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On 6-dimensional $S^{1}$ symplectic Hamiltonian manifolds

with Euler number 4.

KAZUSHI AHARA(阿原一志), KIYOSHI OHBA(大場清)

1. Introduction

Let ( $M$ , to) be a compact connected symplectic manifold. Suppose

that a Lie group $G$ acts on $M$ and there exists a moment map $\mu:Marrow$

$Lie(G)^{*}$ . Here Lie $(G)^{*}$ is a dual of a Lie algebra of G. (See [AB].)

There has been much interest in the moment map. In 4-dimensional

case, diffeo-types of all $S^{1}$ -symplectic manifolds with moment maps are

classified as $S^{1}$ -almost complex manifolds. (See [AH], [Aul].) If $M$ is an
$S^{1}$ -symplectic manifold with moment map and the action is semi-free,

then Hattori [H2] shows that the cohomology ring of $M$ is identified with

that of $S^{2}\cross\cdots\cross S^{2}$ . If $M$ is $S^{1}$ -symplectic and with moment map and

$M$ has two components of fixed point set and one of them is isolated,

then Delzant [D] shows that $M$ is diffeomorphic to $CP^{n}$ , a complex

projective space. Takakura [T] defines a toral action on a moduli $\mathfrak{M}$ of

flat connections on an $SU_{2}$ principal bundles over a certain 2-dimensional

V-manifold and for a symplectic structure on $9\mathfrak{n}$ he calculates its moment

map and consider the topology of it.

Suppose that the Lie group $G$ is $S^{1}$ . If an $S^{1}$ -symplectic manifold $M$

is simply connected then $M$ has a moment map. Hence the condition

that $M$ has a moment map $\mu$ might not be so invalid. Moreover if the
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fixed point set $M^{S^{1}}$ is discrete then $\mu$ is a perfect Morse function. The

moment map $\mu$ is valid to determine its cohomology ring and its diffeo-

type.

In this paper we consider a 6-dimensional $S^{1}$ symplectic manifold $M$

with moment map $\mu$ and assume that the fixed point set $M^{S^{1}}$ is isolated

and the Euler number $\chi(M)$ is 4. This is one of the simplest cases.

From the localization theorem (see [H1]), if $M^{S^{1}}$ is isolated then $\chi(M)$

is positive and even. It is easily shown that $\chi(M)\geq 4$ . (See Lemma

2.4.) Ahara [Ah] classifies the $S^{1}$ actions around their fixed points for
$S^{1}$ -almost complex manifolds $(M^{6}, J)$ with $\chi(M)=4,$ $c_{1}^{3}(M)\neq 0$ , and

the Todd genus $Todd[M]=1$ . We can apply this theorem and show a

classification theorem (see Theorem 2.10) in our case. Hattori pointed

out that the Wall’s theorem for 6-spin manifolds [Wa] implies that if $M$

is also spin then we can determine the diffeo-type of M. (See Theorem

2.11.)

In 4-dimensional case, diffeo-types of $M$ are classified. We review

the methods of the classification. Ahara and Hattori [AH] show that

any critical point of $\mu$ except the minimum point and the maximum

point is isolated and that both Morse index and Morse co-index are 2

at the point and they construct admissible chains. Audin [Aul] notices

that the inverse image $\mu^{-1}(a)$ for a general point $a$ in $R$ is a Seifert

3-manifold if it is not empty. She classifies $M’ s$ from the classification

theorem of Seifert 3-manifolds. In our 6 dimensional case we consider

4-cells determined from fixed points with Morse index 4 and determine

their topology and singularities.

There are exactly 4 fixed points $\{P_{0}, P_{1}, P_{2}, P_{3}\}$ and we can take them

such that

Morse index of $P_{i}=2i$ .
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We define a 4-cell $F$ by a closure of a stable manifold $F^{s}(P_{1})$ , (which is

defined in section 2-2.)

We have the following theorems.

THEOREM 1.

$F=Closure(F^{s}(P_{1}))=F^{s}(P_{1})$ Ll $F^{s}(P_{2})uF^{s}(P_{3})$ .

Here we remark that $M=u_{j=0}^{3}F^{s}(P_{j})$ and $F^{s}(P_{j})$ is homeomorphic

to $D^{6-2j},$ $(6-2j)$-disk. This theorem gives a cellular structure of $M$ .

THEOREM 2.

(1) If the action is included in type III of Theorem 2.10, then the

singular poin $t$ set of $F$ is $F^{s}(P_{2})uF^{s}(P_{3})\approx S^{2}$ .

(2) If $F$ is not singular at $P_{2}$ nor at $P_{3}$ , then $F$ is difFeomorphic to
$CP^{2}$ and $M$ is diffeomorphic to $CP^{3}$ .

