goooboooogn
0 7900 19920 269-275

269

Logspace Bounded Alternation and
Logical Query Programs

Yasuo OKABE (f#f %5)* and Takao TSUDA (#H 2£:%)

Department of Information Science, Kyoto University

Abstract

We argue on the computational complexity of function-free Horn clause query programs, called
logical query programs. We show a close relation ship between logical query programs and logspace
bounded alternating Turing machines. First we present an alternating logspace algorithm for com-
puting a logical query program. The “fringe complexity” of the program corresponds to the tree-size
complexity of the ATM. Next we give a %ogical query program which simulates logspace bounded
alternation, We also show that linear logical query programs are closely related to logspace bounded
nondeterministic Turing machines. As a result, well-known complexity classes such as N L, LOGCFL,
C, and P are characterized via logical query programs. A main result is that the basic theorem
problem of linear logical query programs is N L-complete. This suggests that many results of com-
plexity theory can be translated in terms of logic programs. As an example, we show that the

negation ¢ a linear program is also linear, by applying Immerman’s theorem.

1 Introduction

Logic programs have been attracting considerable attention as languages for “fifth generation computers”.
Programs without function symbols, called logical query programs or Datalog programs, are regarded
as particularly important because of its simplicity. They are also utilized as a query language for
deductive databases. In this paper, we investigate theoretically the computational complexity of logical
query programs, and closely relate it to those of conventional computation models, especially, that of
alternating Turing machines.

Shapiro [8] first showed that there is a close relationship between logic programs and alternating
Turing machines (ATMs) [2]. He regarded a logic program (with function symbols) as an ATM, which is
given a initial goal as an input string, He introduced three complexity measures for logic programs, i.e.,
depth complexity, goal-size complexity, and length complexity, and showed that these three correspond
to, respectively, time complexity, space complexity, and tree-size complexity [6], of ATMs. Okabe et al.
[5] generalized the relation to ATMs with sublinear time and space complexity (see also [9]). They show a
hierarchy of well-known complexity classes of problems with respect to the complexity of logic programs.
These results are, however, not applicable to logic query programs directly, since Shapiro’s (or even
Okabe-et-al.’s) simulation cannot distinguish IDB (Intensional Database) rules and EDB (Extensional
Database) facts. An EDB instance of logical query programs must be regarded rather as an input than
as a part of a program. ‘

Formalization of logic query programs as a theoretical model of computation was given by Ullman
et al. [11][12]). They adopted the size of “fringes” of a derivation as the complexity measure, showed a
PRAM algorithm which computes the interpretation of a logic query program, and showed that programs
with the polynomial fringe property is in NC, i.e., can be computed in time (log 2)°) by a PRAM.
They also show that some logic query programs are logspace complete for P (P-complete).

We here show a new characterization of logical query programs as logspace bounded alternating
Turing machines. First we present an alternating logspace algorithm for computing a logical query
program. The fringe complexity of the program is related to the tree-size complexity of an ATM.
Next we give a logical query program which simulates any logspace bounded ATM. From the fact that
P = ALOGSPACE, we have got another proof of the P-completeness.

We also show that linear logical query programs are closely related to logspace bounded nondeter-
ministic Turing machines. This suggests us the limit of the power of linear recursions. As a corollary, it
is proved that linear logical query program is logspace complete for N (NLOGSPACE)

Well-known complexity classes such as N'L, LOGCFL, NC, and P are characterized via logical query
programs. The class of problems computable by logical query programs is just P [11], while general logic
programs with function symbols have as much power as that of Turing machines. We can now say that
LOGCFL, viz., the class of languages logspace reducible to context free languages (CFL), is equivalent to
the class of problems computable by logical query programs with the polynomial fringe property. This
is a new characterization of CFL via logic programs. Similarly, N'C is the class of programs with the
superpolynomial fringe property, and 'L is the class of linear programs.

