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A Note on Hayden’s Theorem

Tsuyoshi Atsumi
IES I

The Case a finite Group G acts on Code.

1. Difinitions from Coding Theory

Yoshida [5] showed that there is a generalization of MacWilliams identity [3] to codes with
group action. We use ideas from [1] to give an elementary proof to Yoshida’s identity in a
special case.

Let V' be the vector space F7, where F, is the field with ¢ elements. From now on
we assume that G is a finite permutation group on the coordinates of V' and |G| is prime
to g. Then we can define a natural action of G on V as follows: If v = (v1,...,v,) and
g €G, welet vg = (21,...,2,) where for i =1,...,n,2; = v;;,-1. In this way V becomes

an FG-module. A G-code is an FG-submodule of V. As in [1], the operator # is defined

by .

geG
Here we note that Cy(G) = V8 and 67 = 4 (see [1]).

Let C1,...,C; be the orbits of the coordinates of V' under the action of G. Let m;
be the orbit length of C;. Define C; as the vector of V which has 1 as its entry for every
point of C; and 0 elsewhere. (This definition of the C;’s is slightly different from that in
the proof of Theorem 4.3 in [1]). Then each of C1,...C is in U = V# and every element
u of U = V8 is of the form ,

u= Z z;C;.
i=1

This basis {C1,...,C;} of U is a key to our proof of Yoshida’s result. Yoshida weight of
a vector u = Ele 2;C; € U denoted wy(u) is defined as the number of non-zero ;. So
if G consists of the identity élement, e, alone, then Yoshida weight wy(u) of a vector u is
the ordinary weight |u|. If a = -22:1 a;C; and b = 23:1 b;C; are any two vectors in U,
then inner product (a,b)g of a and b is defined by

(a,b)G=a1b1+---+atbt. (].)

Let D be a vector subspace of U = V8. D{ is the dual of D in U with respect to the inner

product (1). (Notice that if G consists of the identity element, e, alone, then D{Le_} 1s the
ordinary dual Dt of D in V.)
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We describe a weight enumerator of a vector subspace D of U = V. The weight
enumerator Wp(z,y) of D is defined by

= 3 gtmuyune)
ueD

Clearly if G is trivial, that is, G = {e}, then this weight enumerator becomes the ordinary
weight enumerator. For notation and terminology, we will refer the following book and

paper: [3] for coding theory; [5] for codes with group action.

2. G-Codes

We have the following theorem which is a special case of Yoshida’s result [5] .
Theorem 1. If C is a G-code, then

Weore(2,y) = 5mWeo(z + (¢ — Dy, z — y).

|09|

If G is trivial, that is, G = {e}, then our theorem is the ordinary MacWilliams theorem
[3. pp 146]

In order to prove Theorem 1 we need the following proposition.

Proposition 1 (Hayden). Let V be the vector space F}. Assume that G is a finite

permutation group on the coordinates of V' and |G| is prime to q. If C is a G-code and

Zg,

gEG

then
(C)* = Ker + C9.

Proof. See the proofs of Theorem 4.2 and Corollary 1 in [1]. §

We will prove Theorem 1. If x = Y,2;C; € C8 and y = Y, 4:C; € C14, by
Proposition 1 we have

0_ Xy) Zmz zya'— xy,)G;

where y' = 5. m;y;C;. From this it follows that

(CO)% 2 (CHo)M, @

where
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M =diag(a,...,a,) 1=1,...,n;
a; = m; if iECj.

Next we will show that

(Co)g C (CHo)M. (3)
Ifx=3,C; € (COS, x' =5 (zi/m;)C; and y = 3, 4:C; € C8, we have

Z mi(z;/m;)y: = (x,¥) = 0.

This shows that
x' e (C’H)J‘. (4)

Since x' € U = V4, (4) and Proposition 1 imply that x’ € C14.
Hence, x = x'M € (C10)M. Now we proved that

(CO)5 C(CHO)M. (5)
From (2) and (5) it follows that
(CO)§ = (CHo)M. (6)

Here notice that MacWilliams theorem [3. pp 146] for the ordinary weight enumerator
of the code C8 in U (= V) holds in this case, too. ‘

MacWilliams theorem.

1
W(Ca)L(C'J y) = ICGche(-’L‘ +(¢ -y, z—y).

Now we will finish the proof of Theorem 1. By the above MacWilliams theorem and
(6), we obtain the following.

Wiesou(z,1) = ggrWorle + (4= Dwz—9). ™)

Since Wic1oym(2,y) = Weg(z, y), it follows from (7) that

Wose(,9) = e Woolz + (g — Dy, 2 — y). B

l09l
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Remark. Generalizing a result of Thompson, Hayden [1] has proved the following propo-

sition.

Proposition 2. Using the notation of Proposition 1, then with an appropriate orthonor-
mal base for U, (extending F, if necessary) we have where (C8)$ is the dual in terms of

this basis
(COE =Co.

So our result (6) is a generalization of Proposition 2 in a sense.
The Case a finite Group G acts on Lattice

3. Definitions from Lattice Theory

In [5] Yoshida raised the following problem.

Problem. What can we say about lattices with groups action ? Can we define the

equivariant version of theta functions?