Finally the authors are very grateful to Akio Hattori and Yukio Ma-

tsumoto and Nariya Kawazumi for several useful comments and constant

encouragement.

2. Classification of the $S^{1}$ actions

2-1. $S^{1}$ symplectic manifold with moment map.

DEFINITION 2.1. $A$ quadruple $(M,\omega, \varphi, \mu)$ is an $S^{1}$ symplectic man-

ifold with moment map if

(1) $M$ is a $2n$ dimensional $com$pact connected $sm$ooth manifold,

(2) $\omega$ is a symplectic form on $M$ , that is, $\omega$ is a closed 2-form and

$\omega^{n}\neq 0$ everywhere,
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(3) $\varphi:S^{1}\cross Marrow M$ is an effecti $\iota^{\gamma}eS^{1}$ action which preserves the

symplectic structure $\omega$ , and

(4) $\mu:Marrow R$ is a moment map, that is, $d\mu=i(X)\omega$ , where $X$ is a

vector field on $M$ determined from $t$angenis of $S^{1}$ orbits, and $i(\cdot)$ is an

inner product.

The following proposition gives a primitive character of moment maps.

PROPOSITION 2.1.

(1) The critic$al$ poin $t$ set of $\mu$ coincides with the fixed point se $t$ of the
$S^{1}$ action.

(2) The momen$tmap\mu$ is a non-degenerate $fun$ction in the sense of

Bott. (See $[B].$ ) In particular if the fi$xed$ poin $t$ set $M^{S^{1}}$ is isolated then

$\mu$ is a perfect Morse function.

(3) Suppos$e$ that $J,$ { $\cdot,$

$\cdot\rangle$ are an almost complex stru $ct$ ure and a metric

compatible with $\omega$ , that is, $J$ is an automorphism of $X(M)$ such that

$J^{2}=-1$ an$d\omega(u, Jv)=\{u, v\}$ for any tangent vectors $u,$ $v$ . Then

$grad\mu=JX$ .

Next we define a system of weights. Let $P$ be a fixed point. From

the equivariant Darboux’s theorem, we can take a complex coordinate

$(z_{0}, \cdots z_{n-1})$ around $P$ such that

(a) $\omega=\frac{\sqrt{-1}}{2}\sum_{j=0}^{n-1}dz_{j}$ A $d\overline{z}_{j}$ ,

(b) There exist integers $m_{0},$ $\cdots m_{n-1}$ and they satisfies

$g\cdot(z_{0}, \cdots z_{n-1})=(g^{m_{0}}z_{0}, \cdots g^{m_{n-1}}z_{n-1})$

for $g\in S^{1}\subset C$ .

We call the integers $(m_{0}, \cdots m_{n-1})$ the weights at $P$ . The system of

weights determine the Morse indices at the fixed points. In fact,
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PROPOSITION 2.3.

(1) Around $P$ ,

$\mu(z_{0}, \cdots z_{n})=\mu(p)-\sum_{j=0}^{n-1}m_{j}|z_{j}|^{2}$ .

(2) If $P$ is an isola$ted$ fixed poin $t$ , then $m_{j}\neq 0$ and

Morse index$(P)=2\#\{m_{j} m_{j}>0\}$ .

We can take an $S^{1}$ -invariant almost complex structure $J$ and an $S^{1}$

invariant metric \langle $\cdot,$

$\cdot$ } which are compatible with $\omega$ . Considering indices

of twisted Dirac operators, Hattori [Hal;Proposition 2.6] gives relations

of weights of $S^{1}$ -almost complex manifolds. From this proposition we

have

LEMMA 2.4. If $dimM=6$ and the fixed point set is isolated, then

$\chi(M)$ is even and $\chi(M)\geq 4$ .

(Proof) Hopf’s theorem $\chi(M)=\neq M^{S^{1}}$ implies that $\chi(M)$ is non-

negative. $\mu$ has a maximum point and it follows that $\chi(M)$ is positive.

From [Hal; Proposition 2.6] we have $\frac{3\chi(M)}{2}\in Z$ . Hence $\chi(M)$ is even.

Assume that $\chi(M)$ is exactly 2. The moment map $\mu$ always have a

minimum point and a maximum point and these two points are all of

the fixed points. At the minimum point (resp. a maximum point), the

weights are all negative (resp. positive.) But such system of weights

does not satisfy Hattori’s relation. This completes the proof.

Following the previous lemma, we assume the next conditions.



154

ASSUMPTION 2.5. $(M, \omega, \varphi, \mu)$ satisfies

(1) $dimM=6$ ,

(2) $M^{S^{1}}$ is isolated and $\chi(M)=4$ .

2-2. C’ action and stable submanifold.

