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Abstract

In this report, some recent progress of classification of flag-transitive
exteded dual polar spaces (FEDP) is described, as well as an announce-
ment of existence of three new non-classical FEDPs of rank 3.

1 FEDPs.

1.1 Terminology.
We review some standard terminology of incidence geometries (see e.g. [9] $p$ .
2-3, [13], [8]). An (incidence) geometry $\mathcal{G}=(\mathcal{G}_{0}, \mathcal{G}_{1}, \cdots , C_{Jr-1}; *)$ on an ordered
set $I=\{0, \ldots, r-1\}$ is an ordered sequence of $r$ pairwise disjoint non-empty
sets $C_{Ji}$ $(i=0, \ldots , r-1)$ together with a symmetric, reflexive $relation*(called$
an incidence) on their union $\Gamma$ $:=C_{J0}\cup \mathcal{G}_{1}\cdots\cup \mathcal{G}_{r-1^{\backslash }}^{\backslash }$ such that if $F$ is any
maximal subset of $\Gamma$ satisfying $x*y$ for any $x,$ $y\in F^{-\backslash }$(called a maximal flag),
then $|F\cap \mathcal{G}_{2}|=1$ for any $i\in I$ .

For a flag $F$ of $\mathcal{G}$ (i.e. a subset of $\Gamma$ of mutually incident elements), the subset
$\{i\in I|\mathcal{G}_{i}\cap F\neq\emptyset\}$ (resp. its complement in $I$) with the induced order is called
the type (resp. cotype) of $F$ and denoted by $typ(F)$ (resp. coty$(F)$ ). If $F$ is
not maximal, the subsets $\mathcal{G}_{i}(F)$ $:=\{x\in C_{Ji}|x*y(\forall y\in F)\}$ for $i\in coty(F)$

form a geometry $\mathcal{G}_{F}$ on coty $(F)$ by restricting the incidence relation $*onto$
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$\Gamma(F)$ $:= \bigcup_{i\in coty(F)}\mathcal{G}_{i}(F)$ . Tltis incidence geometry $\mathcal{G}_{F}$ is called the residue of $\mathcal{G}$

at a flag $F$ .
With an incidence geometry $\mathcal{G}$ we associated a graph on $\Gamma$ , called the incidence

graph of $\mathcal{G}$ , by declaring that two elements $x$ and $y$ of $\Gamma$ are joined whenever
$x*y$ . If the incidence graph is connected, the geometry is called connected. A
connected geometry $\mathcal{G}$ is called residually connected, if the induced graph on
$\Gamma(F)$ is connected for each non-maximal flag $F$ .

A (special) automorphism of a geometry $\mathcal{G}$ is a bijection on $\Gamma$ preserving each
$\mathcal{G};(i\in I)$ and compatible with the $incidence*$ . A group $G$ of automorphisms of
a geometry $\mathcal{G}$ is called flag-transitive if $G$ acts transitively on tlte set of maximal
flags of $\mathcal{G}$ . A geometry $\mathcal{G}$ is called flag-transitive if the full automorphism group
$Aut(\mathcal{G})$ is flag-transitive. Note that in a flag-transitive geometry $\mathcal{G}$ , the residues
at flags $F$ and $F’$ are isomorphic if type$(F)=type(F’)$ . Thus the structure
of residues is determined only by their types, and so sometimes we simply use
the word J-residue to call a residue $g_{F}$ with type $(F)=J(j\subseteq I)$ . For a
flag-transitive automorphism group $G$ of a geometry $\mathcal{G}$ and a flag $F$ of $\mathcal{G}$ , the
stabilizer of $F$ (i.e. the subgroup of $G$ of elements fixing any $x$ of $F$ ) is denoted
by $G_{F}$ . The kernel of $G$ at $F$ is the normal subgroup of $G_{F}$ fixing all elements
of $\Gamma(F)$ , and denoted by $I\iota_{F}’’$ . The group $G_{F}/K_{F}$ ats faithfully on the residue
$\mathcal{G}_{F}$ . If $F=\{x\}$ , we simply write the stabilizer and the kernel by $G_{x}$ and $K_{x}$ ,
respectively.

