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FIXED POINT SETS OF SI—ACTIONS ON THE SPACES WHOSE
RATIONAL COHOMOLOGY RINGS ARE EVENLY GRADED
PR W (Susumu Kono)

1. Introduction

Let G = S1 be the circle group, and X a connected
finite G-CW-complex whose rational cohomology ring is evenly
graded; that is
(1.1 WX ) 2 RIxp, o o, x 1/@ ), 0,0 ),
where deg X, = 2ki 22 (1 £1i £ n) and @i are homogeneous
elements. We establish a method of determining the possibili-
ties of the rational cohomology type of the fixed point set of
G on X (Theorem 3.7). The method is an application of that
originated and improved by K. Hokama in [2] and [4] respective-
ly. Combining Theorem 3.7 with a result of V. Puppe in [51]
(Theorem 3.8), the problem of existence for connected finite
G-CW-complex whose rational cohomology ring is evenly graded is
reduced to an algebraic one. We apply the result to three cases
{Theorems 4.1, 4.2 and 4.3). A result of G. E. Bredon (1]
applied to the case

X ~p SZm % s2n

is improved slightly (Theorem 4.1). In the final section, we

construct G-CW-complexes which give examples in Theorems 4.2

and 4.3 except for the case (4).
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2. Preliminaries

Let R (resp. aR) be the polynomial ring %I[t,x c,X ]

1 n
{(resp. @[Xl,"‘,Xn]), where deg t = 2, deg X, = 2ki (1 £ 1

£n)and 1 Sk, £ - £k . Let % R — 2R denotes the ring

1 n

homomorphism defined by

a
( = PRI
F‘Xl’ ,xn) F(l,xl, ,xn)
for every F € R, and h: aR\{O} —— R a map defined by
k k
hect,x,, - -,x ) = 2820 sl ol x /e ™
1 n 1 n

for every f € aR\{O}, where &(f) denotes the total degree of

a7 = (°F|F € J)}. Let o.

f. For any ideal J in R, we set i

€ aR and‘ fi € R be homogeneous elements (1 £ i £ m), and

suppose
( = < i £
(I fi(O,Xl, ,xn) wi(xl, ,xn) (1 £ i1 £ m.
. a N
(11 dlm@ R/(¢1,~-',wm; { o,

Assume that aR/<m1,---,¢m> has a basis M = ([y 11 £i £ h)
over 1, where yi is a homogeneous element (1 £ i £ h), Yy
= 1 and 0 = deg Yy £ -+ £ deg Yy, = 2N 2 2kn. Then we have

the following lemma.

Lemma 2.1. (1) The Q[tl-module R/(fl,"',fm) is

generated by M.

(2) The -module aR/a(fl,---,fm> is generated by M.

(3 The following conditions are equivalent:

i} If tf € (f,,+++,f ), then f € (f_,--+,f ),
1 m 1 m
ii? R/(fl,"~,fm) is a free ©T[tl-module with a basis M,
C . . a_ ,a _ . ag ; L. v =
iiid dlmﬁ R/ (fl, ,fm) = dlmg R/(@l, ,wm) h.
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Proof. (1) Let f(t,x) € R be a homogeneous element of
positive degree. Then, by the assumption
_ <h m
£(0,x) = Zi=1 a,y, + ijl kj(x)wj(x)
for some a. € & (1 £1i £ h) and ki (x) € Blxl (1 £ 3§ = m.
This implies that
h m
- - = {
f(t,x) zi=1 a,v, Zj=1 kj(x)fj(t,x) tg(t,x)
for a homogeneous element g{(t,x) € R. It is shown by the
induction with respect to deg f(t,x) that
_ sh m
gCt,x) = 2i ) hi(Dyy + 30, g, (4,30 f,(t,%)
for some hi(t) € RItl] (1 £ i £ h) and gj(t,x) €R (1 £
£ m). Then we have
_ <h m
fot,x) = 27 (aprthy (byy + 30 ) e Gostg, (4,300, (L, x).
(2) Let f(x) € aR\{O} be a polynomial. It follows from
(1) that we have
h _ <h m
£Ct,x) = 20 h Dy + Z0_ 0 k(4,30 f, (4, %0
for some hi(t) € Qrtl (1 £ i £ h) and kj(t,x) €R (1 £

S m). Then we have

h m a,
= {
fox) = iy hy Dy + V) k(L0500
. h
(3) Suppose i) and §i=1 h,(yy, € «f,, £ ). Then
h
¢ “ e
Zi=1 hi(O)yi e \(pl, ’(pm),

and hence hi(O) =0 (1 £1i £ h). Suppose that hi(t) = tgi(t)
(1 £ i £ h). Then
h — h Y * o o
t200q & (Y = 20 h by, € (f e ),

and hence 2?=1 g, (Lyy, € ! *»f ). It is shown by the

L
induction with respect to the degree of §?=1 hi(t)yi that
gi(t) =0 (1 £1 £ h). Then hi(t) =0 (1 £ i £ h). Thus i)

implies ii).
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Suppose that f(t,x) € R be a homogeneous element such

that tf(t,x) € (f «+,f ) and f(t,x) is not contained in

10 m

1."',fm). By the assumption,
_ <h m
f(0,x) = zi=1 a;y, + 2j=1

for some a; €f (1 £ 1i£ h) and kj(x) € BIx]1 (1 £ j = m.

