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On 6-dimensional S! symplectic Hamiltonian manifolds

with Euler number 4.

Kazusut AHARA(f 5 —3), Krvyosut OHBA (Ki57%)

1. Introduction

Let (M,w) be a compact connected symplectic manifold. Suppose
that a Lie group G acts on M and there exists a moment map p: M —
Lie(G)*. Here Lie(G)* is a dual of a Lie algebra of G. (See [AB].)
There has been much interest in the moment map. In 4-dimensional
case, diffeo-types of all S'-symplectic manifolds with moment maps are
classified as S?-almost complex manifolds. (See [AH], [Aul].) If M is an
Sl-symplectic manifold with moment map and the action is semi-free,
then Hattori [H2] shows that the cohomology ring of M is identified with
that of S? x --- x §2. If M is S'-symplectic and with moment map and
M has two components of fixed point set and one of them is isolated,
then Delzant [D] shows that M is diffeomorphic to CP", a complex
projective space. Takakura [T] defines a toral action on a moduli 9 of
flat connections on an SU; principal bundles over a certain 2-dimensional
V-manifold and for a symplectic structure on 9 he calculates its moment
map and consider the topology of it.

Suppose that the Lie group G is S'. If an S!'-symplectic manifold M
is simply connected then M has a moment map. Hence the condition

that M has a moment map g might not be so invalid. Moreover if the
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fixed point set M $' is discrete then p is a perfect Morse function. The
moment map y is valid to determine its cohomology ring and its diffeo-
type.

In this paper we consider a 6-dimensional S! symplectic manifold M
with momenf map p and assume that the fixed point set M* " is isolated
and the Euler number x(M) is 4. This is one of the simplest cases.
From the localization theorem (see [H1]) , if M5 is isolated then x(M)
is positive and even. It is easily shown that x(M) > 4. (See Lemma
2.4.) Ahara [Ah] classifies the S! actions around their fixed points for
S!-almost complex manifolds (M?®,J) with x(M) = 4, ¢}(M) # 0, and
the Todd genus Todd[M] = 1. We can apply this theorem and show a
classification theorem (see Theorem 2.10) in our case. Hattori pointed
out that the Wall’s theorem for 6-spin manifolds [Wa] implies that if M
is also spin then we can determine the diffeo-type of M. (See Theorem
2.11.)

In 4-dimensional case, diffeo-types of M are classified. We review
the methods of the classification. Ahara and Hattori [AH] show that
any critical point of y except the minimum point and the maximum
point is isolated and that both Morse index and Morse co-index are 2
at the point and they construct admissible chains. Audin [Aul] notices
that the inverse image p~!(a) for a general point a in R is a Seifert
3-manifold if it is not empty. She classifies M’s from the classification
theorem of Seifert 3-manifolds. In our 6 dimensional case we consider
4-cells determined from fixed points with Morse index 4 and determine
their topology and singularities.

There are exactly 4 fixed points { Py, P, P2, Ps} and we can take them
such that

Morse index of P; = 2i.
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We define a 4-cell F' by a closure of a stable manifold F*(P,), (which is
defined in section 2-2.)

We have the following theorems.

THEOREM 1.
F = Closure(F*(Py)) = F*(P,) U F*(P,) U F*(P3).

Here we remark that M = U}_;F*(P;) and F*(P;) is homeomorphic
to D82 (6 — 2j)-disk. This theorem gives a cellular structure of M.

THEOREM 2.

(1) If the action is included in type III of Theorem 2.10, then the
singular point set of F' is F*(Py) U F*(P3) =~ S2.

(2) If F is not singular at P, nor at Ps, then F is diffeomorphic to
CP? and M is diffeomorphic to CP3.

Finally the authors are very grateful to Akio Hattori and Yukio Ma-
tsumoto and Nariya Kawazumi for several useful comments and constant

encouragement.

2. Classification of the S! actions

2-1. 5! symplectic manifold with moment map.

