic choice of alternatives "[]"

Suppose that the behavior expression "al ; b2; c3; exit
[1dl;e3;exit" is given. If the synchronization messages
described in the above (1) are added to this behavior
expression, then the following protocol specifications are
obtained.

Node 1:al;sp(my); exit
[d1; s3(m3); exit
Node2: ri(mi); b2; s3(mp); exit
[1 exit
Node 3 : r2(m2); ¢3; exit

0 ri(m3); e3; exit
There is no events in the right side of "[]" of the behavior
expression for the node 2 . Therefore, an empty alternative
of the form "B [] exit" is obtained as the protocol
specification of the node 2. If the right side of "[]" is

chosen at the node 1 by executing the event "d1", the node 2
cannot know it. Then, a wrong temporal ordering of the
execution of events may occur. This problem occurs when
the All Places for the behavior expressions of the both sides
of "[]" are different. Therefore, we assume that the node
executing the first event of any alternative must send
synchronization messages to all nodes of the choice
expressions which do not participate in the alternative. For
the above behavior expression "al 112 ;c3; exit [] dl;e
exit", we derive the following protocol specxficatlons
Node 1:al; s2(mi); exit

[0 d1; s3(m3); s2(ma); exit

Node2: ri(mj1); b2; s3(mp); exit
1 rj(mgq); exit
Node 3 : ra(m2); ¢3; exit

0 ri(m3); e3; exit
Here, "mq" is the synchronization messages to inform that
the right side of "[]" is chosen.
(3) Process invocation
Let us consider the process A described in Section 2.3.
Since the process A may be invoked recursnvely, it deﬁnes

the sequence (read!; push2)D; read!; write3; (pop?;

wn’tf,3)n for some n 20. If the process A is invoked and the
left side of choice operator "[]" is chosen, then a new
instance of A, say A', is activated. Again, if the left-side of
"[}" is chosen, then another instance of A, say A", is
activated. Suppose now that the right side of "[]" is chosen
for this new instance A", then the process A" will terminate
with the execution of the sequence "read!; write3; exit”.
After A" terminates, the sequence "pop2; write3" will be
executed and A’ will also terminate. Then, the process A
will be reactivated, and the sequence "pop2; write3" will be
again executed (see Fig. 2).

219

It is natural to assume that all nodes in a process should
synchronize whenever the process is activated. Therefore,

for a behavior expression of the form "al; P", we assume

that after "al" is executed, the node "i" must send some
synchronization messages to the All Places of "P". In the
protocol specifications described in Section 3.1, the node 2
sends synchronization messages to the nodes 1 and 3 after

"w_n

"push2" is executed (see Fig. 2). Here, if a node "p" does
not belong the All Places of "P", then the process identifier
"P" is. replaced by "exit" in the derived protocol
specification for the node "p" ("exit" is an event
representing the successful termination of a process, and it

has no observational effects).

Table 2: Attribute Tp

Attribute Tp

(1) |Tp(Process_def)

"process” Proc_Id ":=" Tp(e) "endproc”

(2) Tp(e]) = Tp(Par) ">>" Synch_Leftp(Par.e;)

">>" Synch_Rightp(Par,ep) ">>" Ty(e))
(3) | = Tp(Par)
(4) |Ty(Par) = Tp(Choice) "I[" Selectp(event_subset) "]I" Tp(Pary)
(5) |Ty(Pary) = Tp(Choice) "HI" Tp(Parp)
(6) |Tp(Par) = Ty(Choice)

(7) | Tp(Choicey)

" Tp(Seq) ">>" Alternativep(Seq,Choice?) DI
"(" Tp(Choicep) ">>" Alternativep(Choice2,Seq) ")"

(8) |Tp(choice)

Ty(Seq)

(9) [Ty(Seqy)

Projp(Event_Id) e Synch_Leftp(Event_ld,Seqz) ">>"
Synch_Rightp(Event_Id,Seqy) ">>" Tp(Seqp) ")"

(10) |Ty(Seq) = Projp("Event_Id") "; exit"

(11) Tp(Seq) = Projp(Event_Id) N Proc_Syncth(Evem_Id,Proc_ld) ">>"
Proc_SynchRp(Event_Id,Proc_Id) ">>" Proc_Projp(Proc_Id))"

(12) [Ty = ¢ Tye))"

Table 3: Functions Used in Attribute Tp

Synch_Leftp (e1.e2)