*E-mail: okabe@kuis.kyoto-u.ac;jp

270

Many results of complexity theory obtained on conventional models can be translated in terms of
logic programs. We show one example of such applications. From Immerman’s theorem, “A'L is closed
}mdler cl_omplementation” [4] (see also [10]), it follows immediately that the negation of a linear program
is also linear.

In the next section, we will give several basic definitions on alternating Turing machines and the
complexity classes of problems. In Section 3, we will describe a formal definition of logical query programs
as a computation model. Simulations between logical query programs and logspace bounded alternating
Turing machines will be presented in Section 4. In Section 5, classes of languages recognized by logical
query programs will be considered.

2 Basic Concepts
2.1 Alternating Turing Machines

We assume familiarity with deterministic and nondeterministic Turing machines (DTMs and NTMs,
respectively). We also adopt alternating Turing machines as our computation models.

ATMs are a generalization of nondeterministic Turing Machines described informally as follows. The
states of an ATM are partitioned into “existential” and “universal” states. As with NTMs, we can
view a computation of an ATM as a tree of configurations!. The full computation tree of an ATM
M on a string w is a (possibly infinite) tree whose nodes are labeled with configurations of M on w,
such that the descendants of any non-leaf node includes all of the successors of that configuration. A
computation tree of M is a subtree of the full computation tree such that the descendants of any non-leaf
node labeled by a universal configuration includes all of the successors of that configuration, and the
descendants of any non-leaf node labeled by an existential configuration includes one of the successors of
that configuration. An accepting computation tree is a finite computation tree of which all leaf nodes are
accepting configurations. M accepis w if and only if there exists an accepting computation tree whose
root node is labeled with the initial configuration of M on w. Formal definitions of ATMs are found in
Chandra et al.[2].

Off-line ATMs, which have a read-only input tape and some work tapes, are defined similarly to
off-line DTMs or off-line NTMs. A “random access input” variation of ATMs introduced by Ruzzo[6] is
called indezing ATMs. We usually utilize off-line machines in our discussions. An ATM operates in ttme
T(n) (tree-size Z(n)) if for all acceptable input strings of length n, there is an accepting computation
tree of heigl - < T'(n) (respectively, size < Z(n)). An ATM operates in space S(n) if for all acceptable
inputs there is an accepting computation tree, each of whose nodes are labeled by a configuration using
space < S(n).

2.2 Hierarchy of Complexity Classes

We are mostly concerned with the class of problems solvable very rapidly by a parallel computer with
feasible number of processors, i.e., problems which can be computed by a uniform circuit[7] with depth
O((log n)¥) and polynomial size. Such a class is commonly called N'C. NC* is the set of all prob-
lems solvable by a unform circuit family with depth complexity O((logn)*) and size complexity n°(),

NCE U M C*. Ruzzo showed a close relationship between uniform combinational circuits and indexing
alternating Turing machines [7].

Proposition 1 (Ruzzo) NCF consists of all problems solvable by indezing ATMs in time O((log n)¥)
and space O(logn), where n is the length of the input.

Many known problems in NC are in some subclasses of NC? LOGCFL is one of the most ones.
LOGCFL consists of all sets which are logspace reducible to the class of context free languages. (Here
A is logspace reducible to B iff there is some logspace computable function f such that for all z, z € A
iff f(z) € B.) Ruzzo characterized LOGCFL as the class of problems recognizable by tree-size bounded
ATMs [6].

Proposition 2 (Ruzzo) LOGCFL consists of all problems solvable by ATMs in space O(logn) and
tree-size n9), .

AC* is the class of all problems solvable by an ATM in space O(logn) and alternation depth

O((logn)*). It is known that NC¥ C AC* C NCF¥*! for any k = 1,2,... LOGCFL C AC!, and

hence C NC?.
Hierarchy of these classes are

Regular Sets C NC' CDLCNLC LOGCFLC AC* CNC2C...CNCCP
Here DL (DLOGSPACE) is the class solvable by a DTM in space O(log n), N L (NLOGSPACE) is the
class solvable by an NTM in space O(logn), and P (PTIME) is the class solvable by a DTM in time
n°M) [3]. :

!The configuration of a Turing machine is the contents of its work tapes, the positions of its heads, and its state.