For a general $(M,\omega, \varphi, \mu)$ , we can define a C’ $=C-\{0\}$ action on

$M$ . In fact, for $p\in M,$ $g\in S^{1},$ $z\in R+=\{z\in R|z>0\}$ ,

$(zg)p=g\cdot\exp_{p}(\log z)$ (-grad $\mu$ ).

To show this definition is well-defined, it is sufficient to prove the fol-

lowing lemma.

LEMMA 2.6. [grad $\mu,$
$X$ ] $=0,w^{7}hereX$ is a vector field determined by

the $S^{1}$ action.

It is easy to show that the symplectic structure $\omega$ is preserved by this
$C^{\cross}$ action. The following lemma is important to investigate the cellular

structure of $M$ .

LEMMA 2.7. $\lim_{zarrow 0}(zg)p\in M^{S^{1}}$ , $\lim_{zarrow\infty}(zg)p\in M^{S^{1}}$

We call the former the north pole and the latter the south pole of the

orbit. This lemma implies that the closure of any $C^{\cross}$ orbit is a point or
$S^{2}$ topologically. For a fixed point $P$ , we defines a stable submanifold

$F^{s}(P)$ (resp. an unstable submanifold $F^{u}(P)$ ) as follows.

$F^{s}(P)= \{p\in M|\lim_{zarrow\infty}(zg)p=P\}$

$F^{u}(P)= \{p\in M|\lim_{zarrow 0}(zg)p=P\}$ .

The following proposition is primitive.
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PROPOSITION 2.8.

(1) $F^{s}(P),$ $F^{u}(P)$ are $C^{\cross}$ invariant $sm$ooth submanifold.

(2) $F^{s}(P)\approx D^{d},$ $F^{u}(P)\approx D^{6-d}$ , where $d=Morseindex(P)$ .

2-3. Classification of weights and Wall’s theorem.

From [Hal], The Todd genus $Todd[M]$ is given by the number of

fixed points with all weights positive. In our case we can show that

$Todd[M]=1$ . (Because if there are two local maximum points then there

would be a critical point with index $(2n-1).)$ Since $H^{2}(M;R)=R$

and $\omega^{3}\neq 0$ , we have $c_{1}(M)^{3}\neq 0$ . Under this conditions we apply

Ahara’s theorem [Ah;Theorem 1.2]. First we can take fixed point set
$M^{S^{1}}=\{P_{0}, P_{1}, P_{2}, P_{3}\}$ such that Morse index$(P_{j})=2j$ .

LEMMA 2.9.

If the weights at $P_{j}$ are $(m_{j0}, m_{j1}, m_{j2})$ and $m_{20}<0$ then we have

$(m_{30}+m_{31}+m_{32})-(m_{20}+m_{21}+m_{22})=-m_{20}N>0$ ,

where $N$ is the larges$t$ positive integer dividing $c_{1}(M)$ in $H^{2}(M;Z)$ .

(Proof) The stable submanifold $F^{s}(P_{2})$ of $P_{2}$ gives a 2-cycle of a

generator of $H_{2}(M;Z)$ because $\mu$ is a perfect Morse function. If $x$ in

$H^{2}(M,\cdot Z)$ denotes a dual of this, then we have

$c_{1}(M)=\pm Nx$ .

Consider a complex line $bundle\wedge^{3}TM$ on $M$ . It is clear that $c_{1}(\wedge^{3}TM)$

$=c_{1}(M)$ . If we identify $R(S^{1})$ with $Z[t]$ then

$\wedge^{3}TM|_{P_{j}}=t^{m_{j0}+m_{j1}+m_{j2}}$ $(j=0,1,2.)$
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On the other hand, let $\zeta$ be a complex line bundle over $M$ such that

$c_{1}( \zeta)=\frac{1}{2\pi}[\omega]$ . Here we assume that $[\omega]$ is an integral class and $\frac{1}{2\pi}[\omega]=$

$kx$ for some integer $k$ . It is known that if $M$ has a moment map $\mu$ then

$[\omega]\in{\rm Im}(H_{S^{1}}^{2}(M)arrow H^{2}(M))$ (see [AB],) and hence any $S^{1}$ -action on

$M$ is lifted to $\zeta$ (see [HY].) If integers $a_{j}$ is defined by $\zeta|_{P_{j}}=t^{a_{j}}$ then

$\frac{(m_{30}+m_{31}+m_{32})-(m_{20}+m_{21}+m_{22})}{\pm N}=\frac{a_{3}-a_{2}}{k}=-m_{20}$ .

Next we prove that $k$ is positive. In fact,

$k= \{\frac{1}{2\pi}[\omega],$ $[F^{s}(P_{2})]\rangle$ $= \frac{1}{2\pi}\int_{F^{\delta}(P_{2})}\omega$

$= \frac{1}{-m_{20}}(\mu(P_{3})-\mu(P_{2}))>0$ .