= if(p€ EP(e1)) then

send ((SP(ep) - {p}).N(e1))
else "empty” endif

Synch_Rightp (e1.e2)

o= if (p€ SP(e2)) then

receive ((EP(e1) - {p}), N(e1))
else "empty” endif

Proc_SynchLp (e1.e2)

‘= if(pe EP(ep)) then

send ((AP(e2) - {p}), N(e1))
else "empty” endif

Proc_Syncth (e1.€2)

if (p € AP(e2)) then
receive ((EP(e1) - (p}), N(e1))
else "empty” endif

Selectp (set)

1= if set = {} then {}

else if (set = {e}set2 and place(e) = p) then
(e) U Selectp(set2)
else Selectp(setZ) endif
endif

Projp(e)

if (p =place(e)) then e else "empty” endif

Proc_Projp(e)

nju

if (p € AP(e)) then e else "exit" endif

Alternativep (e1,e2)

if (p € SP(eq)) then
send ((AP(e2)-AP(e1)),N(e1))
else if (p € (AP(e2) - AP(e1))) then
receive (SP(e1),N(e1))
else "empty” endif
endif

send (P,N)

= if P = {) then "empty"

else if P = {i,j,...k} then "(" sj(N) “;exit” "lil .. II" sp(N) ";exit)" endif
endif

receive(P,N)

= if P = {} then "empty"

else if P = {i,j,...k} then "(rj(N) ";exit" "l ... W" rx(N) ";exit)" endif
endif

220

3.2.3 Restrictions for Derivation
In this paper, we treat only the service specifications
satisfying the following restrictions.

[Restrictions]

(R1) For each behavior expression of the form "B [] B2",
all starting interactions of "B1" and all starting
interactions of "B2" must be associated with the same
node "q". That is, SP(B1)=SP(B1)={q} must hold.

(R2) For each behavior expression of the form "B [] B2",
the set of Ending Places of "B1" and "B2" must be the
same.

(R3) For each behavior expression of the form "B Il B2"
or "B l[g1,..,gn]! B2", B1 and B2 must not invoke
the same process. That is, if a process P is invoked in
B1, then the process P must not be invoked in B2.

Restriction R1 simplifies the decision of which
alternative should be selected. Restriction R2 and R3 are
introduced in order to simplify the derivation algorithm
described in Section 3.3. For example, if R3 does not hold,
then the same processes P may be invoked in parallel and
the same events a! in P may be executed simultaneously.

For such a case, the synchronization messages sent after the

events al are executed must be different. This lets the

derivation algorithm more complex.

3.3 A Derivation Algorithm

In this section, we propose a derivation algorithm. The
algorithm is executed as follows :

Step 1: Construct the syntax tree Tree(Pk) of each process
definition "Pk := B" in a given service specification
L=<P1,P2,...,Pp> using the production rules in
Table 1.

Step 2: Calculate the attributes SP, EP and AP at each node
of the trees Tree(P1), Tree(P2) and Tree(Pn) using
the attribute evaluation rules in Table 1.

Step 3: For each node "p" in the distributed system, using
the attribute evaluation rule for the attribute "Tp"
which are defined in Tables 2 and 3, calculate the
attribute Tp at each node of the trees Tree(P1),
Tree(P2) and Tree(Pp).

Let Pspec(Pk,p) denote the value of the attribute Tp at the
root node of Tree(P). Then, the protocol specification "Lp"
for a node "p" is defined as follows :

Lp=<Pspec(P1 ,p),Pspec(P2,p),...Pspec(Pn,p)>

Since the attributes SP, EP, AP and Tp are all the
synthesized attributes, the values of the attributes are
calculated from the leaf nodes to the root node. The
attribute Tp in Step 3 is defined based on the idea described

Nodel -]

in Section 3.2.2. For example, the attribute evaluation rule
(9) in Table 2 represents a derivation algorithm for
expressions of the form "a! ; B". The function

Synch_Leftp represents that if the node "p" belongs to

EP(al), that is, if "p=i" holds, then the node "p" must send
some synchronization messages to the all nodes belonging
to SP(B) (see Table 3). The function Synch_Right
represents that if the node "p" belongs to SP(B), then it
must receive the synchronization message from the node "i"
(see Table 3).