DEFINITION 2.1. A quadruple (M,w, ¢, u) is an S! symplectic man-
ifold with moment map if

(1) M is a 2n dimensional compact connected smooth manifold,

(2) w is a symplectic form on M, that is, w is a closed 2-form and

w™ # 0 everywhere,
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(3) p: St x M — M is an effective S' action which preserves the
symplectic structure w, and

(4) p: M — R is a moment map, that is, du = 1(X)w, where X is a
vector field on M determined from tangents of S orbits, and i(-) is an

inner product.
The following proposition gives a primitive character of moment maps.

PROPOSITION 2.1.

(1) The critical point set of p coincides with the fixed point set of the
St action.

(2) The moment map p is a non-degenerate function in the sense of
Bott. (See [B].) In particular if the fixed point set M5" is isolated then
i is a perfect Morse function.

(3) Suppose that J, (-,-) are an almost complex structure and a metric
compatible with w, that is, J is an automorphism of X(M) such that
J? = -1 and w(u,Jv) = (u,v) for any tangent vectors u, v. Then

gradp = JX.

Next we define a system of weights. Let P be a fixed point. From

the equivariant Darboux’s theorem, we can take a complex coordinate

(20, ,2n—1) around P such that
Vv -1 n—1 —
(a) w= —5 2;‘:0 dzj A dz;,
(b) There exist integers mg,- -+ ,m,—1 and they satisfies
g- (207 o az'n—l) = (ngZm e )gmn_lzn—l)
for g € S C C.
We call the integers (myg, -+ ,m,_1) the weights at P. The system of

weights determine the Morse indices at the fixed points. In fact,



PRrROPOSITION 2.3.
(1) Around P,

n—1
w(zo, -+ zm) = p(p) = Y mjlz;l%.
§=0

(2) If P is an isolated fixed point, then m; # 0 and
Morse index(P) = 2#{m; | m; > 0}.

We can take an S!-invariant almost complex structure J and an S?
invariant metric (-,-) which are compatible with w. Considering indices
of twisted Dirac operators, Hattori [Hal;Proposition 2.6] gives relations
of weights of S'-almost complex manifolds. From this proposition we

have

LEMMA 2.4. If dimM = 6 and the fixed point set is isolated, then
x(M) is even and x(M) > 4.

(Proof) Hopf’s theorem x(M) = 9‘-;(:]\/151 implies that x(J) is non-

negative. u has a maximum point and it follows that x(M) is positive.

3x(M)
2

From [Hal; Proposition 2.6] we have € Z. Hence x(M) is even.
Assume that x(M) is exactly 2. The moment map p always have a
minimum point and a maximum point and these two points are all of
the fixed points. At the minimum point (resp. a maximum point), the
weights are all negative (resp. positive.) But such systefn of weights

does not satisfy Hattori’s relation. This completes the proof.

Following the previous lemma, we assume the next conditions.

153
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ASSUMPTION 2.5. (M,w,p,pn) satisfies
(1) dimM =6,
(2) MS' is isolated and x(M) = 4.

2-2. C* action and stable submanifold.
For a general (M,w,p, 1), we can define a C* = C — {0} action on
M. Infact,forpe M,ge S',ze Ry = {z e R |z > 0},

(29)p = g - exp,(log 2)(—grad p).

To show this definition is well-defined, it is sufficient to prove the fol-

lowing lemma.

LEMMA 2.6. [grad u,X] =0 ,where X is a vector field determined by

the S! action.

It is easy to show that the symplectic structure w is preserved by this
C* action. The following lemma is important to investigate the cellular

structure of M.
LEMMA 2.7. lim,_o(zg)p € M5, lim, o (zg)p € MS".

We call the former the north pole and the latter the south pole of the
orbit. This lemma implies that the closure of any C* orbit is a point or
52 topologically. For a fixed point P, we defines a stable submanifold
F*(P) (resp. an unstable submanifold F*(P)) as follows.

F*(P)={pe M| lim (z9)p = P}
FY(P)={pe M| lim(zg)p = P}.