1.2 FEDPs and FEQs
An extended dual polar space (abbreviated to EDP) is a residually connected
incidence geometry $\mathcal{G}=(c_{0,\mathcal{G}_{1,Jr}}j )C$ $;*$ ) on $I=\{0, \ldots, r\}(2\leq r)$ if the
residue $\mathcal{G}_{F}$ at a flag $F$ with $|coty(F)|=2$ satisfies the following conditions. (See
[9] p.l and p.3 for generalized n-gons and a circle geometry. We call $(s,t)$ in [9]
p.1 the order of a generalized polygons, instead parameters):

(0) If coty$(F)=\{0,1\}$ , the residue $\mathcal{G}_{F}$ is a circle geometry (i.e. there are
bijections $\rho_{0}$ and $\rho_{1}$ from $\mathcal{G}_{0}(F)$ and $\mathcal{G}_{1}(F)$ onto the sets of vertices and
edges of a complete graph, respectively, such that $x_{0}*x_{1}(x_{i}\in \mathcal{G}_{i}(F)$ ,
$i=0,1)$ iff $\rho_{0}(x_{0})$ is a vertex on an edge $\rho_{1}(x_{1}))$ .

(1) If coty$(F)=\{1,2\}$ , the residue $\mathcal{G}_{F}$ is a generalized quadrangle (i.e. the
incidence graph of $C_{JF}$ is of diameter 4 and girth 8).
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(i) If coty$(F)=\{i, i+1\}$ with $3\leq i\leq r-1$ , the residue $\mathcal{G}_{F}$ is a projective
plane (i.e. the incidence graph of $\mathcal{G}_{F}$ is of diameter 3 and girth 6).

(ij) Otherwise, the residue $C_{JF}$ is a generalized digon (i.e. $x*y$ for any $x\in C_{jj}(F)$

and $y\in \mathcal{G}_{j}(F)$ for $i<j$ with coty $(F)=\{i, j\})$ .

An EDP is nothing more than an incidence geometry belonging to the following
diagram (see e.g. [9] p.3 for the formal definition of a diagram).

Elements of $\mathcal{G}$ ; are called points, lines and planes, respectively for $i=0,1$ and
2. We abbreviate a flag-transitive EDP to an FEDP. An FEDP is called linear
if we may identify a line with the two points incident with it, that is, there is
a.t most one line incident witb two distinct points. $\Lambda$ linear FEDP of rank 3 is
called an FEQ (flag-transitive extended generalized quadrangle) [2].

An EDP $\mathcal{G}=(\mathcal{G}_{0,\ldots,Jr}C ; *)$ of rank $r+1$ is called classical if its O-residue
$(\mathcal{G}_{1}(P), \ldots, \mathcal{G}_{r-1}(P);*)$ at each point $P$ is a dual polar space for a classical
geometry: That is, if there is a vector space $V$ and a non-degenerate form $f$ of
Witt index $r$ on $V$ listed in tbe table below such that $\mathcal{G}_{i}(P)$ is the set of totally
isotropic (or singular) subspaces of $V$ of projective dimension $r-i(i=1, \ldots, r)$

$and*is$ given by inclusion.

In particular, classical GQs (EDP of rank $r=2$) consist of the following five
families: the GQ $W(q)=C_{2}(q)$ of order $(q, q)$ and its dual $Q(4, q)=B_{2}(q)$

admitting the simple group $S_{4}(q)\cong O_{5}(q)$ , the GQ $Q^{-}(5, q)=2D_{2}(q)$ of order
$(q, q^{2})$ and its dual $H(3, q^{2})=2A_{3}(q^{2})$ admitting the simple group $O_{6}^{-}(q)\cong$