K.(x (X))
J( )¢J

If a. =0 (1 £1i £ h), then
m
f{t,x) - . K. (x)f . (t,x) = tg(t,x)
ZJ=1 J J 8
for some g(t,x) € R. Then g(t,x) is not contained in

(f °',fm) and tzg(t,x) € (fl,'~°,f Y. Thus there exists

m
Nl
f(t,x) € R and a positive integer N1 such that t “f(t,x)

1

€ (f +,f ) and [f(0,xX)] has non-zero component with

1° m

respect to the basis M. Suppose that

£00,%) - 2?=1 a,y, € (@, 0,00

for some integer k with 1 £ k£ h and a. € £ (1 £ i £ k)

with ay # 0., Then R/(fl,-~~,fm,f) is generated by M\{[yk])

over &[tl, and o VALE: ,***,f ,f) is generated by M\{[yk]}

1 m

opver §. Since

a _ a 1 _ a
| (fl, ,fm,f) = (fl, ,fm,t f) = (fl’ ,fm),
this implies that dimQaR/a(fI,"°,fm) £ h-1. Hence iii) does
not hold. Thus iii) implies i).
k a .
Suppose that 2i=1 a,y, € “(f, £ for some k with
1 £ k<£h and a, € (1 £1i £ k) with ay # 0. Then
N,-{(deg v.})/2
k 1 i
2i=1 a t vy, € (£, )

for some integer N1 2 deg yk. Hence ii) does not holds.
Thus ii) implies iii>. This completes the proof of (3).

q.e.d.
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{ ['¢ )
Let {(cia),"~,c6a’)ll S o £ k} be a set of raticnal zero
. . a L a . o) -
points of the ideal (fl, -,tm; ¢ "R:; that is, Ci € 1 and
o) () . . . .
fl(l,c1 R N > =0 (1 £1<£m 1 £a £ k. For 1 =g i

£n and 1 < j £ k., g. ; € R denotes either 0O or a

homogeneous element of degree ZNO with NO 2 N and

{ { 3
g. (1,c® oo ey 20 (1 £« k). Let S (resp. ?S) be

i,1] 1 i 'Cn

the polynomial ring

Qreer v (x, j11 £is<n, 1£j<Kk)]

(resp. f&[{xi jIl £isfn, 125 j< k;}1), where deg x, i c 2]

(1 £i £n, 1252 and deg t = 2. Consider homomorphisms

A
=

R — 25) defined by
-j K K
1 () n n n
1 i=1%1, SRR N T T S

. K Kk

(o) (o) n .
. (f) = . IR . . (1 £ < k».
(resp Ju () fic, +ZJ=1X1,J’ Co +EJ=IXH,J)) 1 £« K>

Denote by Ia the ideal generated in aS by the coefficients
Nq—j
Y1 £ £ { - ) £ i £
of Ja(fi’ (1 £ i £ m» and Ja‘gi,j) Xi,jt {1 £ i £ n,
. -1, .
i < ) . = { <
1 ¢ j £ ki’ with respect to t Set qa Ja IaS) (1 £«

£ k). Consider the induced homomorphisms
Jal R/(fl,"',fm; —_— S/IaS
a. a,,a a
. .o < <
o R/ (fl’ ,fm) S— S/Ia (1 £ 0 £ K.
Lemma 2.2. Let o be an integer with 1 £ o £ k.

(1> The graded group aS/Ia equals to zern in the degrees > 2N,

2y The ideal qa is primary with the radical

Ja, = (x —C(a)tk1 cr L X —c(a)tkn‘
Ay 1 71 ’ >*n “n o

. a . . . a. -1 . a.
{3) The ideal 9, coincides with Ja (Ia;, and I

. . . a~y , a,,a = F: P
induces an isomorphism Ja. R/ qa —_ S’Ia’
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Proof. (13 Let g(xi j) € aS be a homogeneous element.
N,Ci-1)
Set f = g(gi jt - ) € R, where
N.-K. N k.
0 i (o) Q i / ,
- - - (1 £i £ ).
g 1 Xit c, Tt 2j=2 & ; 1 £iSn

It follows from the definition that Ja(f) is congruent to

(N,-1)(deg g)/2
gt ~ {mod IaS)' By Lemma 2.1 (1) there exist

hi(t) € Blt]l (1 £ i £ h) and ki(t,x) € R (1 £1i £ m with

. sh m )
f =27, hjttry, + 20 kK (t,x0f (t,x).

(NO—I)(deg g)/2 h
Then gt is congruent to 2i=1 h, (t)J (v

(mod IaS), the degree with respect to {xi j} of which is at

L

most 2N. If deg g > 2N, then g € Ia’

(2) It follows from (1) that JT; = (xi j). This implies

that /IaS = (Xi,j), and IaS is a primary ideal. Since g
is the inverse image of Ias by a ring homomorphism Ja’ we

obtain (2).

(3) Suppose that f € aq . Choose F € qa with a

(84

F = f.