The following proposition is primitive.
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PROPOSITION 2.8.
(1) F*(P), F*(P) are C* invariant smooth submanifold.
(2) F*(P) ~ D¢, F*(P) ~ D%~ where d =Morse index(P).

2-3. Classification of weights and Wall’s theorem.

From [Hal], The Todd genus Todd[M] is given by the number of
fixed points with all weights positive. In our case we can show that
Todd[M] = 1. (Because if there are two local maximum points then there
would be a critical point with index (2n — 1).) Since H*(M;R) = R
and w® # 0, we have ¢;(M)*> # 0. Under this conditions we apply
Ahara’s theorem [Ah;Theorem 1.2]. First we can take fixed point set

MS' = {Py, Py, P, Ps} such that Morse index(P;) = 2.

LEMMA 2.9.

If the weights at P; are (mjo,mj;,m;j2) and mqy < 0 then we have
(m3ao + ma1 + mag) — (Ma20 + M1 +mMa2) = —mgeN >0,

where N is the largest positive integer dividing c;(M) in H*(M;Z).

(Proof) The stable submanifold F*(P;) of P, gives a 2-cycle of a
generator of Hyo(M;Z) because u is a perfect Morse function. If z in

H?%(M;Z) denotes a dual of this, then we have
a(M)=+Nz.

Consider a complex line bundle A*TM on M. It is clear that ¢; (A3TM)
= ¢;(M). If we identify R(S') with Z[t] then

AsTMIPj — ¢miotmjitm;2 (] =0, 1’2.)



156

On the other hand, let { be a complex line bundle over M such that
c1(¢) = 5=[w]. Here we assume that [w] is an integral class and 5= [w] =
kz for some integer k. It is known that if M has a moment map y then
[w] € Im(HZ, (M) — H?*(M)) (see [AB],) and hence any S'-action on
M is lifted to ¢ (see [HY].) If integers a; is defined by (|p, = t% then

(m3o + m31 + maz) — (Mmao + ma1 + ma2) a3z - ay

+N Tk

= —mM32g0.

Next we prove that k is positive. In fact,

1 . 1
b= (ol PPl = 5= [ o
— —— (W) = u(P2)) > 0.

Consider a generic point p such that Closure(C*(p)) = C*(p)U Py U

P;. Then
(mso + m31 + msz)i—N(moo + mgy + mo2) — (g, [Cx(p)])
= ([, [C*(P)]) = = w=2(u(Ps) = p(Py)) > 0

2km - % Cx(p) k
This implies that ¢;(M) = Nz and completes the proof.

From this lemma 2.9 and [Ah; Theorem 1.2], we have a classification

of weights and N.

THEOREM 2.10.
If (M,w, ¢, 1) satisfies Assumption 2.5 then the system of weights and
N are one of the following types.



type I

P3 : (a,b,c)
Py :(—a,b—a,c—a)
Py :(=ba—b,c—b)

Py :(—c,a—c,b—c)

where 0 < a <b<c¢, G.C.D.(a,b,c) =1, and N = 4.
type II

P;:(a+b,b— a,b)
Py :(a+b,a—b,a)
Py:(—a—b,b—a,—a)
Py:(—a—1b,a—b,-b)

where 0 < a < b, G.C.D.(a,b) =1, and N = 3.
type III

P;:(1,2,3)
P;:(1,a,-1)
Py :(1,—a,-1)
Py:(-1,-2,-3)

wherea=4ora=5 Ifa=4then N=2. Ifa=5 then N = 1.

Wall [Wa] shows that diffeo-types of 6 dimensional simply connected
spin manifolds with torsion-free homology are determined by the coho-
mology ring and the Pontryagin class. We apply this theorem in our

case we have

157
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THEOREM 2.11.

(1) If (M,w,, i) satisfles Assumption 2.5 and its system of weights
is of type I then M is diffeomorphic to CP?.

