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Some Problems in Formal Language Theory
Known as Decidable are Proved EXPTIME
Complete

Takumi Kasai*and Shigeki Iwatal

Abstract
Some problems in formal language theory are considered and shown deter-
ministic exponential time complete. They include the problems for a given
context-free language L, a regular set R, a deterministic context-free language
Lp, to determine whether I C R, and to determine whether Lp C R.

1 INTRODUCTION

A number of complete problems for deterministic exponential time have been pre-
sented. Since Chandra and Stockmeyer [1] established the notion of alternation in
1976, many authors have shown complete problems for deterministic exponential time
by using of alternation. Most of these problems were related to combionatorial games.
[2,5,6,7, 8] ’

We consider in this paper several problems in the formal language theory and
show that the problems are deterministic exponential time complete. They were
already known as decidable. Let L be a context-free language, R a regular set, Lp
a deterministic context-free language. The problems we consider include the ones to
determine whether L C R, and whether Lp C R.

In order to prove that the concerned problems are deterministic exponential time-
hard, we use the pebble game problem [5], which was already shown complete for
deterministic exponential time, and we establish the polynomial-time reduction from
the pebble game problem.

We write A to denote the empty string, and |z| to denote the length of a string z.
Let ¥ denote the set {[1,]1,[2,]2,**,[x,Jx}. See [4] for definitions of deterministic
finite automata (dfa) M = (Q, L, §, go, F') except that the transition function § is given
by a partial function from Q x X to Q. See also [4] for definitions of nondeterministic
finite automata (nfa), regular set, context-free grammar (cfg), context-free language
(cfl), deterministic context-free language (dcfl), deterministic pushdown automaton
(dpda), Turing machine, polynomial time, and polynomial-time reducibility.

The Dyck language Dy .of k balanced parenthesisis the one generated by the cfg
G = ({5}, %k, P, S), where P is the set of productions of the forms

S—SS|A|[S](1<i<k).
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For a cfg G, let L(G) denote the language generated by G, and for an automaton
or a machine M, L(M) denote the language accepted by M. Whenever we say “given
acl L, -+, we assume that a cfg G, L(G) = L, is given, and in particular when we
say “given adcfl L, -+, a dpda M, L(M) = L is assumed. When we say “given a
regular set R, -++”, it always means that an nfa M, L(M) = R is given.

EXPTIME is the class of sets accepted by 2" time bounded deterministic Turing
machines for some k. A language L is called EXPTIME completeif L is in EXPTIME,
and L' is polynomial-time reducible to L for any L' in EXPTIME.

A pebble game [5] is a quadruple § = (X, R, S,t) where:

(1) X is a finite set of nodes,

(2) R C {(za,zb,2c) | TayTby 2 € X, T4 F Thy T F Le, T F Lo} is called a
set of rules, :

(3) S is a subset of X, and

(4) t € X is called the terminal node.

At the beginning of a pebble game, pebbles are placed on all nodes of S, and we
call the placement the initial pebble-placement. A move of the game is as follows: if
pebbles are placed on z,, z3, but not on z., and (z,, zs,2.) € R, then a player can
move a pebble from z, to z. in his turn. The game is played by two players, and each
player alternately applies one of the rules of G to move a pebble. The winner is the
player who can first put a pebble on the terminal node, or who can make the other
player unable to move.

The first player has a forced win (or winning strategy) from a pebble-placement
in G if there is a winning game-tree for the first player, whose root is labeled with
the pebble-placement. The winning game-tree of G for the first player (game-tree for
short) is the tree, nodes of which are labeled with pebble-placements, or WIN, where
WIN means that the second player is already unable to move, thus the first player
wins the game. We sometimes confuse a node of the game-tree with its label. A level
of a node in the tree is the length of the path from the root to the node. The level of
the root is zero. A depth of the game-tree is the maximum level among the nodes of
the tree. Any node u of the even level in the tree is labeled with a pebble-placement
for the first player’s turn to move, and has exactly one child v, where v is obtained
by an application of a rule of the game to u. Any non-leaf of the odd level is labeled
with a pebble-placement for the second player’s turn, and has exactly m children,
where m is the number of the rules of the game. For 1 < 7 < m, the j-th child of v is
labeled with a pebble-placement obtained by an application of the j-th rule r; of the
game to v if r; is applicable; and with WIN if r; is not applicable to v. Every leaf
of the game-tree is labeled either with WIN or with a pebble-placement in which the
first player wins.