3 Logical Query Programs and the Basic Theorem Problem

We are concerned with function-free Horn logic programs. The formal definition is given as follows.

Let V be a finite set of variables, and let C' be a countable set of constants. A function-free term is
either a variable or a constant. We abbreviate it to just a “term” hereafter. Let T be the set of all terms
on VUC. A substitution is a function § : V — T. Applying a substitution § to a term ¢, we represent
the resulting term by tf. A substitution § is called a unifier of two terms t; and ¢5 if {10 = t28. The two
terms is said to be unifiable via 4. .

An atom is a formula written as p(ty, ...,,), where p is a predicate symbol with arity n (n > 0), and
the arguments 1, ..., t, are terms. Let A is an atom and let By,...,Bx (k > 0) be zero or more atoms.

A formula
A «— By, ..., B;

is called a Horn clause. The left side of it means the conjunction of B;’s. A is called the head and
By, ..., By are called subgoals. A clause which has no subgoal is written just as “4 — ”. A ruleis a Horn
clause composed of atoms whose arguments are variables. A basic logical query program is a finite set of
rules. We may often call it a “logic program” or a “program” for short.
A conjunction of atoms
Al, ...,Am (m 2 0)

is called a goal clause, or simply a goal Variable-free goals are said to be ground. When m =1, “A;” is
called an unit goal. When m = 0, we denote it “0” and call it an emply goal

Let Py be a basic logical query program. EDB(Eztensional Database) predicates of P are predicate
symbols that appear only in subgoals of rules in P;. Predicate symbols that appear in some rule heads
are called IDB(Intensional Database) predicates. We use {po,p1, ...} to denote IDB predicates, {go, q1, ...}
to denote EDB predicates, and {ro,1,...} to denote predicates that may be either IDB or EDB.

An EDB fact of Py is a clause which has no subgoal and has a head with an EDB predicate and
constants as its arguments. An EDB instance is a finite set of EDB facts. A pair of a ground unit goal
with an IDB predicate and an EDB instance of a program is considered as an input of it.

Let Pg be an EDB instance of a program Py, viz., a set of EDB facts {g;, (¢1) «, ..., gjn(En) <}

PY¥pP,uPs. (Here ¢; denotes a vector of constants.) Let N = “Aj,...,Am” (m > 1) be a goal, and

let C = “A « By, ..., Bt” (k 2 0) be a clause in P (either a rule in Py or a fact in Pg) such that A and
A; is unifiable via a substitution @ for some i € [1,m]. Then

N' = (AI; -")A!'—l) Bly e BkyAl'+1) ey Am)o

is derived from N and C with substitution §, |

A derivation of Ny from P = P;UPg is a (possibly infinite) sequence of triples (N;, C;, 6;),1 = 0,1, ...,
such that N; is a goal, C; is a clause in P, 6; 1s a substitution, and N;4; is derived from N; and C; with
substitution 6;, for all i > 0. A derivation of Ny is called a refutation of Ny from P if N, is the empty
goal for some £ > 0. Such a derivation is finite and of length £. If there exists a refutation of a goal Ny
from P, we say that P solves Ny. » ‘

The basic *heorem problem of a program P; for an input, viz., a ground unit goal Ny = p;() and
an EDB instauce Pg, is the question, “Does Py U Pg solves Ny?” We define the size of an input to be
n, viz., the number of EDB facts in the input.

Let R be a refutation of Ny from P. The refutation tree of R is a tree of unit goals defined as follows:

1. The root node of the tree is the initial goal Ng.
2. Leaves are empty goals.

3. In each step of derivation, (N;,C;i,6;), if a unit goal A;; in N; is unified with A;, the head of
Ci = “A; « By, ..., By”, via 6;, then the node A;; has directed edges to all B;6;’s.

The fringe of a refutation tree is the set of its leaves. The fringe-size is the number of the leaves. Note
that the fringe-size of a refutation is always less than the length of it.