$U_{4}(q^{2})$ , and the GQ $H(4, q^{2})=2A_{4}(q^{2})$ of order $(q^{2}, q^{3})$ admitting the simple
group $U_{5}(q^{2})$ (see [7] 3.1.1 p.36). (Since the GQ $D_{2}(q)$ is of order $(q, 1)$ , which
is not thick, we usually remove this GQ from our list of classical GQs.)
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By joining works by Tits, Brouwer and Aschbacher (see [1]), flag-transitive
polar spaces of rank $\geq 3$ are either classical or of rank 3 (and non-classical).
There is a unique known example of a flag-transitive non-classical polar space of
rank. It is called the sporadic $A_{7}$ -geometry, which has 7 points, 35 lines and 15
planes and the full automorphism group $A_{7}$ . It is conjectured that a non-classical
flag-transitive polar space of rank 3 is isomorphic to the sporadic $A_{7}$-geometry,
but so far no proof exists 1. It seems to me that the following conjecture is much
more easy to prove.

Conjecture. If $\mathcal{G}$ is a non-classical FEDP of rank 4, O-residues are isomorphic
to the $A_{7}$ -geometry.

Tlius, assuming the above conjecture is true, one of the following occurs for
a,n FEDP $\mathcal{G}$ :

(1) $\mathcal{G}$ is of’ rank 3 and classical.

(2) $\mathcal{G}$ is of rank 3 and non-classical.

(3) $\mathcal{G}$ is of rank 4 with point-residues isomorphic to the sporadic $A_{7}$-geometry.

(4) $\mathcal{G}$ is of rank $\geq 4$ and classical.

2 Classification.

2.1 Cases (1) and (3).
The classical FEDP of rank 3 are completely classified and all of them turn out
to be FEQs (see [10],[12], [8] for the precise results and terminology). Tbere are
13 isomorphism classes of such geometries, including one with full automorphism
group HS.2 found by the author [11].

In the table below, we summarize the fundamental information of these 13
isomorphism classes of FEQs. In the table, $G$ is the full automorphism group

1In my talks in Kyoto and Matsuyama (Oct. 1991, [16] p.105 line-8), I mistakenly stated
that the classification has completed, but it is not true. If $\mathcal{G}$ is a non-classical flag-transitive
polar space of rank 3 and not isomorphic to the sporadic $A_{7}$-geometry, it is known that $\{0,1\}-$

residues are non-Desarguesian projective planes of order satisfying many strong (and strange)
condition$s$ . See e.g. [5]
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of $\mathcal{G},$ $v$ and $c$ are the number of points and planes, respectively, and $(s,t)$ is the
order of tlie GQ $\mathcal{G}_{P}$ for a point $P$ . We use the notation in \S 1.2 to denote the
classical GQs. We set $k$ $:=s+2$ , the number of points on a circle. We also
set $X_{P}$ $:=G_{P}/I\iota_{P}’$

’ and $X_{C}$ $:=G_{C}/K_{C}$ for a point $P$ and a circle $C$ , where $G_{x}$

and K. $(x=P, C)$ denote the stabilizer and the kernel in $G$ of $x$ (see 1.1). The
symbol $d$ means the diameter of the point-line graph of $\mathcal{G}$ , defined on the set
of points by declaring that two distinct points form an edge whenever they are
incident with a line.

As for the case (3) in the last section, the following result was proved by the
author [15].

Theorem 2.1 There is a unique isomorphism class of FEDPs of rank 4 with
O-residues isomorphic to the sporadic $A_{7}$ -geometry. It is the one point extension
of the sporadic $A_{7}$ -geometry with the full automorphism group $2^{4}$ : $A_{7}$ .

2.2 Case (4).
As for the case (4), we first consider FEDPs of rank 4. Note that possible
isomorphism types of $\{0,3\}$-residues are restricted to $W(2),$ $Q_{5}^{-}(2),$ $Q_{4}(3),$ $W(3)$ ,
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$H_{3}(2^{2})$ and $H_{3}(3^{2})$ , since the point-residue is isomorphic to one of the 13 classes
of EGQs above.