(2) If (M, w, o, 1) satisfies Assumption 2.5 and its system of weights
is of type III with a = 4 then M is diffeomorphic to Vg, a Fano 3-Fold.
(About Vs, see [Ah],[I],[MU].)

(Remark) Each CP3, V5 has an S symplectic structure and has
moment map. In the above theorem, we don’t know if M is S!-diffeo-
morphic to CP? or V5. CP?® and V; are obtained by a surgery of S° via
a certain embedding ¢g: $3 x D® — S%. If we could make and S!-surgery

of S% then we would solve this problem.

3. Singularity of a 4-cell F

3-1. Results
As mentioned in the introduction, to determine the diffeo-type of M

we consider a stable submanifold F*(P;). If 4 cell F is defined by F =
Closure( F'*( Py)) then we have the following theorem.

THEOREM 3.1.

F = F*(P,)U F*(P,)) UF(Py).

We postpone the proof of this theorem. (See the section 3-3.) If NF
is a tubular neighborhood of F' then we have M ~ NF U D%, where
D® = F?*(P,) is a 6 disk. To investigate NF, we consider a singular
point set of F'. We have the following theorem.

THEOREM 3.2.



(1) If the S* action is of type III, then the singular pbint set of F is
F*(Py) U F*(P;).

(2) If F is non-singular at P, and at Ps, then F is S!-diffeomorphic
to CP? and M is diffeomorphic to CP3.

For the proof, we need preliminaries of Seifert manifolds.

3-2. Weighted homogeneous polynomials and Seifert invari-
ant.

Let a coordinate (zo, 21, 22) around P; bbe fixed. Let (mg, m;,msy) be

weights at Pj.

LEMMA 3.3.
(1) If D, is a small ball with center Ps, then F'*(Py)N D, is not empty
and it is a complex submanifold of D,.

(2) F N D, is an algebraic subvariety in D..

From the proof of Proposition 3.9(2), F*(P;)ND, is not empty. F*(Py)
is a C* invariant almost complex submanifold and we consider the fol-
lowing situation.

C? = {(20, 21, 22)}, C* acts on C? with weights mg, m;, ma.

E : areal 4-dimensional smooth submanifold of C? such that it is C*
invariant and it is an almost complex submanifold.

Let P(mo, m1,my) be C3/C*, a weighted projective space. E' =
E/C* — {singular points} is an almost complex submanifold of P(my,
my,my). E'is 2-dimensional and we can show that E' is complex sub-
manifold of P(mg, my,my). It follows thdt FE is a complex submanifold

of C3. If F*(P;)N D, is represented by

{(20,21,22) | f(20,21,22) = ) aijuzizlzy =0},

159
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then the defining function f has a finite degree. In fact, f is S1-

equivariant, that is,
(3.4) f(g™°z0,9™ 21,9™%22) = Af(z0,21,22) for some A € C*,

and it follows that f has only finite non-zero coefficients a;;;. Hence
F N D, = Closure(F*(Py)) N D, is an algebraic variety. This completes
the proof.

f(z0,21,22) is a weighted homogeneous polynomial if and only if f
is a finite polynomial satisfying (3.4). For a weighted homogeneous
polynomial f(z0,z1,22) = 3 aijezizl 28, d = moi +myj + mak is called
a weighted degree of f.

(Remark) Usually the weights of f is defined by (—n%, ;—nfl:, _T:li_z) But
avoiding any confusion, we do not use this term in this paper.

Orlik and Wagreich [OW] classify algebraic varieties in C* with one

isolated singular point 0 € C3.

LeMMA 3.5 [OW].  IfV = {(z0,21,22) | f(20,21,22) = 0} has one iso-
lated singular point 0 € C3, then the defining function f is analytically
isomorphic to one of the following functions.