Then, the coefficients of Ja(F) with respect to i are

contained in Ia’ and the sum of which is equal to aJa(f)

= a(Ja(F)). This implies that f € aJa_l(la). Conversely,
h

-1 a
o (Ia) and f # 0. Then (Ja( £))

suppose that f € aJ

= aJa(f) € Ia' Since Ia is a homogeneous ideal and the set of

the coefficients of Ja(hf) with respect to t coincides to

that of the homogeneous components of aJa(f), we have Ja(hf)
h a(h

€ 1,S. This implies that 'f € q , and f = a

f) € qa. Thus

we obtain the first part of (3) and a monomorphism a}a: a o

— as;xa. It follows from the proof of (1) that a}a is also

an epimorphism. This completes the proof of (3). q.e.d.
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In order to state the next lemma, we set
i=ef i R/E,,,f ) — o S/1. s
a=1 ‘o 1’ *“m’ =1 o
a. _ .k a. , a,,a L. \ k a
and J} = $a=l Ja° R/ (f].’ ’fm' i $d=l S/Ia.

Lemma 2.3. (1) j 1is surjective in the degrees 2 2N.

(2) aj is an epimorphism.

(3) z§=l dimg, #s/1., < h.

() 3E_ dimg *R/%a, < h.
(8)  (f,,-+,f ) Nk a.
(6) %if et € n§=1 %a,,-

(7) The following conditions are equivalent:
i) j is a monomorphism,

.. a. . . .
ii> j is an isomorphism,

iii) 2§=1 dimg, *s/1, = h,
iv) §§=1 dimg, *R/%a, = h,
Vioo(fy e f ) = ”2:1 g
vi) a(f1,~~,fm> = n§=1 aqa.
If this is the case, the set of zero points of the ideal

) (o)
.,f ) c ®R coincides with (el®? . ot V1 £ oo £ k).

1’ m 1 ! *“n

Proof. {1) We show that for each o« (1 £ o £ k! and

homogeneous element g € aS, there exist a homogeneous element

f € R and an integer N with 0 < N, £ max {0, N-(deg g)/2},

1 1
N1
JB(f) € IBS (B # o) and Ja(f)—gt G\Ias. If deg g > 2N,
then f = 0 and N1 = 0 satisfies the above condition. Let

deg g = 290 £ 2N, and set
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where g. = Xit

i,1

i(B) is an integer
JB(Fl) € IBS
Q\No—l

J (F,) = ct

o 1

where N{{a) =

B=ox

and deg g, > 28 i

follows from the in

homogeneous element

(B # o) and Ja(F)

hi(t> € LLt]

h v
) =
Set X _, h, (tiy,

element of degree

\ N-2
Ja(f; gt € IaS.

respect to (deg g)

(2) In the pro

(3) It follows

kK .
2a=1 dlmﬁ

(4) is a direct

(5) and (6) are

(7) It is evid

equivalent to vi),
equivalent to vi>.
Th

Suppose i1}.

(B # o)

> (N+1)k

ki(B)

(B) t )

N+1
i(8) ’

Y+ T (X. ,.-
B=or Xi(B)"°
Ky c(a)tNO _ zki .
i =2 Bi,j

(B RCY
i (8) i(8)

<

(1 £1 £

with = B #Z o).

and
N(aty-1
g8+ 2., t

0 # c € 4,

Y+N{(a) Q(NO-1)+i

gy

a
(0 < i
LBy’ gi € S (0 £ i

Set N, =

5 max {N,

f gi = 0,
ductive hypothesis that there

F € R
N,-¢

2
gt € Ias.

2N with J

of degree 5 8

By Lemma 2.1 (1)

h) and ki(t,x) € R (1 £ i

k. (t,x)f, (t,x).
i i

N, -N

ft ~ , where f € R

2N. Then, we have JB(f) € IBS

Thus (1) is proved by the

/2.

of above, aj([af]) = [gl. This

from (2) and Lemma 2.1 (2)

a <

a,, a
. . <
S/Ia d1m® R/ (f ,fm) £ h.

,
1

consequence of (3) and Lemma 2.2

immediate from the definition.

ent that i) is equivalent to v), ii)

iii) is equivalent to iv) and v) is

en R/(f1,°-°,fm) is a torsionfree

n’

QNO+N(a)}.

exists a

is a homogeneous

implies

that we have

(3).

is

and

Then we have

(mod IaS)’

< N{a))

It

(F) € IBS

there exist

£ m) with

(B # o) and

induction with

(2).
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€Ltl-module (®§=1 S/IaS is a free R[tl-moduley. It follows

from Lemma 2.1 (3) and ii) that

_ a,,a .. _ <k . a
h = dimg R/ fy, £ = 2a=1 dimg, S/1

o
Thus i) implies iii).
Suppose iii). [t follows from (2) and Lemma 2.1 (2) that

a

. apy a .. K . -
h 2 dimgy “R/TCE,,---,f > 2 2, dimy “S/1, = h.
This implies that h = dim aR/a(f1,~--,fm) and %j is an
isomorphism. Thus iii) implies ii). This completes the proof
of (7). qg.e.d.