We say that a logical query program Py is of fringe complezity L(n) (relative to a class of EDB’s D)
if any provable input (in class D) of size n has a refutation whose fringe-size is < L(n), from P; U Pg.

4 Logical Query Programs and Alternating Turing Machines
4.1 An ATM Algorithm for Logical Query Programs

We will describe an algorithm for simulating a logical query program by a logspace bounded alternating
Turing machine. This is based on Shapiro’s naive simulation [8].

Roughly speaking, a logical query program is almost an ATM as is. Rules in the program corresponds
to the next move relation of it. An init.ia? oal and an EDB instance is regarded as an input string. The
nondeterministic choice of a clause whose iead unified with a goal corresponds to an existential branch
of an ATM. The simultaneous satisfaction of the subgoals in the rule corresponds a universal branch.

271

272

The most important difference is that, conjunctive goals share variables, while the computations of
universally forked branches of an ATM must be done independently. The key idea of Shapiro’s simulation
is that the final value of a shared variable is “guessed” immediately, using existential branches, before
the subgoals are forked universally. Instead of the most general unifier, a ground unifying substitution,
which replace ill variables in the rule into constants, is chosen.

Let P; be a logical query program. We first show how to encode an input, viz., an initial goal p;(¢o)
and an EDB instance Pg = {gj,(¢1) «,...,4;,(¢s) <} into an input tape string. Since the number of
IDB predicates and EDB predicates occur in Py is finite and independent from the input length, we can
utilize the predicate symbols as input symbols. The constants which occur in either the initial goal or the
EDB facts are numbered in some appropriate order (e.g. the order of first occurrence), and represented
in binary. This mapping of constants to integers is consistent because the basic theorem problem is
invariant through any permutation of constants.

For example, an initial goal p;(&;) and an EDB instance

{ql(bia) At} qz(cx c) — 0 (C, b) "‘}
is directly mapped on the input tape as ’
o (0); @ (1,10),¢(11,11),q(11,1)s#

Here @ , , , [m , , , and E are tape symbols. The number of distinct

constants is at most n, so the indices are encoded in at most {log, n] bits. Thus the length of the input
string is O(nlog n).
Consider the algorithm of an ATM M below:
Algorithm 1
iven: a basic logical query program P;
Input: an initial goal p.‘}ﬁéoi'and an EDB instance Pz = {¢;j, (&1) <, ..., gin (CN) —};
Output: whether P; UP g proves p;(%o) or not;

procedure ASK(¢(¢) : ¢ is an EDB predicate and ¢ is a constant vector);
in
if ¢(¢) ¢ Py then reject

end; -
procedure DERIVE(r(¢) : a unit goal);
begin
if 7 is an EDB predicates then
ASK(r(2));
else

begin
%hoose a rule “A — By, ..., By” in Py; (existentially)
Guess a ground substitution 6; (existentially)
if A6 # r(c) then reject;
for Vi € {1,..., k} do (universally)
DERIVE(Bif);
end;
end
begin {of the main routine}
gay “YES” if DERIVE(pi(&)) is successfully done;
end.

The ATM M stores Py in its finite control, and at its initial state it reads the initial goal p;(co) written
on the leftmost of the input tape. At each step of the simulation, it checks whether the current unit
goal written on the work tape is composed of a EDB predicate or not. If so, it reads the input tape
and checks whether the current goal is in the EDB instance. If not, it existentially chooses a rule in Py,
and writes on its work tape a substitution 6. Next it computes Ad, verifies if A9 = (), and erase the
current goal. Then it universally chooses all subgoals B;’s in the rule and recursively dose the same for
the new goal B;# for each i.

During th- simulation, each goal is kept as a string, whose length is at most O(logn), on the work
tape. The number of variables appears in a rule is at most constant, and therefore the substitution
6 can be encoded in a string of length O(log n). Thus the ATM M uses space O(logn). Each call of
DERIVE is done in time O(log n) and each call of ASK is done in time O(nlogn). For a derivation of
length L and the fringe-size F, the corresponding simulation is done with space O(logn) and tree-size
O(Llogn+ Fnlogn).