Consider a generic point $p$ such that Closure(C’ $(p)$ ) $=C^{\cross}(p)\cup P_{0}\cup$

$P_{3}$ . Then

$\frac{(m_{30}+m_{31}+m_{32})-(m_{00}+m_{01}+m_{02})}{\pm N}=\langle x,$ $[C^{\cross}(p)]$ }

$= \{\frac{1}{2k\pi}[\omega], [C^{\cross}(p)]\}=\frac{1}{2k\pi}\int_{C^{X}(p)}\omega=\frac{1}{k}(\mu(P_{3})-\mu(P_{0}))>0$

This implies that $c_{1}(M)=Nx$ and completes the proof.

From this lemma 2.9 and [Ah; Theorem 1.2], we have a classification

of weights and $N$ .

THEOREM 2.10.

If $(M,\omega, \varphi, \mu)$ satisfies $Ass$umption 2.5 then the system of weights and
$N$ are one of the following types.
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type $I$

$P_{3}$ : $(a, b, c)$

$P_{2}$ : $(-a, b-a, c-a)$

$P_{1}$ : $(-b, a-b, c-b)$

$P_{0}$ : $(-c, a-c, b-c)$

where $0<a<b<c,$ $G.C.D.(a, b, c)=1$ , and $N=4$ .
type $\Pi$

$P_{3}$ : $(a+b, b-a, b)$

$P_{2}$ : $(a+b, a-b, a)$

$P_{1}$ : $(-a-b, b-a, -a)$

$P_{0}$ : $(-a-b, a-b, -b)$

where $0<a<b,$ $G.C.D.(a, b)=1$ , and $N=3$ .

type III

$P_{3}$ : (1, 2, 3)

$P_{2}$ : $(1, a, -1)$

$P_{1}$ : $(1, -a, -1)$

$P_{0}$ : $(-1, -2, -3)$

where $a=4$ or $a=5$ . If $a=4$ then $N=2$ . If $a=5$ then $N=1$ .

Wall [Wa] shows that diffeo-types of 6 dimensional simply connected
spin manifolds with torsion-free homology are determined by the coho-

mology ring and the Pontryagin class. We apply this theorem in our
case we have
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THEOREM 2.11.

(1) If $(M,\omega, \varphi, \mu)$ satisfies $Ass$umption 2.5 and its system of weights

is of type I then $M$ is difFeomorphic to $CP^{3}$ .

(2) If $(M,\omega, \varphi, \mu)$ satisfies A$ss$umption 2.5 and its system of weights

is of type III with $a=4$ then $M$ is difFeomorphic to $V_{5}$ , a Fano 3-Fold.

(About $V_{5}$ , see $[Ah],[I],[MU].$)

(Remark) Each $CP^{3},$ $V_{5}$ has an $S^{1}$ symplectic structure and has

moment map. In the above theorem, we don’t know if $M$ is $S^{1}$ -diffeo-

morphic to $CP^{3}$ or $V_{5}$ . $CP^{3}$ and $V_{5}$ are obtained by a surgery of $S^{6}$ via

a certain embedding $g:S^{3}\cross D^{3}arrow S^{6}$ . If we could make and $S^{1}$ -surgery

of $S^{6}$ then we would solve this problem.

3. Singularity of a 4-cell $F$

3-1. Results

As mentioned in the introduction, to determine the diffeo-type of $M$

we consider a stable submanifold $F^{s}(P_{1})$ . If 4 cell $F$ is defined by $F=$

$Closure(F^{s}(P_{1}))$ then we have the following theorem.

THEOREM 3.1.

$F=F^{s}(P_{1})uF^{s}(P_{2})uF^{s}(P_{3})$ .

We postpone the proof of this theorem. (See the section 3-3.) If $NF$

is a tubular neighborhood of $F$ then we have $M\approx NF\cup D^{6}$ , where

$D^{6}=F^{s}(P_{0})$ is a 6 disk. To investigate $NF$ , we consider a singular

point set of $F$ . We have the following theorem.

THEOREM 3.2.
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(1) If the $S^{1}$ action is of $typeIII$, then the singular point set of $F$ is

$F^{s}(P_{2})uF^{s}(P_{3})$ .

(2) If $F$ is non-singular at $P_{2}$ and at $P_{3}$ , then $F$ is $S^{1}$ -diffeomorphic

to $CP^{2}$ and $M$ is diffeomorphic to $CP^{3}$

For the proof, we need preliminaries of Seifert manifolds.

3-2. Weighted homogeneous polynomials and Seifert invari-

ant.

Let a coordinate $(z_{0}, z_{1}, z_{2})$ around $P_{3}$ be fixed. Let $(m_{0}, m_{1}, m_{2})$ be

weights at $P_{3}$ .

LEMMA 3.3.