In general, the different synchronization messages must
be used for the different synchronizations. For example, in
the protocol specifications in Section 3.1, different integers
such as 8, 14, and 17 are used as the synchronization
messages. We may say that the synchronization is defined
between the nonterminal symbols in the syntax tree for each
process definition of a given service specification.
Therefore, we give the node number (integer) "N(e)" to
each node "e" of the syntax tree, and use the node numbers
as the synchronization messages (see Table 3). By using
the above derivation algorithm, the protocol specifications in
Section 3.1 are derived from the service specification in
Section 2.3. The node numbers in Fig. 3 are used as the
synchronization messages for this example.

We have developed the program which derives the
protocol specifications from a given service
specification(20). By using this program, the protocol
specifications are derived automatically.

4. Simulator for Execution o¢f Protocol
Specifications

In order to observe the execution processes of LOTOS
programs, some LOTOS simulators have been
developed(4’22'24). These simulators can simulate the
execution of service specifications written in LOTOS. Our
LOTOS simulator, PROSPEX, can also simulate the
execution of protocol specifications(24). If N protocol
specifications are given, then N PROSPEX are used to
simulate them in parallel. We use each PROSPEX
interactively. PROSPEX reads a behavior expression "B"
written in LOTOS and shows which events are executable
for "B". The user chooses one executable event "e"” from
the candidates which PROSPEX shows. Then, PROSPEX
executes the event "e" and calculates which events are
executable after "e" is executed. The simulation is done by
repeating these operations. In PROSPEX, the

sending/receiving interactions can be executed automatically
without interactions from the user.

(b)

Fig. 4: Execution Processes of LOTOS Simulator PROSPEX

PROSPEX is executed on UNIX workstations, and it
shows these execution processes graphically on X-window.
For example, suppose that the protocol specification L] in
Section 3.1 is given. PROSPEX draws the syntax tree of
the behavior expression of the process "A" (see Fig. 4(a))
on X-window. Each leaf corresponds to either an event, an
sending/receiving interaction or a process. The dotted
rectangles corresponds to executable events. In Fig. 4(a),
two events "read 1" of the both sides of the choice operator
"[]" are executable. If the user cricks "read!" of the left side
of "[1", then the event is executed and the syntax tree in Fig.
4(a) is replaced by that in Fig. 4(b). This shows that the
event "readl" is executed and a new behavior expression,
say B', is obtained. For B', the sending interaction s2(14)
and receiving interaction r2(17) are executed automatically
without interactions from the user. Then, the behavior
expression B' is replaced by the process A. Since some
events in the process A are executable, the node
corresponding to A is replaced by the syntax tree of the
behavior expression of A automatically. The replaced
syntax tree is the same as that in Fig. 4(a). Even if the size
of a syntax tree becomes large, PROSPEX calculates a
suitable size for drawing the tree on the given window and
draws it.

5. Conclusion

In this paper, a derivation algorithm of protocol
specifications from a service specification is introduced. In
general, the protocol specifications derived from a service
specification are not simple even if a very simple service
specification such as the example described in Section 2.3 is
given. Therefore, our approach to derive protocol
specifications from a service specification is a good
approach to design distributed systems. For service
specifications written in Full LOTOS, the derivation
algorithm in Ref. (20) is useful. The formal proof of the
correctness of the derivation algorithm is a future work.

References

1)

2

3)

1C))

&)

6

)

®

®

ISO : "Information Processing System - Open Systems
Interconnection -LOTOS- A Formal Description
Technique based on the Temporal Ordering of
Observational Behaviour", IS 8807, 1989.

P. H. J. van Eijk, C.A. Vissers and M. Diaz : "The
Formal Description Technique LOTOS", North Holland,
1989.

T. Bolognesi and E. Brinskma : "Introduction to the ISO
Specification Language LOTOS", Computer Networks
and ISDN Systems, Vol. 14, No. 1, pp 25-59, 1987.

K. Takahashi, H. Kaminaga and N. Shiratori : "LOTOS
Features with Survey of Their Support Processing
Systems", J. IPS of Japan, Vol.31, No. 1, pp.35-46,
1990 (in Japanese).

ISO : "Information Processing System - Open Systems
Intgrconnection - Basic Reference Model", IS 7498,
1984,

K. Ohmaki and K. Futatugi : "Early Experience with a
Formal Description Technique : LOTOS", J. IPS of
Japan, Vol. 31, No. 10, pp.1400-1413, 1990 (in
Japanese).

