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Abstract

Schreier coset graphs depict the standard permutation representation of a finitely-
generated group on the cosets of a subgroup, and accordingly they may be used to
provide diagrammatic interpretations of several aspects of combinatorial group theory,
such as the Reidemeister-Schreier procedure, as well as a proof of the Ree-Singerman
theorem (on the cycle structures of generating-permutations for a transitive group).
Also they can often be applied to construct factor groups of given finitely-presented
groups, with interesting results. Some of these uses are described, with applications
to the construction of arc-transitive graphs and maximal automorphism groups of
Riemann surfaces.

\S 1. INTRODUCTION ’

If $G$ is a group with generating-set $\{x_{1}, x_{2}, \ldots, x_{d}\}$ , and $H$ is a subgroup of finite

index $n$ in $G$ , define $\Gamma=\Gamma$($x_{1},$ $x_{2},$ $\ldots,$ $x_{d}$ ; H) to be the graph whose vertices are the

right cosets of $H$ in $G$ , and whose edges are of the form $Hg-Hgx_{i}$ for $1\leq i\leq d$ . For

obvious reasons this is called a Schreier coset graph (or coset diagram) for $G$ ; see [1].

The action of $G$ on cosets of $H$ by right multiplication may also be described by a coset

table, similar to a Cayley table, with rows indexed by the cosets and columns indexed by

the group generators $x_{i}$ and their inverses. Both the graph and the table can be useful

for the systematic enumeration of cosets (see [1] again).

More generally if $G$ has a (transitive) pernutation representation on a set $\Omega$ of size $n$ ,

we may forn a graph whose vertices are the points of $\Omega$ and whose edges are of the forn
$\alpha-\alpha^{x_{i}}$ for $1\leq i\leq d$ . This is also a coset graph, the same as the one associated with

the cosets of the stabilizer of a point. In fact these things are essentially interchangeable:

the coset table, the coset graph, and the permutations induced by the group generators.
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Before discussing some important applications of coset graphs, we shall make a few

elementary observations about them, as follows:

First, any directed path in a coset graph $\Gamma=\Gamma(x_{1}, x_{2}, \ldots, x_{d};H)$ may be described by

a word in the generators $x_{i}$ and their inverses, corresponding to the labels on the edges

traversed by the path. In particular, any circuit in the graph based at the vertex labelled $H$

comesponds to an element $w$ of $H$ (noting that Hw $=H$ if and only if $w\in H$), and this

element is easily identifiable by tracing the edges used.

Next, a Schreier ffansversal for $H$ in $G$ may be associated with a spanning-tree in the

coset graph: any path based at the vertex $H$ in a spanning-tree corresponds to a word, say
$u=x_{1}^{e_{1}}x_{2}^{e_{2}}\ldots x_{s}^{e_{s}}$, which can be used to label the vertex at the end of that path, and then

all the intermediate vertices are labelled with initial sub-words $x_{1}^{e_{1}}x_{2}^{e_{2}}\ldots x_{r}^{e_{r}}$ (for $r\leq s$ ).

In particular, the edges of the coset graph not used by the spanning-tree correspond to a

Schreier generating-set for $H$ in $G$ : if $u$ is any element of the Schreier transversal, and

$v=\overline{ux_{i}}$ is the transversal’s representative of the coset $Hux_{i}$ , then the $x_{i}$-edge from

vertex Hu to vertex Hv completes a circuit in the coset graph corresponding to the

Schreier generator $ux\overline{ux_{i^{-1}}}$ , as illustrated by the broken edge in the diagram below.
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\S 2. SOME APPLICATIONS

The observations made above lead quite naturally to a graphical interpretation of the

Reidemeister-Schreier process: to find a presentation for a subgroup $H$ of finite index $n$ in

a finitely-presented group $G=\langle X|R\rangle$ , choose a spanning-tree in the associated coset

graph, label the unused edges with (irredundant) Schreier generators, and then apply the

relators in $R$ to each of the $n$ vertices in tum to obtain the Reidemeister-Schreier relations!

Another application of coset graphs provides an elegant proof of the following theorem,

first obtained independently by Ree and Singerman using the Riemann-Hurwitz formula:

If $G$ is the group generated by permutations $x_{1},$ $x_{2}$ , ... , $x_{d}$ of a set $\Omega$ of size $n$ ,

such that $x_{1}x_{2}\ldots x_{d}$ is the identity permutation, and $c_{i}$ is the number of orbits of
$\langle x_{i}\rangle$ on $\Omega$ , then $G$ is transitive on $\Omega$ only if $c_{1}+c_{2}+\ldots+c_{d}\leq(d-2)n+2$ .