(1) If $D_{\epsilon}$ is a $sm$all ball with center $P_{3}$ , then $F^{s}(P_{1})\cap D_{\epsilon}$ is not empty

and it is a complex $su$bmanifold of $D_{\epsilon}$ .

(2) $F\cap D_{\epsilon}$ is an algebraic $su$ bvariety in $D_{\epsilon}$ .

From the proof of Proposition 3.9(2), $F^{s}(P_{1})\cap D_{\epsilon}$ is not empty. $F^{s}(P_{1})$

is a C’ invariant almost complex submanifold and we consider the fol-

lowing situation.

$C^{3}=\{(z_{0}, z_{1}, z_{2})\},$ $C^{\cross}$ acts on $C^{3}$ with weights $m_{0},$ $m_{1},$ $m_{2}$ .
$E$ : a real 4-dimensional smooth submanifold of $C^{3}$ such that it is $C^{\cross}$

invariant and it is an almost complex submanifold.

Let $P(m_{0}, m_{1}, m_{2})$ be $C^{3}/C^{\cross}$ , a weighted projective space. $E$‘ $=$

$E/C^{\cross}-$ { $singular$ points} is an almost complex submanifold of $P(m_{0}$ ,

$m_{1},$ $m_{2}$ ). $E’$ is 2-dimensional and we can show that $E’$ is complex sub-

manifold of $P(m_{0}, m_{1}, m_{2})$ . It follows that $E$ is a complex submanifold

of $C^{3}$ . If $F^{s}(P_{1})\cap D_{\epsilon}$ is represented by

$\{(z_{0}, z_{1}, z_{2})|f(z_{0}, z_{1}, z_{2})=\sum\alpha_{ijk}z_{0}^{i}z_{1}^{j}z_{2}^{k}=0\}$,
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then the defining function $f$ has a finite degree. In fact, $f$ is $S^{1_{-}}$

equivariant, that is,

(3.4) $f(g^{m_{0}}z_{0}, g^{m_{1}}z_{1}, g^{m_{2}}z_{2})=\lambda f(z_{0}, z_{1}, z_{2})$ for some $\lambda\in C^{\cross}$ ,

and it follows that $f$ has only finite non-zero coefficients $\alpha_{ijk}$ . Hence

$F\cap D_{\epsilon}=Closure(F^{s}(P_{1}))\cap D_{\epsilon}$ is an algebraic variety. This completes

the proof.

$f(z_{0}, z_{1}, z_{2})$ is a weighted homogeneous polynomial if and only if $f$

is a finite polynomial satisfying (3.4). For a weighted homogeneous

polynomial $f(z_{0}, z_{1}, z_{2})= \sum\alpha_{ijk}z_{0}^{i}z_{1}^{j}z_{2}^{k},$ $d=m_{0}i+m_{1}j+m_{2}k$ is called

a weighted degree of $f$ .

(Remark) Usually the weights of $f$ is defined by $( \frac{d}{m_{0}}, \frac{d}{m_{1}}, \frac{d}{m_{2}})$ . But

avoiding any confusion, we do not use this term in this paper.

Orlik and Wagreich [OW] classify algebraic varieties in $C^{3}$ with one

isolated singular point $O\in C^{3}$ .

LEMMA 3.5 [OW]. If $V=\{(z_{0}, z_{1)}z_{2})|f(z_{0}, z_{1}, z_{2})=0\}$ has one iso-

lated singular point $0\in C^{3}$ , then the defining $fu$nction $f$ is analytically

isomorphic to one of the following $fu$ncti$ons$ .

(I) $z_{0}^{a}+z_{1}^{b}+z_{2}^{c}$ (II) $z_{0}^{a}+z_{1}^{b}+z_{1}z_{2}^{c}(b>1)$

(III) $z_{0}^{a}+z_{1}^{b}z_{2}+z_{1}z_{2}^{c}(b>1, c>1)$ (IV) $z_{0}^{a}+z_{0}z_{1}^{b}+z_{1}z_{2}^{c}(a>1)$

(V) $z_{0}^{a}z_{1}+z_{1}^{b}z_{2}+z_{2}^{c}z_{0}$

Let a 5-sphere $S_{P_{3}}^{5}$ around $P_{3}$ be defined by

$\{(Z_{0}$ $Z_{1},$
$Z_{2})||Z_{0}|^{2}+|Z_{1}|^{2}+|Z_{3}|^{2}=\epsilon\}$

for small $\epsilon>0$ . Orlik and Wagreich [OW] calculate the Seifert invariants

$\{b;(O_{1}, g);(\alpha_{1}, \beta_{1}), \cdots (\alpha_{r}, \beta_{r})\}$
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for a Seifert 3-manifold $K=V\cap S_{P_{3}}^{5}$ . Let three irreducible ratios $\frac{u_{j}}{v_{j}}$