We must reminds the relation between the length and the fringe-size of a refutation [11].

Lemma 1 (Ullman et al.) Every provable goal of a logical query program has a refulation tree whose
depth is polynomial in the size of the EDB

The length of a tight refutation is at most polynomial times of the fringe-size. Thus we may say
L=F . .n°%, We now have:

Theorem 1 For every logical query program P of fringe complezity F(n), there exists an off-line ATM
M of space complezity O(logn) and tree-size complezity F(n)- n°M), such that M accepts an input (an
initial goal and an EDB instance) iff the union of the EDB instance and Py solves the initial goal

4.2 Programs simulating ATMs

Let us show the inverse of Theoreml, i.e., how a logspace bounded alternation is simulated by a basic
logical query program.

One problem on the simulation is representation of the input string as an EDB instance. Since an
EDB instance is an unordered set of facts, there seems no direct way to express naturally the symbol at
each position on the input tape. For example, if one prepared an EDB instance

{ij(l) “ qj2(2) Ty an(n) - }

(here {1,2,...,n} are constants representing the positions on the input tape) for an input string of length l

n, “qj;4j;---4i, , the program would not know that position 1 and position 2 is contiguous. Instead,
Ullman et al. defined a class of EDB instances of the form

{g,(0,1) <, ¢;,(1,2) <, ..gju(n - 1,n) <}

and restrict EDB instances in such a class.) . .
We adopt an EDB fact which represent, not a symbol on the input string, but a one-step transition

from a configuration of the ATM to another. Such EDB facts are computed from the input string and

the description (the next-move relation) of the ATM by preprocessing. A string on the work tape is

embedded in a constant, . .) i . .
Let M be a logspace bounded alternating Turing machine. Without loss of generality, we may assume

that the number of branches on every universal state is just 2. We may also assume that the symbols
on auxiliary tape are “1”, the blank symbol “0”, “4” (1 at the head position) and “0” (0 at the head
position).

Let S be the set of states of M. let fs : S — N be a numbering of S, where N is the set of

nonnegative integers. We also define a numbering of I‘déf{o, 1,0,1}, fr: T —Nas

fr\(O) =0, f[‘(i) =1, fp(g) =2, fp(l) =3

Let A be the set of all configurations of M There exists a constant k such that, for any input string of
length n, M uses at most k([log,n| — 1). A configuration of M, say «, is specified by a three tuple of
the current state ¢, the position of the input head %, and the contents (the string and the head position)
of the work tape “aga;...ag((iog,n)-1)", @j € I'. Define a function far : A — N as

def k(llogs n)-1) .
fu(@)E fs(q) + 2N SN (i 4 2fosn] K7 fr(a;)2%)
j=0
We define an EDB instance EDys(w), which describes all of the one-step transition of configurations
of M on w. EDps(w) is constructed as follows.
1. The initial value of EDps(w) is @ (the empty set).

2. If there is a universal branch from a universal configuration & to both of a configuration 8 and
configuration ¥ then add an EDB fact “ga(fa(a), far(B), fu(7)) < to EDpr(w).

3. If there is a branch from a existential configuration « to a configuration 8 then add an EDB fact
“av(Fm(a), fu(B)) < to EDy(w).

4. For every accepting configuration § add an EDB fact “q1(far(8)) < to EDpy(w).

Lemma 2 For any logspace bounded ATM M, the compuiation of the EDB instance EDM(ﬁz) from
input string w can be done by a (deterministic} logspace transducer.

The lemma follows immediately from the fact that every possible configuration of M on w is indexed

uniquely by a number of O(log n) bits. Note that the size of EDps(w) (the number of the facts) is noW),
Finally, we define the following three IDB rules as the program IDys for M:

P(X) - qA(X:Y) Z),p(Y),p(Z)
p(X) —qv(X,Y), p(X)
p(X) — q1(X)
Initial goal is set as p(cp), where ¢o is an integer which represents the initial configuration of M on
w. Consider a derivation of p(cg) with IDpy U EDpy(w). Obviously, each derivation by an EDB fact is

performed for exactly one move of M, Thus, a refutation of p(co) exists iff an acceptable computation
of M on w exis . If the tree-size of the computation is Z(n), the fringe-size of the refutation is Z(n).