3. Equivariant cohomology rings

Let X be a connected finite G-CW-complex whose rational
cohomology ring is evenly graded; that is, there exists an
isomorphism
(3.1) 10 BIxy, X 1/, o 0 ) — H (X3 W),
where deg xi = 2ki 22 (1 £1i £ n) and wi is a homogeneous
element (1 £ i £ m). Let =t: EG X L — BG be the complex
line bundle associated to a universal G-bundle EG — BG.

Then we have

(3.2) H¥(BG: ©) = Qrt], where t € H2(BG: ©) 1is the Euler

class of t.

Let m: XG = EG XG X — BG be the associated bundle with

fiber X, and i: X — XG the inclusion of a fiber. The

equivariant cohomology ring of X 1is defined by Hz(X; )
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). The induced homomorphism n*: H*fBG; (AR

= H (XG; -
— Hé(X; Iy gives a WFH[tl-algebra structure to Hz(X; £y,
odd .., w1y A )
Then HG (X; %) 2 0 and the sequence
*
. ] o ] . . ]
(3.3) 0 — Hé’(X; 0y — Hél+“(X; B —— HIP2 s ) — 0
2k. "

is exact. Choose a; € HG Yex: ) with i (ai) = i(X}([Xi])
(1 £i £ n). Then Hé(X; t) is generated by {aill £ i £ n}

as a NRItl-algebra. Let I(X;): R — Hz(X; ) be the

Pltl-algebra homomorphism defined by setting I(XG)(xi) = ai

{1 £ 1 £ n). Choose a homogeneous element fi € R with

{ { = .
I‘XG)(fi) O and fi(t’xl’

< m). The proof of following lemma is similar to that of

. - PN < i
,xn) @i(xl, ,xn) (1 £ i

[3, Lemma 2.2].

Lemma 3.4. The kernel of I(XG) coincides with the ideal

1,"°,fn> of R and I(XG> induces an isomorphism
3 N e / o o o * . "-\
1(XG;. R/(fl’ ,fm) —_— HG(X, INDIN

Let F = XG be the fixed point set of the G-action on X

with connected components Fl’ e, Fk' Let

j: FG = BG X F & XG
be the inclusion map. Then the sequence
* ¥ * k+1
(3.5) 0 — H.(X; -4, Ho(F3 B) — H T (X/G, F3 ) — 0
is exact. For 1 £ o £ k, let pa: (Fa)G —_— Fa be the

projection to the second factor. Then we have an isomorphism

o iy * o * o
Lyt L{t] ® H (Fa’ By — HG(Fa, b

defined by setting ta(h ® a) = hp (a) for every h € HIt]



213

and a € H*(Fa; ) For 1 £ i £ n, set
k k. K.-]
* _ <k (o), 1 i i *® (o),
i (a.) = za=1 c, 't + 2j=1 t o (ai,j’ ,
where a§a; € H2J(Fa; )y  and c§a) €L (1 £az= k).

Lemma 3.6. (1) For 1 £ o £ k, H (Fa; ) is generated by

(a§“;|1 £i<n, 15j<Kk.}.

(2) (c(a),°'°,céa)) Zz (¢

Proof. Suppose a € H*(Fa; L. It follows from the

exactness of the sequence (3.5) that there exist an integer N1

N
2 0 and an element f € R such that j*(I(XG)(fB) =t lpa*(a).

By the isomorphism ta, we see that there exist a polynomial g

€ aS such that g(aia;) = a. This completes the proocf of (1.
In the proof above, set a = 1. Then we have

f(l,c(a),°‘~,c(a),
1 n

(R
;B),°", HB}) =0 if B8 # a. This completes the

proof of (2). q.e.d.

and f(1l,c

For 1 £ o £ k, let I(Fa): as —s H*(Fa; f}) be the ring

homomorphism defined by setting I(Fa){xi j) = aia; {1 £i <£n,
. . * .y Ty -
1 £ = ki)’ and I((Fa)G)' S — HG(Fa’ Wy a %HI[tl-algebra
homomorphism defined by I(Fa) and la' Choose NO 2 N and
g ;€ 8 (1 £i<n, 1< j< k,) such that
[((F_).)(J (g, .}) = tNO_Jp *al% g o< K.
o' G o "i,j o i,] - -
For 1 £ 0 £ Kk, let [a be the ideal generated in ag by the
NO—J

coefficients of J_(f.) (1 £1 £m and J _(g. .y - x. .t
[54 1 (04 1,] 1,1]
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(1 £1i £n, 1 ¢ j £ ki} with respect to t, and set q,

Theorem 3.7. Let o be an integer with 1 £ a £ k. Then
we have

(1Y The Kkernel of the homomorphism I(Fa) coincides with Ia’

) . . . . R * oL
and I(Fa) induces the isomorphism 1(Fa). S'Ia — H (Fa’ W) .
. k .
{2 . .. = s -\ .
(2) (fl, ,fm) na=1 qa is the reduced primary
K K
- . _— IR 21 B RGN
decomposition, where /qa = (xl ¢y t -, X —Co t .
(o) (o) . .
) e o o 3 - S S S
(3) gi’j(l,c1 , ' Ch ) 0 (1 £1if£n, 1< j<g ki)

Proof. By the definition, we have I(Fa)(la) = 0. Let f

€ Ker I(Fa) be a homogeneous element. By Lemma 3.6 (2), there
(B (o)

is an integer 1i(8) with Ci(B) = Ci(B) for each 8 # o. Set
N.(j-1) k. N
_ 0 . _ B 1(8)\ 1
g = f(gi,jt ) nB#a(Xi(B> Ci(B)t ) .
where N1 is an integer such that H' (F: %) = 0 for i 2 2N1
N.-k N k.