$(j=0,1,2)$ be given by $\frac{u_{j}}{v_{j}}=\frac{d}{m_{j}}$ And we define

$C_{012}=(u_{0}, u_{1}, u_{2})$ ,

$C_{0}=(u_{1}, u_{2})/C_{012}$ , $C_{1}=(u_{2}, u_{0})/C_{012}$ , $C_{2}=(u_{0}, u_{1})/C_{012}$ ,

$C_{12}=u_{0}/C_{012}C_{1}C_{2}$ , $C_{20}=u_{1}/C_{012}C_{2}C_{0}$ , $C_{01}=u_{2}/C_{012}C_{0}C_{1}$ ,

where $(\cdot, \cdot)$ denotes G.C.D..

The indices $\alpha_{j}$ of the singular orbits and the numbers $n_{j}$ of singular

orbits with indices $\alpha_{j}$ are given as follows

$\beta_{j}$ are given by $\beta_{j^{l/}j}\equiv 1$ (mod. $\alpha_{j}$ ) $(0\leq\beta_{j}<\alpha_{j})$ , where $\nu_{j}$ are given

by followings.

$(\mathcal{U}\mathcal{U}l/)=\{\begin{array}{l}(m_{0},m_{1},m_{2})(m_{0},m_{0},m_{2})(m_{0},m_{0},m_{0})(m_{2},m_{0},m_{2})(m_{2},m_{0},m_{1})\end{array}$ $typeVtypeIVtypeIIItypeItypeII$

.
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The invariants $b,$ $g$ are given by

(3.6) $b= \frac{d}{m_{0}m_{1}m_{2}}-\sum\frac{\beta_{j}}{\alpha_{j}}$

(3.7) $2g= \frac{d^{2}}{m_{0}m_{1}m_{2}}-\frac{d(m_{0},m_{1})}{m_{0}m_{1}}-\frac{d(m_{1},m_{2})}{m_{1}m_{2}}-\frac{d(m_{2},m_{0})}{m_{2}m_{0}}$

$+ \frac{(d,m_{0})}{m_{0}}+\frac{(d,m_{1})}{m_{1}}+\frac{(d,m_{2})}{m_{2}}-1$

We introduce a lemma to determine whether $K$ is homeomorphic to
$S^{3}$ or not.

LEMMA 3.8. A Seifert 3-manifold $K$ is homeomorphic to $S^{3}$ if and only

if the Seifert invariants of $K$ are one of followings.

$\{\pm 1;(O_{1},0)\},$ $\{-1;(O_{1},0);(\alpha, \alpha-1)\}$ ,

$\{0;(O_{1},0);(\alpha, 1)\},$ $\{-1;(O_{1},0);(\alpha_{1}, \beta_{1}), (\alpha_{2}, \beta_{2})\}$ ,

$1vhere-\alpha_{1}\alpha_{2}+\alpha_{1}\beta_{2}+\alpha_{2}\beta_{1}=\pm 1$ .

3-3. Proof of Theorem 3.1

We prove Theorem 3.1. It is sufficient to show the following proposi-

tion.

PROPOSITION 3.9.

(1) If $F=C1osure(F^{s}(P_{1}))$ , then one of the followings occurs.

(a) $F=F^{s}(P_{1})uF^{s}(P_{2})$

$(b)F=F^{s}(P_{1})uF^{s}(P_{3})$

$(c)F=F^{s}(P_{1})uF^{s}(P_{2})uF^{s}(P_{3})$ .

(2) The case (a) and $(b)c$ann$oth$appen.

(Proof) The north pole of a $C^{\cross}$ -orbit with south pole $P_{1}$ is $P_{2}$ or

$P_{3}$ . Hence (1) is trivial.
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(2) We show first that (a) cannot happen. Assume that $F=$

$F^{s}(P_{1})uF^{s}(P_{2})$ . The north pole of any $C^{\cross}$ -orbit with south pole $P_{1}$ is

only $P_{2}$ . In the other hand it is easy to show that the south pole of any

C’-orbit with north pole $P_{2}$ is $P_{1}$ . Hence we obtain

Closure$(F^{s}(P_{1}))=Closure(F^{u}(P_{2}))=F\approx S^{4}$ .

$F$ is a smooth symplectic submanifold of $M$ . But $S^{4}$ is not symplectic

and this is a contradiction.

Next we show that (b) cannot occur when the weights are of type

III. We consider a fixed point set $M^{Z/aZ}$ of a subgroup $Z/aZ\subset S^{1}$ .
$M^{Z/aZ}\approx 2$ points $us^{2}$ and $M^{Z/aZ}-M^{S^{1}}$ consists of one $C^{\cross}$ -orbit with

south pole $P_{1}$ and with north pole $P_{2}$ . This contradicts (b).