This result (which puts an upper bound on the total number of cycles of the generators of a

transitive permutation group) has been used recently to investigate generating systems for

the sporadic finite simple groups, and may be proved simply as follows: embed the

associated coset graph in a surface of genus $g\geq 0$ by orienting anti-clockwise the edges at

each vertex in the order given by the sequence $x_{1},$
$x_{1^{-1}},$

$x_{2},$
$x_{2^{-1}},$

$\ldots,$ $x_{d},$
$x_{d^{-1}}$ , and then

apply the Euler polyhedral forrnula $2-2g=X=V-E+F$. See [2] for the details.

On a more practical note, coset diagrams can often be used to prove certain groups are
infinite, by joining diagrams together to construct pernutation representations (of the given

group) of arbitrarily large degree. This is essentially equivalent to the Abelianized form

of the Reidemeister-Schreier process, and is described in [3]. The same sort of method

is also useful for the construction of infinite families of finite quotients of a given finitely-

presented group, as illustrated in the next Section.

In fact some quite strange things can happen when these diagrams are joined together.

For example, consider the (2, 3, 7) triangle group $\Delta_{237}=\langle x, y|x^{2}=y^{3}=(xy)^{7}=1\rangle$ .
This group has a number of finite quotients– including all but finitely many alternating

groups, infinitely many $PSL(2, q)’s$ , and several of the sporadic simple groups– and the
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groups $PSL(2,13),$ $A_{64}$ and $A_{22}$ in particular. Correspondingly there are $\sigma ansitive$

permutation representations of $\Delta_{237}$ of degrees 14, 64, and 22, as given by the actions

of the generators $x$ and $y$ described below.

Degroe 14:
$x\vdasharrow(\alpha_{3}, a_{4})(\alpha_{5}, \alpha_{7})(a_{6}, \alpha_{10})(\alpha_{8}, a_{12})(\alpha_{9}, a_{13})(\alpha_{11}, a_{14})$

$y-$ $(a_{1}, \alpha_{2}, \alpha_{3})(\alpha_{4}, \alpha_{5}, \alpha_{6})(\alpha_{7}, \alpha_{8}, \alpha_{9})(\alpha_{10}, \alpha_{11}, a_{12})$

Degree 64:
$x-(\beta_{3}, \beta_{4})(\beta_{5}, \beta_{7})(\beta_{6}, \beta_{10})(\beta_{S}, \beta_{12})(\beta_{9}, \beta_{13})(\beta_{11}, \beta_{16})(\beta_{14}, \beta_{19})(\beta_{15}, \beta_{22})$

$(\beta_{17}, \beta_{25})(\beta_{18}, \beta_{28})(\beta_{20}, \beta_{31})(\beta_{21}, \beta_{42})(\beta_{23}, \beta_{34})(\beta_{24}, \beta_{26})(\beta_{27}, \beta_{37})(\beta_{29}, \beta_{40})$

$(\beta_{30}, \beta_{32})(\beta_{33}, \beta_{43})(\beta_{35}, \beta_{46})(\beta_{36}, \beta_{49})(\beta_{38}, \beta_{50})(\beta_{39}, \beta_{52})(\beta_{41}, \beta_{56})(\beta_{44}, \beta_{45})$

$(\beta_{47}, \beta_{55})(\beta_{48}, \beta_{58})(\beta_{51}, \beta_{64})(\beta_{53}, \beta_{61})(\beta_{54}, \beta_{57})(\beta_{60}, \beta_{62})$

$y-(\beta_{1}, \beta_{2}, \beta_{3})(\beta_{4}, \beta_{5}, \beta_{6})(\beta_{7}, \beta_{8}, \beta_{9})(\beta_{10}, \beta_{11}, \beta_{12})(\beta_{13}, \beta_{14}, \beta_{15})$ ( $\beta_{16},$ $\beta_{17},$ $\beta$ is)

$(\beta_{19}, \beta_{20}, \beta_{21})(\beta_{22}, \beta_{23}, \beta_{24})(\beta_{25}, \beta_{26}, \beta_{27})(\beta_{28}, \beta_{29}, \beta_{30})(\beta_{31}, \beta_{32}, \beta_{33})$

$(\beta_{34}, \beta_{35}, \beta_{36})(\beta_{37}, \beta_{38}, \beta_{39})(\beta_{40}, \beta_{41}, \beta_{42})(\beta_{43}, \beta_{44}, \beta_{45})(\beta_{46}, \beta_{47}, \beta_{48})$

$(\beta_{49}, \beta_{50}, \beta_{51})(\beta_{52}, \beta_{53}, \beta_{54})(\beta_{55}, \beta_{56}, \beta_{57})(\beta_{58}, \beta_{59}, \beta_{60})(\beta_{61}, \beta_{62}, \beta_{63})$