The pebble game problem is, given a pebble game G, to determine whether there
is a winning strategy for the first player from the initial pebble-placement in G.

Theorem 1.1 [5] The pebble game problem is EXPTIME complete.
Example 1.1 Consider the following pebble game ¢ = (X, R, S, z5), where X =

{wl)m2ym3’$4)m5})s = {$1,$2,2}3},R = {TI)TZ)TS)T'i}) and r = (m1,$2,$4),7‘2 =
(m2,$1,$4),7‘3 = (333,1?4,(82),7‘4 = (2}2, 1‘4,375)'



begin
1) Let G,L = L(G) be a cfg, and let M, R = L(M) be an nfa.
2) Construct a dfa M’ such that L(M') = &* — L(M).
3) Construct the cfg G’ as in Lemma 2.1 such that L(G') = L(G) N
4) Use polynomial time algorithm to determine whether L(G') = ¢.
5) UL(G@)=¢thenL C Relse L ¢ R.

end

L(M").

Fig. 2.1 Algorithm to determine whether L C R

If the first player applies r; to move a pebble from z; to z4, the second player
then applies r4 to move a pebble from z; to z5 and the second player wins the game.
Suppose that the first player first applies ro to move a pebble from z; to z4. Then
the only rule for the second player to apply is r; to move a pebble from z; to z,.
Then the first player applies r4 to move a pebble from z, to z5 and wins the game.
Thus the first player has a forced win in G.

2 COMPLETE PROBLEM

Lemma 2.1 For a ¢fg G and an nfa M, we can construct a cfg G' such that L(G') =
L(G) N L(M) within polynomial time.

Proof. Let G = (V,Z,P,S) and M = (Q, ¥, 6,{q0}, F). Without loss of generality, we
assume that & = ¥’ and that G is in Chomsky normal form. Let G¢' = (V', £, P!, §'),
Vi={lg,X,p] | 9,p € Q, X € VIU{S'}. P’ contains

lg,X,p] = [0, 4, ¢1¢, B, p]

[, X,p] > a f X - a€ P andp€i(g,a), for ¢,p € Q,a € %,
fX—AB€P for ¢,¢',p € Q, |

and S’ — [0, S, g4] for g; € F.
By induction, we can prove that for ¢,p € Q, X € V,w € &*

[9,X, 7] %w if and only if X -é> w and p € §(g,w).

Thus
s’ = l90, S, 45] =G*:7 w if and only if S :E? w and ¢; € §(go, w).

The number of productions in G’ is polynomial to the length of G and M. Thus
the construction of G’ can be performed within polynomial time. 0

Next we present an algorithm in Fig.2.1 to determine whether L C R for a given
cfl L and a regular set R.

Lemma 2.2 Given a cfl L and a regular set R, the algorithm shown in Fig.2.1 de-
termines whether L C R within ezponential time.

Proof. Inline (2), apply an usual algorithm, for example p.22 of [4], to obtain a dfa M;
such that L(M) = L(M,), and exchange the accepting states and the non-accepting
states of M; to obtain M’, which accepts the complement of R. Note that the time



for the construction of M’ needs exponential time, since the number of states of M;
is exponential compared with that of M.
In line (4), apply the CYK algorithm [9] for example.
In total, our algorithm runs in exponential time to determine whether L C R.
w
Consider the following problem P;: '
Given: a cfl L, and a regular set R.
To determine whether: L C R.

Theorem 2.1 P, 1s EXPTIME complete.

Proof. Since EXPTIME is closed under complementation, it is sufficient to show that
the problem P;':

Given: a cfl L, and a regular set R.
To determine whether: L ¢ R,

is EXPTIME complete. By Lemma 2.2, P,’ is solvable within exponential time.