In the case the weights are of type II the proof is more complicated.

Assume that $F=F^{s}(P_{1})uF^{s}(P_{2})$ .

First suppose that $a\neq 1$ . In this case $F$ contains a C’-orbit with

isotropy $a$ and hence $P_{3}$ has a weight $a$ . $0<a<b$ follows that $a=b-a$ .

But this contradicts to the condition G.C. $D.(a, b)=1$ .

Hence $a=1$ . Next suppose that $b\neq 2$ . $F$ contains a $C^{\cross}$ -orbit with

isotropy $b+1$ but does not contain any orbits with isotropy $b$ or $b-1$ .

If we take a coordinate $(z_{0}, z_{1}, z_{2})$ around $P_{3}$ by

$g(z_{0}, z_{1}, z_{2})=(g^{b-1}z_{0}, g^{b}z_{1}, g^{b+1}z_{2})$ ,

then $F$ around $P_{3}$ can be represented by the following equations.

$z_{0}^{bk}+z_{1}^{(b-1)k}+z_{1}z_{2}^{p}=0$ , or

$z_{0}^{bk}+z_{1}^{(b-1)k}+z_{0}z_{2}^{p}=0$
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for some integers $k,$ $p$ . Here the weighted degree $d=b(b-1)k$ . Since

$K=S_{P_{3}}^{5}\cap F\approx S^{3}$ , the Seifert invariant $g$ of $K$ equals $0$ . From (3.7),

$\frac{b(b-1)k^{2}}{b+1}-k-\frac{(b-1)k}{b+1}-\frac{(b,2)bk}{b+1}+\frac{(b(b-1)k,b+1)}{b+1}+1=0$,

(3.10) $b(b-1)k^{2}-((b, 2)+2)bk+(b(b-1)k, b+1)+b+1=0$ .

From this equation, $b$ divides $(b(b-1)k, b+1)+1$ . On the other hand

$(b(b-1)k, b+1)\leq b+1$ . This implies that $(b(b+1)k, b+1)=b-1$ ,

$b-1$ divides $b+1$ , and $b=3$ . We solve (3.10) and we have $k=1$ . It

follows that the definition equation of $F$ around $P_{3}$ is

$z_{0}^{3}+z_{1}^{2}+z_{0}z_{2}=0$ ,

and Seifert invariants of $K$ is $\{-1;(O_{1},0);(2,1), (4,3)\}$ and we have

$K\approx L(2,1)$ . This is a contradiction. In the similar way when $b=2$ we

can prove that $K\approx L(2,1)$

In the case of type I, the proof is much more complicated and we omit

it.

3-4. Proof of Theorem 3.2.

We prove Theorem 3.2

LEMMA 3.11.

$Assume$ that the action is of type III.

(1) Let $d$ be the homogeneous degree of the defining function of $F$

$aro$und $P_{3}$ . Then 6 divided $d$ an $dP_{3}$ is a singular point of $F$ .

(2) $K=S_{P_{3}}^{5}\cap F$ is a Seifert manifold obtained from $S^{3}$ by Dehn

surgery on a trivial knot. Hence $K$ is $hom$eomorphic to a lens space.
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(3) $P_{3}$ is not an isolated singular poin $t$ .

(Proof) (1) We take a coordinate $(z_{0}, z_{1}, z_{2})$ around $P_{3}$ such that

$g(z_{0}, z_{1}, z_{2})=(g^{2}z_{0}, g^{3}z_{1}, gz_{2})$ .

Since $F$ does not contain any $C^{\cross}$ -orbits with isotropy 2 or 3, the defining

function $f$ of $F$ around $P_{3}$ is given by

$f(z_{0}, z_{1}, z_{2})=z_{0}^{3k}+z_{1}^{2k}+$ ( $other$ terms),

where $k$ is a positive integer. Hence $d=6k$ and

$\frac{\partial f}{\partial z_{j}}(0,0,0)=0$ . (for $j=0,1,2.$ )

This implies that $P_{3}$ is a singular point.

(2) Let $a$ be $\mu(P_{2})$ and $\delta$ be a small positive constant. Let

$F_{-}=\mu^{-1}(a-\delta)\cap F\approx S^{3}$ , $F+=\mu^{-1}(a+\delta)\cap F\approx K$ .

Suppose that $\{s_{1}, \cdots s_{r}\}$ are $S^{1}$ -orbits in $F_{-}$ such that their north poles

are $P_{2}$ . It is clear that

$F_{-}\backslash \{s_{1}, \cdots s_{r}\}\approx F^{s}(P_{1})\cap\mu^{-I}(a+\delta)$

$\approx K\backslash$ { $oneS^{1}$ -orbit}.