(D 28 + 22+ 25 (I 28 + 28 + 2125 (b> 1)

(IT) 28 + 282 + 2,25 (b> L,e> 1) (IV) 28 + 2928 + 2125 (a > 1)

(V) 2821 + 2825 + 2520
Let a 5-sphere % around P; be defined by
{(20, 21, 22) | |20]* + |21]* + |23]* = €}
for small € > 0. Orlik and Wagreich [OW] calculate the Seifert invariants

{b; (Ol’g); (O‘l,ﬂl)) T (ar7/3r)}



for a Seifert 3-manifold K = V N S} . Let three irreducible ratios ki
vj

; d
(7 =0,1,2) be given by Y~ 2 And we define
v; m;

Co12 = (uo, u1, uz),
Co = (ul,uz)/c'om, Ci = (U2,U0)/C'012, Cy = (uo,ul)/con,
Ci2 = u0/0012C102> Cy = U1/001202C0, Co = Uz/concocl,

where (-,) denotes G.C.D..
The indices a; of the singular orbits and the numbers n; of singular

orbits with indices a; are given as follows

(e11] 4] aq ny a2 ny
I Ci2 Co12Co Co2 Co12C1 Co1 Co12C2
Co12Cy =1

II| Ci _&21_)_9__ v2Ch2 1 Cor Cor2
2

111 012 001200 — U1 v ’02012 1 v1C12 1

C'U]’UQ 1

v 001 —0—1:—‘—- V2 1 v16’01 1
1

A% VYo 1 U1 1 V2 1

B; are given by B;v; =1 (mod. a;) (0 < B; < a;), where v; are given

by followings.

(m07m17m2) typeI
(mo,mo,ﬂlz) type II
(V01V17V2) = (m07m0,m0) type III

(ma,mg, m3) type IV

(mz,mg,m1) type V.

161
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The invariants b, g are given by

(3.6) po — 9 Zg—j

momymsz -

(3.7) 29= d’ _ d(mg, my) _ d(my, ma) _ d(ma, mg)
MMMy momy myme mamyg

+(d, mo) + (d,my) 4 (d, m3) .

mo m ma

We introduce a lemma to determine whether K is homeomorphic to

S? or not.

LEMMA 3.8. A Seifert 3-manifold K is homeomorphic to S3 if and only
if the Seifert invariants of K are one of followings.

{£1,(01,0)}, {~1;(01,0); (e — 1)},

{0;(01,0); (a, 1)}, {=1;(01,0); (a1, 1), (a2, 52)},

where —ajag + a1 02 + a8 = £1.

3-3. Proof of Theorem 3.1
We prove Theorem 3.1. It is sufficient to show the following proposi-

tion.

PROPOSITION 3.9.
(1) If F =Closure(F*(P,)), then one of the followings occurs.
(a) F = F*(P)UF*(P,)
(b) F = F*(Py)U F*(P;)
(c) F = F*(Py) U F*(Py)U F*(Ps).
(2) ‘The case (a) and (b) cannot happen.

(Proof) The north pole of a C*-orbit with south pole P; is P, or
P;. Hence (1) is trivial.



(2) We show first that (a) cannot happen. Assume that F =
F*(P))U F*(P,). The north pole of any C*-orbit with south pole P; is
only P,. In the other hand it is easy to show that the south pole of any
C*-orbit with north pole P, is P;. Hence we obtain

Closure( F*(P;)) = Closure( F*(P,)) = F =~ S*.

F is a smooth symplectic submanifold of M. But S* is not symplectic
and this is a contradiction.

Next we show that (b) cannot occur when the weights are of type
III. We consider a fixed point set MZ%/%Z of a subgroup Z/aZ C SI.
M?Z?/%Z = 2 pointsU S? and MZ/2Z — M5’ consists of one C*- orbit with
south pole P; and with north pole P,. This contradicts (b).

In the case the weights are of type II the proof is more complicated.
Assume that F' = F*(Py) U F*(P,).

First suppose that a # 1. In this case F' contains a C*-orbit with
isotropy a and hence P; has a weight a. 0 < a < b follows that a = b—a.
But this contradicts to the condition G.C.D.(a,b) = 1.

Hence a = 1. Next suppose that b # 2. F contains a C*-orbit with
isotropy b+ 1 but does not contain any orbits with isotropy b or b — 1.