FEDPs with $\{0,3\}$-residues $Q_{5}^{-}(2)$ are $cl^{J}ass1fied$ by the author [14]. T. Meix-
ener [6] also characterized the geometry below for Co.2 $x2$ as an FEDP satisfying
an additional assumption.

Theorem 2.2 Let $\mathcal{G}$ be a simply connected FEDP of rank 4 with $\{0,3\}$ -residues
the $GQQ_{5}^{-}(2)$ . Then one of the following holds.

(1) $\mathcal{G}$ is a geometry on 6300 points with the full automorphism group Co.2 $x2$ ,

(2) There is a normal subgroup $N$ of $Aut(\mathcal{G})$ with $Aut(\mathcal{G})/N\cong U_{6}(2).2$ .

As for FEDPs with $\{0,3\}$-residues $W(2)$ , the author proved the following
result [14], [17].

Theorem 2.3 Let $\mathcal{G}$ be a simply connected classical FEDP of rank 4 with $\{0,3\}-$

residues the $GQW(2)$ , admitting a flag-transitive group G. Then the kernel $I\iota_{P}’$

’

of the action of the stabilizer $G_{P}$ of a point $P$ on the residue $\mathcal{G}_{P}$ at $P$ is either
trivial or the natural module for $S_{6}(2)$ or $O_{7}(2)$ . Furthermore,

(1) If $K_{P}=1$ , then $\mathcal{G}$ is either a geometry on $2^{16}$ points with $Aut(\mathcal{G})\cong$

$2(2^{6}\cross 2_{+}^{1+8})S_{6}(2)$ , or a geometry on 32640 points with $Aut(\mathcal{G})\cong S_{8}(2)$ .
(2) If $I\iota_{P}’’\cong 2^{6}$ , then we get two possible sets of relations presenting $G$ , one of

which contains a normal subgroup $N$ with $G/N\cong F_{22}$ or $F_{22}.2$ .

Two new FEDPs of rank 4 admitting $\Gamma_{24}$( and $F_{22}$ are constructed by $tl\iota e$

author [17]. Tlte latter is a subgeometry of the former, and the $\{0,3\}$-residues
of tlie former (resp. the latter) is isomorphic to $H_{3}(2^{2})$ (resp. $W(2)$).

$T1\iota e$ former geometry is constructed as follows: Take a maximal subgroup
$O_{10}^{-}(2)$ of $\Gamma_{2’4}’$ . One of $t1_{1}e$ maximal parabolic subgroup $P$ of $O_{10}^{-}(2)$ is $isolnorpl\iota ic$

to $2^{8}$ : $O_{8}^{-}(2))$ in which $O_{2}(P)\cong 2^{8}$ consists of the identity and $2B$-involutions
(products of four mutually commuting 3-transpositions in $F_{24}$ ). Furhtermore,
there is a non-singular quadratic form $q$ of negative type on $O_{2}(P)$ preserved
by a complement $O_{8}^{-}(2)$ . Let $E_{3}\subset E_{2}\subset E_{1}$ be a chain of isotropic subspaces
of $E_{0}=O_{2}(P)$ with respect to $q$ of dimension $\dim E_{3}=1,$ $\dim E_{2}=2$ and
$\dim E_{2}=3$ . We let $\mathcal{G}$; be the conjugacy class of $E$; in $F_{24}’(i=0, \ldots, 3)$ , and
define an incidence by inclusion. Then we may verify that the resulting geometry
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$\mathcal{G}=$ $(\mathcal{G}_{0}, \ldots , \mathcal{G}_{3}; *)$ is an FEDP with point residues the dual polar space 2 $D_{4}(2)$

for $O_{8}^{-}(2))$ admitting a flag-transitive group $F_{24}$ .
It is easy to show that there is no FEDP with $\{0,3\}$ -residues $Q_{4}(3)$ or with

point residues the EGQ for HS.2.
However, as for the case wben the $\{0,3\}$-residues are isomorphic to $H_{3}(2^{2})$ ,

$W(3)$ or $H_{3}(3^{2})$ , there is no classification so far. There are known examples
of FEDPs admitting $F_{24},$ $F_{24}$ and $\Lambda f$ for those with the $\{0,3\}$-residues $H_{3}(2^{2})$ ,
$W(3)$ and $H_{3}(3^{2}))$ respectively.