_ 0 i _ (), 0O _ i .

and 8 1 = x;t et 2j=2 LI (1 £i<£n). Then

we have j (I(X,.)(g)) = 0, and hence g € (f,,-++,f ). The

G 1° m

coefficient of the highest degree with respect to t in the
polynomial Ja(g) is congruent to a multiple of {f by same

non-zero constant (mod Ia). This implies.that f € Ia‘ This

completes the proof of (1).

a % _
3 i - = i _ { [N ©
Since dlmk S5/1 dlmu H (F_ ; H) < «, we have /I

= (xi j), and hence Ia is a primary ideal. It follows that
Ias is also a primary ideal and JIaS = (xi j)‘ By the

definition, qa is a primary ideal with the radical
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{ n { n
(xl—cia)t 1,--~,xn—cﬁa)t n). Since j* is a monomorphism, we
k .
NP )y = 23
have (fl’ ’fm’ na=1 qa. This completes the proof of (2.
. i) (o), r .
Since g. .(1l,c ,*,C )y € & is equal to the
1,] 1 n
No No=J
coefficient of t ° of the polynomial Ja(gi j) - Xi.jt
a . () ., (), _
and Ia # S, we have gi,j‘l’cl s ’Cn ) 0. g.e.d.

By Lemma 2.3, it is easy to see that we can assume N

0 N.

According to [5] and Lemma 2,3, we have the following theorem.

Theorem 3.8 (V. Puppe [51). Let f € R and ¢ € ap

{1 £i £ m» be homogeneous elements that satisfy (I) and (II).

{ {
Let {(cia),"°,cﬁa)}3l £ o £ k} be a set of rational zero
points of the ideal a(f1,°-',fm) c ®R. For 1 <i<n and
1 ¢ j £ ki’ gi ; € R denotes either O or a homogeneous
(o) (o), _ ,
element of degree 2N and gi J.(l.cl vt Cp Yy = 0 (1 8§ o
£ k). Set 1 as in the section 2 (1 £ ¢ £ k). If one of the

o
properties i)-vi) of (7) of Lemma 2.3 is satisfied, then there
is a finite G-CW-pair (X, F) and #%[tl-algebra isomorphisms
* iN
G(X, AD)]
*,' . < <
S/IaS —_— HG‘Fa’ £) (1 £ ¢ £ k), such that F

1(XG): R/(f1,~--,fm) — H
and 1((Fa)G):
G

= X with connected components F F and the following

e By

diagram commutes:

' k
{ o o0 ) ————— 7
R/‘fl’ y £ ) ®a S/IaS

m =1
i (X)) ®k i ((F_) )
G " =1 To’'G
41y .] - k * . )
He (X5 &) @, HG(F,5 &
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4. Applications
Applying Theorems 3.7 and 3.8 to corresponding cases, we

obtain the following theorems.

Theorem 4.1. Let X ~r 82m X S2n be a finite G-CW-

complex, 1 £ m £ n. Then one of the following possibilities

must occur:

{1 F ~, qu X S2r, mz=2g9g, n=2r.

A

(2) F o~y P°2a), 1£a£n/2<m or 15q2n/2%n/4.

{3) F ~n (point + P2(2q)), 1 £

2r

a
(4) F ~ 524 4 g n2q, nz2r.

N
Conversely, each type of (1)-{4) can be realized by the

fixed point set of a G-CW-complex.

Theorem 4.2, Let X ~yp HP(2) # CP(4) be a finite G-CW-
complex. Then one of the following possibilities must occur:

(0) F ~p X.

(1) F ~p CP(2) # CP(2) + S°.

2> F ~py F, + 2 points,

where H¥(F;0) = @[xl,x2]/(xlx2,X22-ax12), 0 # o €8 and
deg Ry = deg X, = 2.

{3) F ﬁvw CP{3) + 2 points.

(4) F ~ CP(2) + CP(2).

(5) F ~i CP(2) + S2k + point (k £ 2).

(6) F ~, S2k + SZm + 2 points (k£ 2, m=< 1).

Conversely, each type of (1)-(6) can be realized by the

fixed point set of a G-CW-complex.
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Theorem 4.3. Let X ~yg HP(2) # (-CP(4)) be a finite G-
CW-complex. Then one of the following possibilities must occur:

(0) F ~p X.

0}

9
(1) F ~, 52 X 82 + S7.
N
(2) F ﬂv@ F1 + 2 points,

* Sy X 2 2 1L
where H (F;Q) = Q[xl,le/(xlxz,x2 *ox, ), 0 # o € & and
deg x1 = deg x2 = 2.