If we take a coordinate (zo, 21, 22) around Ps by

g(ZO,ZI)ZZ) = (gb_lZ03gbzl7gb+1z2),

then F' around P; can be represented by the following equations.

b—1)k
zgk+z§ ) + 212, =0, or

zgk + zibnl)k + 2925 =0
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for some integers k, p. Here the weighted degree d = b(b — 1)k. Since
K = Sp NF =~ 5%, the Seifert invariant g of K equals 0. From (3.7),

b(b — 1)k? (b—1k  (5,2)bk  (b(b—1)k,b+1)
b+1 b+l b+1 b+1
(3.10) b(b— 1)k? — ((5,2) + 2)bk + (b(b — 1)k,b+ 1)+ b+ 1= 0.

+1=0,

From this equation, b divides (b(b — 1)k,b+ 1) + 1. On the other hand
(b(b—1)k,b+ 1) < b+ 1. This implies that (b(b+ 1)k,b+1) =b—1,
b—1 divides b+ 1, and b = 3. We solve (3.10) and we have k = 1. It

follows that the definition equation of F' around P; is

28 4+ 23 + 2022 = 0,

and Seifert invariants of K is {—1;(01,0);(2,1),(4,3)} and we have
K ~ L(2,1). This is a contradiction. In the similar way when b = 2 we
can prove that K ~ L(2,1)

In the case of type I, the proof is much more complicated and we omit
it.

3-4. Proof of Theorem 3.2.

We prove Theorem 3.2

LEMMA 3.11.

Assume that the action is of type III

(1) Let d be the homogeneous degree of the defining function of F
around P;. Then 6 divided d and Pj is a singular point of F'.

(2) K = Sp, N F is a Seifert manifold obtained from S* by Dehn

surgery on a trivial knot. Hence K is homeomorphic to a lens space.



(3) P is not an isolated singular point.

(Proof) (1) We take a coordinate (zg, 21, z2) around P; such that

9(20, 21,22) = (92»2079321,922)-

Since F' does not contain any C*-orbits with isotropy 2 or 3, the defining

function f of F' around Pj is given by
f(20,21,22) = 23¥ + 22* 4 (other terms),
where k is a positive integer. Hence d = 6k and
5—2(0,0, 0)=0. (foryj=0,1,2.)

This implies that P; is a singular point.

(2) Let a be pu(P;) and é be a small positive constant. Let
F.=p Y a-8NFxS Fi=pa+8§)NF~K.

Suppose that {s;,--- ,s,} are S*-orbits in F_ such that their north poles

are P,. It is clear that

F_~N{sy, - ,s,} = F3(P)Np a+ )

~ K \ {one S'-orbit}.
These are Seifert manifolds and their base spaces are given by

81— F_~{sy,--+,8.} = S%~ {r points}

163
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S — K ~ {one S'-orbit} — T, k) \ {a point},

where ¢g(K) is a Seifert invariant g of K. This follows that g(K) = 0
and r = 1.

(3) We apply (3.7) in this case and we have

_6k)2_6k_6k_%+2
G 6 3 2

This equation does not have an integral solution. Hence P; is not an
isolated singular point. It implies that the singular point set of F is

F*(P;)U F°(P3). This completes the proof.

PRrROPOSITION 3.12.  If F is not singular at P, nor at P3, then F is
S1_diffeomorphic to CP? and M is diffeomorphic to CP?.

(Proof) If F is not singular at P, nor at Py then F' is smooth
submanifold of M. Hence F is a 4-dimensional S!-symplectic manifold
with moment map up = p|F. From [AH], F is S-diffeomorphic to CP?
since x(F') = 3. The sphere bundle SF of the normal bundle N F over

F is given by
St S° S F

This follows that M ~ D®Ugs N F is homeomorphic to CP?. If two spin
manifolds with torsion-free homology are homeomorphic then they are

diffeomorphic (See [Wa).) It follows that M is diffeomorphic to CP3.
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