He showed in [5] that there is a generalization of MacWilliams identity [3] to codes
with group action. In this paper we will prove that there is a lattice version of this result.
In order to state our theorem we introduce notation and terminology in lattice theory. Let
V be the real n-dimensional space R" . A lattice A [4] is a subgroup of V satisfying one
of the following equivalent conditions:

1) A is discrete and V/A is compact;
ii) A is descrete and generates the R-vector space V;
i1i) There exists an R-basis (e1,...,e,) of V which is a Z-basis of A (.e. A=Ze; ®--- &
Zey).

Let the coordinates of the basis vectors be

e1 = (e11,---,€1n),
€9 = (612,...,62n),
€n = (€1ny- -, €nn)-

The n x n matrix M with (i, j)-entry equal to e;; is called a generator matrix for A. The

determinant of A is defined to be det A = |det M|. Given two vectors u = (uq,...,u,),
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vV = (v1,...,v,) of V, their inner product will be denoted by u - u or (u,u). The dual
lattice is defined by

Alz{uER” lu-v=uv + -+ upv, € Z for all v € A}.

The theta series ©4(z) of a lattice A is given by

Onz) = T,

ucA

where ¢ = e™?, Jacobi’s formula for the theta series of the dual lattice:
Opr(z) = (det A)(i/2)"?Oa(-1/2). (8)

The main purpose of this paper is to generalize equation (8) when a finite group G acts
on A. From now on we assume that G is a finite permutation group on the coordinates of
V. Then we can define a natural action of G on V as follows: If v = (vq,...,v,) € V and
g€ G, welet vg=(z1,...,2,) wherefori=1,...,n,2; = v;y-1. In this way V becomes
an RG-module. A G-lattice is a lattice which is also an ZG-submodule of V. As in [1],
the operator 6§ is defined by . '

g = m Z g-

g€G
Here we note that V8 = {v eV |vg=v for all g € G} and 87 = 9 (see [1]).

Let Ci, ..., C; be the orbits of the coordinates of V under the action of G. Let m; be
the orbit length of C;. Define C; as the vector of V which has 1 //m; as its entry for every
point of C; and 0 elsewhere. (This definition of the C,’s is similar to that in the proof of
Theorem 4.3 in [1]). Then each of C,...C; is in V8 and every element u of V8 is of the

form
t
u= E fll,'C,'.
=1

Ifa= 22:1 a;C; and b = }:le b;C; are any two vectors in V8, then inner product aob
of a and b is defined by
_aob:a1b1+-~-+atbt. (9)

Let D be a lattice in V4. D} is the dual of D in V8 with respect to the inner product (9).
The norm of u € D isuou.
We describe the theta series ©p(z) of a sublattice D as follows:

Op(z) =) ¢*",

uebD
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where ¢ = e™7”.

For notation and terminology, we will refer the following book and paper: [4] for

lattice theory; [5] for lattices with group action.

4. G-Lattices
We have the following:

Theorem 2. If A is a G-lattice and Ag = {r € A | rd € A}, then
Ongo(2) = (det Ao8)(i/2)"/*Ongo(~1/2).

Note that Agfd = ANA§={veEA|vg=vforall g €G}.
In order to prove Theorem 2 we need the following proposition.

Proposition 3. Let V be the vector space R". Assume that G is a finite permutation
group on the coordinates of V. If A is a G-lattice and Ag = {r € A | rf € A}, then

(Agf)t = Ker 0 @ AZ6.

Proof. Our proof is similar to the proof of Theorem 4.2 in [1]. We note that Ag is a
G-sublattice of G-lattice A. If r € Ao, # € A} and y € Ker 8T (= 6), we have

(#67,r6) = (+,v8%) = (&,v9) € Z,
since rf € ANAf C Ag and
(y,r8) = (y8",x)=0€ Z.

This shows that
Kerf+ A0 C (Aoh)*. (10)

Ifr € Ao, y € (Aof)t, we have

(y6",r) = (y,xf) € Z.

So
y0T = y6 € Ay.

Hence

y=y -yl +(y8)8 € Kerf + A36.
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This implies that - .
(Ag)t C Ker 6 + AZ6. (11)

(10) and (11) complete the proof of Proposition 3. i
We will prove Theorem 2. If x = 7, 2;C; € Agf and y = > y,C; € Agd, by

Proposition 3 we have

xoy =(x,y) € Z.

So
A6 C (Aoh)g- (12)

Now take x =3, z;C; € (Ao, y =Y, y;C; € Agb. and observe

(x,y) =xoy € Z.

This shows that
b (Aoﬂ)‘L. )

Since x € V4, (13) and Proposition 3 imply that x € AZ4.
Now we proved that
(Aob)& C ARS. (14)

From (12) and (14) it follows that
(Aof) = Ag 6.

Now we will finish the proof of Theorem 2. Jacobi’s formula for the theta series of the
dual lattice (Agf)g in V:

O(rg0)s(2) = (det AoB)(i/2)"*Ons0(~1/2).
Hence (Aoﬁ)é = A(J)'H establishes our theorem.

Remark. It is easy to prove that

AJ/Ao 2 AG/ANAS,
Ao =(ANKerd)® (AN AF).
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