2k
(3) F ”vg CP(3) + S (k £ 2).
{(4) F ﬁv@ CP(2) + CP(2).
2
(5) F ﬁvﬂ CP(2) + S“k + point (k £ 2.
6) F o~y 57K 4 s s® kg2, mg1, 08D,

Conversely, each type of (1)>-(6) can be realized by the

fixed point set of a G-CW-complex.

5. Construction of Sl—CW-complexes
Finally we construct some G-CW-complexes which give

examples in the Theorems 4.2 and 4.3. Set
11 _ . . . 4 cn 33
S = ((u1+]v1,u2+jv2,u3+jv3) € (C o ;D 'zi=1(|uil
3

. ., 2
and S° = (x+jy € C & jC|Ix] +|y|2

2 2

+lv. %) = 1}
i

i

1. Then HP<¢(2) is

defined as the orbit space 511/83, where the Sa—action on

s!! is defined by
. . . sy .
(u1+jv1,u2+1v2,u3+jv3, (X+)1y)
(ulx-v1y+j(v1x+u1y),uzx—v2y+j(v2x+u2y),u3x—v3y+j(v3x+u3y))
. . . . 11 3
for every (u1+jv1,u2+]v2,u3+jv3,x+1y) € S X §7. For each
3 .

(cl,cz,cg) € 7%, W(CI,CZ,CB). G X HP(2) — HP(2) denotes the

G-action on HP(2) defined by
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W(cl,cz,ca)(z,[u1+jv1,u2+jv2,u3+jv3])
= [zclu1+j2-C vl,zczu2+jz-C2v2,2C3u3+jznc3v3]
for every (z,[u1+jv1,u2+jv2,u3+jv3]) € G X HP(2). Set
D} = (T, %5y, uy+§v,,ug+jv,) eVHP(2)||u1|2+|v1|2 > 1/2),
SZ = (Luy+jvy,u +jvy,u +jv,] € HP(2)|Iu1|2+IV1|2 = 1/2)
and 87 = (Qu+iviu,eivy) € €@ GO duiPavh = .
Let hlz SZ —_— S; be the homeomorphism defined by
hl([ul+jv1,u2+jv2,u3+jv3])
= (1/(u151+v171))(u251+32v1+j(v251-52v1),u3ﬁl+73v1+j(v351—ﬁ3v1))
for every [u1+jv1,u2+jv2,u3+jv3] € SZ. Set
s7 - {(rlzl,rzzz,rszs,r424)IE?=1rj =1, r; 20, z, € sly.
Let fq: S; — 27 be the homeomorphism defined by
fq(u1+jv1,u2+jv2) = (ul/s,vl/s,uz/s,vz/s)
for every (u1+jv1,u2+jv2) € SZ with s = Eizl(lujl+lvjl). Set
s? = (W Wy W, Wa, W, ) € €5|2?=Olwil2 = 1),

and s! = (z € "Cllzl2 = 1}). Then CP(4) is defined as the
orbit space 8%/s!, where the Sl-action on 8% is defined by

z-(wo,wl,wz,w3,w4) = (zwo,zw1,2w2,2w3,zw4)

1 9
for every (z,wo,wl,wz,wa,w4) € S X §7. For each
-5 .
(ao,al,az,aB,a4) € 1Y, @(ao,al,az,aa,a4). G X CP(4) — CP(4)

denotes the G-action on CP(4) defined by

®lay,a),a,,a5,a,)(2,[Wy, Wy, Wy, Wa, W, 1)

4
= [zaow zalw zazw zaaw za4w ]
0’ 1’ 2’ 3’ 4
for every (z,[wo,wl,wz,wa,w4]) € G X CP(4). Set
Dg = (IWy, Wy, Wy, Wa,W, ] € CP(4>||wO|2 > 1/2},
S5 = (Lwy,W, Wy wg,w,] € CPCAY 1w 1% = 1/2)
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and S7
c

- rdi<4 2 _ .
= (W oWy, wa,w,) € CF30 1w, 1% = 1}, Let h,: S
— SZ be the homeomorphism defined by
h2([w0,w1,w2,w3,w4]) = (wl/WO’WZ/WO’WB/WO’W4/WO)
7 7 7
for every [wo,wl,wz,WB,w4] € Sz. Lgt fc. SC —_ be the
homeomorphism defined by

fC(wl,wz,w3,w ) = (wl/s,wz/s.w3/s,w4/s)

4
for every (w ,w,,wg,w,) € SZ with s = Z?=1ijl. For each
(d,,d,,dg,d,) = I, let fd ,d,,d5,d,): £ — I’ be the map
defined by
f(dl,d2,d3,d4)((r121,r222,r323,r4z4))
= (rlzldl,r222d2,r323d3,r424d4)

7
for every (rlzl,r222,r323,r4z4) € X', Now we set

X = X(d,d,,dg,d b ,b,,bg,b,)
(CP(4)\D%),

1 fc(bl,b2?b3,b4) 2

b b3,b4)) is the

8
= 2 U (HP(2)\D;) U
f (d d2,d3,d4)

q 1’
where fq(dl’dz’d3’d4) (resp. fc(bl’ 9

composition
1727374
{(resp. f(bl,b2,b3,b

f{d,,d,,d,,d )°fq° 1’ S, — Z

— 27). Suppose d, (c,-c,)