DegIee 22:
$x\mapsto(\gamma_{1},\gamma_{2})(\gamma_{3},\gamma_{4})(\gamma_{5},\gamma_{7})(\gamma_{6},\gamma_{10})(\gamma_{S},\gamma_{19})(\gamma_{9},\gamma_{13})(\gamma_{11},\gamma_{16})(\gamma_{12},\gamma_{20})(\gamma_{14},\gamma_{1S})(\gamma_{21},\gamma_{22})$

$y\mapsto(Y_{1}\gamma_{2},\gamma_{3})(\gamma_{4},\gamma_{5,Y_{6})(Y7,Y_{8},\gamma_{9})(\gamma_{10},\gamma_{11},\gamma_{12})(\gamma_{13},\gamma_{14},\gamma_{15})(\gamma_{16},\gamma_{17},\gamma_{1S})(\gamma_{19},\gamma_{20},\gamma_{21})}$

Simplified versions of the coset diagrams associated with these representations appear on

the next page. Fixed points of $y$ are denoted by heavy dots; loops corresponding to fixed

points of $x$ or $y$ are omitted; double x-edges are replaced by single ones; and 3-cycles of

$y$ are denoted by small triangles (whose vertices are permuted anticlockwise by y). Also

the vertices have not been labelled, to keep the diagram uncluttered. Now if these three

diagrams are joined together by the fuzzy bold x-edges as indicated, we obtain a new coset

diagram for $\Delta_{237}$ on 100 points, corresponding tojuxtaposition of the permutations given

for $x$ and $y$ , and the introduction of additional 2-cycles $(\alpha_{1}, \beta_{1}),$ $(\alpha_{2}, \beta_{2}),$ $(\beta_{59}, \gamma_{17})$

and $(\beta_{63}, \gamma_{15})$ to the pernutation induced by $x$ . The new permutations still satisfy the

relations $x^{2}=y^{3}=(xy)^{7}=1$ , but this time generate the Hall-Janko group $J_{2}$ !
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\S 3. FURTHER RESULTS

Note that $arbi\sigma a\dot{n}ly$ many copies of the middle (64-vertex) $dia_{\Psi}am$ on the previous page

may be linked together in an alternating chain, with new x-edges joining common $\beta_{1^{-}}$ ,

$\beta_{2^{-}},$ $\beta_{59^{-}}$ and $\beta_{63}$-vertices in successive copies. In particular, this produces a transitive

perrnutation representation of $\Delta_{237}$ of degree $64m$ (or equivalently, a subgroup of index

$64m$ in $\Delta_{237}$ ) for every positive integer $m$ , giving a simple proof that $\Delta_{\mathfrak{B}7}$ is infinite.

In fact the same method of composition of coset diagrams (and even the same diagram

on 64 vertices, along with some others) can be used to show that all but finitely many of

the alternating groups $A_{n}$ are factor groups of $\Delta_{237}$ , and even of its quotient (2, 3, 7; 84)

$=\langle x, y|x^{2}=y^{3}=(xy)^{7}=[x, y]^{84}=1\rangle$ ; see [4]. This in tum gives rise to an infinite

family of compact Riemann surfaces (of genus $g_{n}=\frac{n!}{l68}+1$ ), each having the maximum

possible number of conformal automorphisms, by Hurwitz’s theorem.

Similarly, for $aU$ but finitely many $n$ the symmetric group $S_{n}$ is a homomorphic image

of the amalgamated product

G5 $=$ \langle $h,$ $p,$ $q,$ $r,$ $s$ , a $|h^{3}=p^{2}=q^{2}=P=s^{2}=a^{2}=1$ ,

$[p, q]=[p, r]=[p, s]=[q, r]=[q, s]=1$ , $(rs)^{2}=pq$ ,

ph $=hp$ , qh $=hr$ , rh $=hpqr$ , shs $=h^{-1},$ $a^{-1}pa=q,$ $a^{-1}ra=s\rangle$ .

This can be proved by adding new edges for the involutory generator a to chains of coset

diagrams for the subgroup $\langle h, p, q, r, s\rangle$ (of order 48), and gives rise to an infinite

family of $5- arc-\alpha ansitive$ cubic graphs; see [5]. Also the same sort of approach (but

with a different group in place of $G_{5}$ ) can be used to prove the existence of infinitely many

fmite $4- arc- transi\dot{u}ve$ cubic graphs containing circuits of specified lengths; see [6].

Finally, recent use of coset diagrams to find torsion-free subgroups of certain finitely-

presented groups has been instrumental in the construction of small volume hyperbolic 3-

orbifolds and other hyperbolic 3-manifolds with interesting properties; see [7].
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