The classification in these cases sliould be most interesting, but may require
some new methods. Because the targe $t$ geometries bave too many points and
ranks, not only to handle by hand but also for computers with an ordinary
storage capacity at the present time.

As for classical FEDPs of rank greater than 4, nothing is known. However, T.
Meixner and the author conjecture $t1_{1}at$ they can be constructed as subgeometries
of some (possibly infinite) buildings.

2.3 Case (2).
How about the remaining case (2) ? Unfortunately, flag-transitive GQs liave
not yet been classified. Among thick GQs, there are four known flag-transitive
GQs except the classical GQs and the duals of $H(4, q^{2})$ for prime powers $q$ (see
[4] p.98, Summary). They are $T_{2^{*}}(O_{q})$ for some oval $O_{q}$ in the projective plane
$PG(2, q)$ for $q=4$ (of order (3, 5)) and 16 (of order (15, 17)) and their duals (see
[7] 3.1.3 p.38 for $T_{2^{*}}(O))$ , wltere a (hyper) oval means a set of $q+2$ projective
points such that no three points lie on a line in common.

By tlte argument used in Lemma 12 in [12], it is easy to verify that there
is no FEQ with O-residues the dual of $H(4, q^{2})$ for any $q$ . However, there are
new FEQs with point-residues $T_{2^{*}}(O_{4})$ and its dual, which are cbaracterized as
follows in [15]. Note that the full automorphism group of $T_{2^{*}}(O_{4})$ is isomorphic
to $2^{6}3S_{6}$ , in which $2^{6}$ acts regularly on the set of points of $T_{2^{*}}(O_{4})$ .

Theorem 2.4 Up to isomorphism, there is a $uniq\uparrow\iota e$ simply connected $\Gamma’\Gamma_{I}’Q$ with
point residues isomorphic to $T_{2^{*}}(O_{4})$ , admitting an automorphism group $G$ in
which the stabilizer of a point $P$ contains a normal subgroup inducing a regular
permutation group on the lines incident with $P$ .
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Tliis new EGQ $\mathcal{G}$ is defined on 160 points, having 3072 planes and the full
automorp’bism group $2_{+}^{1+8}\cdot(A_{5}\cross A_{5})2$ (the extension $Aut(\mathcal{G})/2_{+}^{1+8}$ does not split).
Taking the quotient by the unique central involution of $Aut(\mathcal{G})$ , we have an FEQ
on 80 points. So far the only construction of this geometry known to the author
is one in terms of coset geometry.

Tlieorem 2.5 Up to isomorphism, there are two simply connected FEQs with
point residues isomorphic to the dual of $T_{2^{*}}(O_{4})$ , admitting an automorphism
$gro$ up $G$ in which the stabilizer of a point $P$ contains a normal subgroup inducing
a regular permutation group on the lines incident with $P$ .

One of these new FEQs (denoted by $\mathcal{G}^{(0)}$ ) is defined on 896 points, having 8192
planes and the full automorphism group $2_{+}^{1+12}$ : 3 $S_{7}$ . The other FEQ (denoted
by $\mathcal{G}^{(1)}$ ) is defined on 448 points, having 4096 planes and the full automorphism
group $2^{6+6}$ ; $L_{3}(2)$ .

So far t,he only construction of the geometry $\mathcal{G}^{(1)}$ known to the author is one
in terms of coset geometry. An explicit construction of $\mathcal{G}^{(0)}$ was given in [16]
\S 3 in terms of isotropic 1, 2, 4-spaces of an 8-dimensional unitary space over $F_{4}$

(for the detail, [15] 5.4). Taking the quotient by the unique central involution of
$Aut(\mathcal{G}^{(0)})$ , we have an FEQ on 448 points.
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