Theorem 2 For any logspace bounded ATM M, there exisis a basic logical query program IDys , and a
logspace transducer EDps which computes an EDB-of IDyy, such that ATM M accepts an input string
w of length n with tree-size Z(n) iff IDy and EDp(w) solves p(co) with fringe-size O(Z(n)).

273

274

4.3 Linear Programs and Nondeterministic Turing Machines

A linear logical query program is one in which each rule has at most one IDB subgoal. It has been
discovered independently by many people that the basic theorem problem of linear programs is in NC
(see [11]). We show that in fact any linear program is in A'C. The simulation algorithm is almost similar
to what we have shown in Section 4.1. Instead of forking subgoals universally, the machine first processes
all EDB subgoals deterministicly, and then recursively derives at most one IDB subgoal.

CIonsider Algorithm 1. Since any rule has at most one IDB sub goal, we can rewrite “procedure
DERIVE” as:

procedure DERIVE(r(c} : a unit goal);
i

begin
& Choose a rule “A « B, By, ..., By” in Py; (existentially)
éAssume that only B is an IDB subgoal.}
uess a ground substitution 6; (existentially)
if Af # r(€) then reject;
for i :=1 to k do (sequentially)
ASK(Bif);-
DERIVE(B8);
end

No universal branch is required in it, and therefore, the computation can be done by a nondeterministic
Turing machine.

Theorem 3 For every linear logical query program P, there exists an off-line NTM M of space com-
plezity O(log' *, such that M accepts an input (an initial goal and an EDB instance) iff the union of
the EDB instancé and Py solves the goal.

_ Similar result can also be proved for piecewise linear programs, in which each rule has at most one
recursive subgoal. '
Next we show that the inverse of Theorem 3 also holds.

Theorem 4 For any logspace bounded NTM M, there ezisls an linear logical query program IDps, and
a logspace transducer EDyr which computes an EDB of IDyy, such that ATM M accepts an input siring
w of length n iff IDy and EDp(w) solves p(eo).

Proof: NTMs are regarded as ATM without universal states. The proof of Theorem 2 can be applied to
NTM M. We can remove the first rule in DBy, since the EDB predicate ga never occurs in the EDB
instance EDjs. Thus the programs becomes

p(X) = o (X,Y),p(X)

p(X) = q1(X)
which is linear. Il

5 Classification of Logical Query Programs

Ullman et al. proved P-completeness of logical query programs, by Reduction from Monotone Circuit
Value Problem [11]. We can show a more direct proof using the resulés of Section 4.

Corollary 1 (Ullman et al.) The basic theorem problem of logical query programs is P-complete.

Proof: Theorem 1 and Theorem 2 imply that the basic theorem problem of logical query programs is
ALOGSPACE-complete. From ALOGSPACE= P [2], the corollary follows. M

Similar discussion for linear programs using Theorem 3 and Theorem 4 leads A L-completeness of
linear logical query programs.

Corollary 2 The basic theorem problem of linear logical query programs is N'L-complete.

A logical query program has the polynomial fringe property (relative to D) if the fringe complexity
of it (relative to D) is n®()). The Polynomial Fringe Theorem is stated as:
Proposition 3 (Ullman et.al [11]) A basic logic program wilh the polynomial fringe property is in
NC (precisely in NC?).
We can improve it into the following strongest form from Theorem 1 and Theorem 2. A logical query
program has the superpolynomial fringe property iff its fringe complexity is 2(\8)2

Corollary 3 The basic theorem problem of a basic logical query program relative to a class of. EDB’s
with the polynomial fringe property (with the superpolynomial fringe property) is LOGCFL-complete (re-
spectively, N'C-complete).