)ofcoh : S 1 (€5

4 2

0), dz(—cz—cl) = bz(az—a Y, d (c3—c1) = ba(aS—aO) and

d4(-03—cl) = b4(a4-a0). Then X has the G-action compatible
8

with W(cl,cz,c3>l(HP(2)\Dl)

that is, X has a G-CW-complex structure. It is easy to see

= bl(al—a

8.,
and @(ao,al,az,aa,a4)|(CP(4)\D2),

that we have

LI ~ 2 4 3 5,
H (X; Z) = Z[xl,le/(xlx2,d1d2d3d4x2 +b1b2b3b4x1 R INEE SRR

I - o2 .
I1f b1b2b3b4d1d2d3d4 = ~-n (resp. b1b2b3b4dld2d3d4 = n ) for

some positive integer n, then we have X ~0 HP(2) # CP(4)
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{resp. X ﬂv@ HP(2) # (-CP(4)). Thus we obtain following
examples.

[(4.2)(1)1] If Cy = ¢y = c, = ¢ # 0, a; = az = a,, a, = a4
= aO—ZC, di = 1 (1 £1 £ 4), -b1 = b2 = b3 = b4 =1, then we
have

X = HP(2) # CP(4) and XC¥ = CP(2) # CP(2) + S°.
[(4.2)(2)] If c1 =c, = c3 = c # 0, a1 = ag = a2+20 = a,-a
= a (ata+2c) # 0), d. = b, =1 (i =1, 2), d, = -b, = 2c¢c and
0 i i 3 4
d4 = b3 = a, then we have
X fvﬁ HP(2) # CP(4) and XG = F1 + SO,
* 0y 2 2
where H (F,; Q) = @[xl,le/(x1x2,2cx2 +ax, ") and deg X
= deg x2 = 2.
[(4.2)(3)] If c1 = 5¢c # 0, Cy = 4c, Cq = 13c, ai = ao—ﬁc
(1 £i £4), d. =6 (1 £iZ£ 4, b, =1, b, = 9, b, = -8 and
i 1 2 3
b4 = 18, then we have
X ﬁv® HP(2) # CP(4) and XG = CP(3) + SO.

[(4.2)(5) k=21 If c1 = ¢c # 0, c2 = 03 = 0, ai = ao-c
(1 £1 £ 3), a, = a,*c, di = bi =1 (1 £1i = 3), d4 = 1 and
b4 = -1, then we have

X = HP(2) # CP(4) and XG = CP(2) + S4 + point.

[(4.2)(5) k=11 If c1 02 = 0, 03 = Z 0, a1 = 32 = aO,

- - = (-1)!p. = < i< = =
aq a, an=¢, di (-1 bi 1 (2 £1i £ 4) and d1 b1 1,
then we have

X = HP(2) # CP(4) and X% = cP(2) + s% + point.

[(4.2)(h) k=01 I£f c1 02 = 0, 03 = #Z 0, a1 = a2 = ao,

= = a_ - = = < = -
a, ag*tc, a, a,=c, di ; 1 (2 =i 4) and d1 b1
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1, then we have

X = HP(2) # CP(4) and XG = CP(2) + 3 points.
((4.2)(6) k=2, m=11 If ¢, = 2c # 0, Cp = Cgq = 0, a;-c¢
= - = = = = - i = .
= a3 c a2+c ags ay a0+160, 2di (-1) bi 2 (1 £1i1 £ 3,
d4 = 8 and b4 = -1, then we have
X ~g HP(2) # CP(4) and x9 - st 4+ 5% 4+ §°
[(4.2)(6) k=2, m=0] If cl = 2¢c # 0, 02 = 03 = 0, al+c
= a,~-C = aB+2c = a4+8c = Ay, di =1 (1 £1i £ 3), d4 = 4, b1
= —b2 = 2 and b3 = b4 = 1, then we have
X ~g HP(2) # CP(4) and x% = s* + 4 points.
[(4.2)(6) k=m=1]1 If €, = ¢y =¢C = 0, Cq = 0, a1 = a5, a,
= a0+20, 33 =a, = aO-c, di =1 (1 £ 1 £ 4) and b1 = -b2 = b3
= b4 = 1, then we have
G 2 2 .
X = HP(2) # CP(4)Y and X = S + S + 2 points.
[(4.2)(6) k=1, m=01 If c1 = 02 = c #0, 03 = 0, a1 = 32+20
= ag-c¢ = a4+c = ay, di =1 (1 £1i £ 4), bi = (~-1) (2 £1i £ 4)
and b1 = 1, then we have
9
X = HP(2) # CP(4) and XG = 8 + 4 points.
[(4.2)(6) k=m=0]1 If 01 = c # 0, 02 = 2c¢c, 03 = 3¢, a;-c
= a2+30 = a3+20 = a4+4c = aO, di = bi = 1 (i # 3) and d3 = -b3
= 1, then we have
X = HP(2) # CP(4) and X% = 6 points.
[(C(4.3)(1)1 If ¢y = €, = €g =C # 0, a; = ag = a,, a, = a,
= a0-20, di = bi =1 (1 £1i £ 4), then we have
X = HP(2) # (-CP(4))
and X% = CP(2) # (-CP(2)) + §° ~0 s x g2 + g2
[(4.3)(2)]1 If c1 = 02 = 03 = c # 0, a] = a3 = a2+2c = a4—a
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= aO (a(a+2c) # 0), di = bi =1 (i =1, 2), d3 = —b4 = 2¢ and
d4 = -b3 = a, then we have
X ~g HP(2) # (-CP(4)) and x% = F, o+ 50,
* . ~ DO 2 _ 2 _
where H (F1.®) = @[xl,x2]/(x1x2,2cx2 ax, ) and deg Xy
= deg x2 = 2.