These are Seifert manifolds and their base spaces are given by

$S^{1}arrow F_{-}\backslash \{s_{1}, \cdots s_{r}\}arrow S^{2}\backslash$ { $r$ points}
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$S^{1}arrow K\backslash \{oneS^{1}- orbit\}arrow\Sigma_{g(K)}\backslash$ {a point},

where $g(K)$ is a Seifert invariant $g$ of $K$ . This follows that $g(K)=0$

and $r=1$ .

(3) We apply (3.7) in this case and we have

$0= \frac{(6k)^{2}}{6}-\frac{6k}{6}-\frac{6k}{3}-\frac{6k}{2}+2$

$3k^{2}-3k+1=0$ .

This equation does not have an integral solution. Hence $P_{3}$ is not an

isolated singular point. It implies that the singular point set of $F$ is

$F^{s}(P_{2})uF^{s}(P_{3})$ . This completes the proof.

PROPOSITION 3.12. If $F$ is not singular at $P_{2}$ nor at $P_{3}$ , then $F$ is
$S^{1}$ -difFeomorphic to $CP^{2}$ and $M$ is diffeomorphic to $CP^{3}$

(Proof) If $F$ is not singular at $P_{2}$ nor at $P_{3}$ then $F$ is smooth

submanifold of $M$ . Hence $F$ is a 4-dimensional $S^{1}$ -symplectic manifold

with moment map $\mu_{F}=\mu|F$ . From [AH], $F$ is $S^{1}$ -diffeomorphic to $CP^{2}$

since $\chi(F)=3$ . The sphere bundle $SF$ of the normal bundle $NF$ over
$F$ is given by

$S^{1}arrow S^{5}arrow F$.

This follows that $M \approx D^{6}\bigcup_{S^{5}}NF$ is homeomorphic to $CP^{3}$ . If two spin

manifolds with torsion-free homology are homeomorphic then they are

diffeomorphic (See [Wa].) It follows that $M$ is diffeomorphic to $CP^{3}$

REFERENCES

[Ah] K. Ahara, 6 dimensional almost complex $S^{1}$ manifolds with $\chi(M)$



167

$=4$ , J. Fac. Sci. Univ. Tokyo, IA Math. 38 (1991), 47-72.

[AH] K. Ahara and A. Hattori, 4 dimensional symplectic $S^{1}$ manifolds
admitting moment map, J. Fac. Sci. Univ. Tokyo, IA Math. 38

(1991), 251-298.

[At] M. F. Atiyah, Convexity and commuting Hamiltonians, Bull. Lon-

don Math. Soc. 14 (1982), 1-15.

[AB] M. F. Atiyah and R. Bott, The moment map and equivariant

cohomology, Topology 23 (1984), 1-28.

[Aul] M. Audin, Hamiltoniens priodiques sur les varietes symplec-

tiques compactes de dimension 4, Lecture Note in Mathematics

1416, Springer (1988).

[Au2] , The Topology of Torus Actions on Symplectic Man-

ifolds., Birkh\"auser Verlag, Basel (1991).

[B] R. Bott, Non-degenerate critical manifold, Ann. of Math. 60 (1954).

[D] T. Delzant, Hamiltoniens p\’eriodiques st image convexe de l’appli-

cation moment, Bull. Soc. Math. France 116 (1988), 315-339.

[F] T. Frankel, Fixed points on Kahler manifolds, Ann. of Math. 70

(1959), 1-8.

[Hal] A. Hattori, $S^{1}$ actions on unitary manifolds and quasi-ample

line bundles, J. Fac. Sci. Univ. Tokyo, IA Math. 31 (1985), 433-486.

[Ha2] A. Hattori, Symplectic manifolds with semi-free Hamiltonian
$S^{1}$ -action, preprint.

[HY] A.Hattori and T.Yoshida, Lifting compact group actions into

fiber bundles, Japan J. Math. 2 (1976), 13-25.

[I] V. A. Iskovskih, Fano 3-folds I, Math. USSR Izv. 11 (1977), 485-527;

$\Pi$ 12 (1978), 469-506.

[MU] S. Mukai and H. Umemura, Minimal rational threefold, in “Al-

gebraic geometry (Tokyo/Kyoto, 1982),” Lecture notes in Math.,



168

Springer, pp. 490-518.

[O] P. Orlik,, Seifer Manifolds, Lecture Notes in Math. 291, springer-Verlag

(1972).

[OW] P. Orlik and P. Wagreich, Isolated singularities of algebraic sur-

faces with $C^{*}$ action, Ann. of Math. 93 (1971), 205-228.

[Wa] C. T. C. Wall, Classification Problems in Differential Topology.

V, Invet. math. 1 (1966), 355-374.

[We] Weinstein, Lectures on symplectic manifolds, Regional conference

series in mathematics, 29 (1977).