Proof: Tt follows immediately from LOGCFL = ASPSZ(logn,n%1)) and NC = ASPSZ(log n, 2006™°%)),

where ASPSZ(S(n); Z(n)) denotes languages accepted by ATMs operates in space O(S(n)) and tree-size
O(Z(n)) simultaneously. ll

Classification of logical query programs is characterized via the hierarchy of subclasses of P. We
can apply many results on the theory of computational complexity, obtained on conventional models,
to logical query programs. For example, we can show that the negation of any linear program is also
computable by a linear program, by applying Immerman’s theorem:

Proposition 4 (Immerman [4]) NL is closed under complementation.

Corollary 4 For any linear logical query program Py, there exists a linear logical query program P}
and a logspace transducer fP: such that a ground goal A is not provable from Py and Pg, iff fP,(A) is

provable from P} and fP,(PE).

Similarly, we can show that the negation of every logical query program (relative to a class of EDB’s)
with polynomial fringe property is computable by a logical query program relative to some class of EDB’s
with polynomial fringe property. This follows from the fact that LOGCFL is closed under complementa-
tion [1].

6 Concluding Remarks

We have shown a new formalization of logical query languages as a theoretical model of computation, and
have shown a relationship between logical query programs and tree-size bounded alternation. The fringe
complexity of a program have been related to the tree-size of the corresponding ATM. Many well-known
classes of problems is newly characterized via logic query programs.

We have shown that a program which have the polynomial fringe property respect to a certain EDB is
LOGCFL-complete, but it is still open if there is a program, with the polynomial fringe property respect
to all possible EDB facts, that can simulate LOGCFL computation. One important difference of logical
query programs from ATMs is that logical query programs cannot even count numbers if they have no

default facts.
The program we have shown in Section 4.2 may be a little complicated, since it requires a precom-

putation by logspace transducer. More direct proof is also possible if we utilize alternating multihead
finite automata instead of ATMs.

References

[1] A. Borodin, S. A. Cook, P. W, Dymond, W. L.Ruzzo band M. Tompa, “Two Applications of Complementation via
Inductive Counting”, Tech. Report, IBM T. J. Watson Research Center, Hampton, VA (1987).

[2] A.K.Chandra, D C. Kozen and L. J. Stockmeyer: “Alternation”, Journal of the Association for Computer Machinery,
28-1, 114-133 (J&n. 1981).

[3]-S. A. Cook: A Taxonomy of Problems with Fast Parallel Algorithms”, Information and Control, 64, 2-22 (1985).

[4] N.Immerman: “Nondeterministic Space Is Closed under Complementation”, SIAM J. Comput., 17-5, 935-938 (Oct.
1988).

{5] Y. Okabe and S. Yajima: “Parallel Computational Complexity of Logic Programs and Alternating Turing Machines”
Proc. of the International Conference on Fifth Generation Computer Science 1988, 356-363 (1988).

[6] W. L. Ruzzo: “Tree-Size Bounded Alternation”, Journal of Computer and System Sciences, 21, 218-235 (1980).
[7] W. L. Ruzzo: “On Uniform Circuit Complexity” Journal of Computer and System Sciences, 22, 365-383 (1981).

[8] E.Y. Shapiro: “Alternation and the Computational Complexity of Logic Programs”, J. Logic Programming, 1, 19-33
(1984).

[9] P.Stépanek and O. Stépankova: “Logic Programs and Alternation”, 8rd International Conference on Logic Program-
ming, Lecture Notes in Computer Science, 225, 99-106 (1986).

[10] R. Szelepcsényi: “The Method of Forcing for Nondeterministic Automata”, Bulletin of EATCS, 33, 96-100 (Oct.
1987).

[11] ZI D. Ullman and A. van Gelder: “Parallel Complexity of Logical Query Programs", 27th IEEE FOCS, 438-454
1986).

[12] J. D. Ullman and A. van Gelder: “Parallel Complexity of Logical Query Programs”, Algorithmica, 3, 5—42 (1988).

275