[(4.3)(3) k=21 If ¢, = c Z# 0, €, = 03 = 0, ai = a,-c¢

(1 £1 £ 4) and di = bi =1 (1 £1i £ 4), then we have
X = HP(2) & (~-CP(4)) and XG = CP(3) + S4.

[(4.3)(3) k=11 If c1 = 0, c2 = 03 = c # 0, ai = aO-c
(1$£i€£4,d, =1 A£ig£4 and b, = - asgi g,
then we have

X = HP(2) # (-CP(4)) and X° = CP(3) + §°

[(4.3)(3) k=0] If ¢y = 0, 02 = ¢ # 0, c3 = 4c, ai = aO+20
(1 £1 £ 4y, di =2 (1 £i1i £ 4), b1 = —b2 = 1 and b3 = —b4
= 4, then we have

X ~, HP(2) # (-CP(4)) and x% = cpesy + sV,

[(4.3)(b) k=2] If Cl = 2¢c & 0O, 02 = 03 = 0, ai = ao-c

(1 £i1i £ 3), a, = a.-16c, 2d, = b, = 2 (1 £1 £3), d, = 16
4 0 i i 4
and b4 = 2, then we have

X ~g HP(2) # (-CP(4)) and x% = cp2) + s? + point.

[(4.3)(5) k=11 If ¢, = 02 = 0, c3 = c # 0, a1 = a2 = a,,
a. = a, = a.-c and d. = (-D'p, =1 (1 £i1i £ 4), then we
3 4 0 i i
have

X = HP(2) # (-CP(4)) and XG = CP(2) + 52 + point.

[(4.3)(5) k=0] If ¢, = 02 = 0, c3 = c # 0, a1 = 32 = aO,
a3 = a0+c, a, = a;=c¢ and di = bi =1 (1 £1i £ 4), then we
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X = HP(2) # (-CP(4)) and X% = CP(2) + 3 points.
[(4.3)Y(6) k=2, m=n=1] If c1 = c # 0, c2 = c3 = 0, a1 = a3
i .
= = = - = - = < <
a0+c, a2 a4 ao ¢ and di (-1) bi 1 (1 £1 £ 4), then
we have
X = HP(2) # (-CP(4)) and x° = s?+ 5% + g2,
[(4.3)(6) k=2, m=1, n=0]1 1If ¢y = 2¢c # 0, C, = Cq = 0, a,-¢
= - = = = - = - i = i
= a3 c a2+c ags a, a, 16¢, 2di (-1 bi 2 (1 £1 £ 3,
d4 = 8 and b4 = 1, then we have
X ~g HP(2) # (-CP(4)) and x% = s* + s%2 + 2 points.
[(4.3)(6) k=2, m=n=0] If c1 = 2¢c # 0, 02 = 03 = 0, a1+c
= a,-C = a3+2c = a4—8c = a,, di =1 (1 £1 £ 3), d4 = 4, b1
= -b2 = 2 and b3 = —b4 = 1, then we have
X ~g HP(2) # (-CP(4)) and x% = s* + 4 points.
[(4.3)(6) k=m=n=1] If ¢, = 0, c2 = Cy=C = 0, a; = a3
= a0+c, a, = a, = a,-c¢ and di = bi =1 (1 £1i £ 4), then we
have
X = HP(2) # (-CP(4)) and XG = 82 + S2 + Sz.
[(4.3)(6) k=m=1, n=0] If c1 = 02 = c # 0, c3 = 0, al = ao,
32 = a0+2c, ag = a4 = aO—c, di =1 (1 £1i £ 4) and —b1 = —b2
= b3 = b4 = 1, then we have
X = HP(2) # (-CP(4)) and X% = s? + g2 + s%,
[(4.3)(6) k=1, m=n=0]1 1If c1 =c, =¢C = 0, c3 = 0, a, = a1
= a,+2c = a,-¢c = a,+¢ and d. = (-ID'b, = 1 (1 £ i £ 4), then
2 3 4 i i
we have
X = HP(2) # (-CP(4)) and X° = s% + 4 points.
[(4.3)(6) k=m=n=01] If ¢y =¢ Z 0, C, = 2¢c, Cq = 3c, a,-¢
= a2+3c = a3—20 = a4+4c = a, and di = bi =1 (1 £1i x5 4y,
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then we have

X = HP(2) # (-CP¢4)) and X% = 6 points.
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