C. Vissers and L. Logrippo : "The Importance of the
Concept of Service in the Design of Data
Communications Protocols”, Proceedings of the Fifth
IFIP Workshop on Protocol Specification, Verification
and Testing, North Holland, pp.3-17,1985.

R. Probert and K. Saleh : "Synthesis of Communication
Protocols : Survey and Assessment”, IEEE Trans.
Comput., Vol. 40, No. 4, pp.468-476, 1991.

P. Zafiropulo, C.H. West, H. Rudin, D.D. Cowan and
D. Brand : "Towards Analyzing and Synthesizing
Protocols”, IEEE Trans. Commun., Vol.- COM-28,
No.4, pp.651-661, 1980.

(10)

(11)

(12)

13)

(14

15)

(16)

an

(18)

(19)

(20

1)

(22)

(23)

249

(25)

(26)

221

C.V. Ramamoorthy, S. T. Dong and Y. Usuda : "An
Implementation of an Automated Protocol Synthesizer
(APS) and its Application to the X.21 Protocol", IEEE
T;ans. Software Eng., Vol. SE-11, No.9, pp. 886-908,
1985.
C.V., Ramamoorthy, Y. Yaw, R. Aggarwal and J. Song
"Synthesis of Two-Party Error-Recoverable
Protocols", Proceedings of the ACM SIGCOMM '86
Symposium, pp.227-235, 1986.
P. Merlin and G. von Bochmann : "On the Construction
of Submodule Specifications and Communication
Protocols”, ACM Trans. Program. Lang. & Syst.,
No.1, pp.1-25, 1983.
M. Gouda and Y. Yu : "Synthesis of Communicating
Finite State Machines with Guaranteed Progress”, IEEE
Trans. Commun., Vol. COM-32, No. 7, pp.779-788,
1984.
P. M. Chu and M.T. Liu : "Protocol Synthesis in a State
Transition Model", Proceedings IEEE COMPSAC' 88,
pp- 505-512, 1988.
G. von Bochmann and R. Gotzhein : "Deriving Protocol
Specifications from Service Specifications”, Proceedings
of the ACM SIGCOMM '86 Symposium, Vermont,
USA, pp.148-156, 1986.
T. Higashino, T. Kimoto, K. Taniguchi and M. Mori :
"Synthesis of Protocol Machines from Service
Specification", Technical Report of IPS of Japan, 88-
SF-26-5, 1988 (in Japanese).
R. Gotzhein and G. von Bochmann : "Deriving Protocol
Specifications from Service Specifications Including
Parameters", ACM Trans. Comput. Syst., Vol. 8, No.
4, pp.253-283, 1990.
F. Khendek, G. von Bochmann and C. Kant : "New
results on deriving protocol specifications from services
specifications”, Proceedings of the ACM
SIGCOMM'89, pp.136-145, 1989.
C. Kant, T. Higashino and G. von Bochmann :
"Deriving Protocol Specifications from Service
Specifications Written in Basic LOTOS", (submitted for
publications).
T. Higashino, R. Katou, K. Yasumoto and K.
Taniguchi: "Deriving Protocol Specifications from
Service Specification Written in LOTOS with Data
Parameters", Technical Report of IEICE of Japan, IN91-
111, 1991 (in Japanese).
R. Langerak : "Decomposition of Functionality; a
Correctness-Preserving LOTOS Transformation”,
Proceedings of the Tenth International IFIP WG 6.1
Symposium on Protocol Specification, Testing and
Verification, North Holland, pp.229-242, 1990.
J. Tretmans : "Hippo : A LOTOS Simulator”, The
Formal Description Technique LOTOS, North-Holland,
pp-391-396, 1989.
R. Guillemot, M. Haj-Hussein and L. Logrippo :
"Executing Large LOTOS Specifications”, Proceedings
of the Eighth International IFIP WG 6.1 Symposium on
Protocol Specification, Testing and Verification, North
Holland, pp.399-410, 1988.
K. Yasumoto, T. Higashino and K. Taniguchi :
"Execution of Protocol Specifications Written in
LOTOS", Technical Report of IEICE of Japan, IN91-
112, 1991 (in Japanese).
H. Ehrig and B. Mahr : "Fundamentals of Algebraic
Specification 1", EATCS Monographs on Theoretical
Computer Science, Vol. 6, Springer-Verlag, 1985.
A. Aho, R. Sethi and J. D. Ullman : "Compilers
Principles, Techniques and Tools", Addison-Wesley,
1985.