To show that P’ is EXPTIME hard, we establish that the pebble game problem
is polynomial-time reducible to P'. Let ¢ = (X, R, S, z,) be a pebble game. We
construct a cfg G and an nfa M within polynomial time such that there is a forced
win for the first player in G if and only if L(G) ¢ L(M).

Prior to the construction of M, we construct dfa’s My, My, - -+, M,,, where n is the
number of the nodes of G, such that there is a winning strategy for the first player
in ¢ if and only if L(G) N N%; L(M;) # ¢. Then we construct an nfa M, which
accepts the complement of (\=; L(M;). Thus L(G) N2, L(M;) # ¢ is equivalent to
L(G) ¢ L(M). .

We will explain briefly how the simulation of G works in G and M;’s. The deriva-
tion of G guesses a game-tree of G, that is, what rules of G the first player applies
in order to win the game, For the first player’s turn to move in the game-tree, a
derivation of G guesses a rule which the first player applies to the pebble-placement,
while for the second player’s turn, derivations in G guess for each rule whether the
rule is applicable to the coressponding pebble-placement. The purpose of M;’s is to
examine whether the above guesses by G are correct, and whether the derivation is
the one for the first player to win the game.

Assume that X = {z1,23,+++,2,}, and that R = {ri,r2,+ -+, rm}. We write
Tim = {r},75,0;,85,6;,5;,¢;,5 | 1 < j < m}, where a symbol without bar and the
symbol with bar are intended to form a pair of balanced parenthesis in X,,,. Let
G={U,W,V,Va,+++, V. },Z4m, P,U), where P contains

(1) W-)V1V2"‘Vm,

and for each rule r; = (z;1, 2;2,23),1 < j < m of R,

U—-r,W7 (j3#n)
@) { U—r7; (§'3=n),

(3) V; = a;a; | b;b; | ¢; T, and

(4) Vi - rjUT; (53 #n).

"
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Fig. 2.2 transition 6;1(p;1,0;)
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Fig. 2.3 transition 6;2(p;2, 0;)

The nonterminal U is associated with a pebble—placement for the first player’s turn
to move, while W is for the second player. V;,1 < j < m, means in the simulation
to guess an application of a rule r; € Rto the pebble-placement associated with W.
The production rules in (2) are for the simulation of the first player in G to select
r; to move a pebble from z;; to z;3. The production U — r; W] is the one to
denote that the first player applies r; and the next turn is the second player, while
U — r; 77 denotes for the first player to apply r; and wins to put a pebble on z,.
The productions (1),(3),(4) are for the second player’s move. (1) is to try every rule
1,72, *,Tm as the second player’s move. (3) is to indicate that r; is not a proper
rule to make: if a pebble is not on z;; (is not on zj,, is on z;3), then V; — a;a;
(V; — b;bj, V; = ¢;T;, respectively) can be applied. (4) is to select r; to move.
V; — r; U 75 is to apply r; and the next turn is the first player.

For 1 <1 < n, M; keeps track of the existence of a pebble on z; in G. If the
state of M; is in z; (F7) then it means that there is (there is not, respectively) a
pebble on z; in G. Let M; = ({z;,%7}, Zam, 6, &, {&:}), and ¢; = z; for z; € S,
and ¢; = Z;for z; ¢ S. Foreachi (1 <i<n)andj (1<j<m)leté(p,o;),
pi € {;,77}, 0j € {r;,75, 05,5, b;, b5, ¢;,T5}, be the following transition. Assume that
r; = (21,29, %;3) is a rule in R.

If ¢ = j1 then §(p;, 0;) is the transitions shown in Fig.2.2. If i = j2 then it
is shown in Fig.2.3, and if ¢ = ;3 then it is in Fig.2.4. If ¢ ¢ {j1,52,73} then
6:(pi,0;) = pi for each p; € {2;,%7}, and o; € {r;,75,4;,a;,b;,5;,¢;,5}. Note that
61(2j1,a;), 6j2(2j2,b;), and 6;5(T73, ¢;) are undefined. (See Fig’s 2.2, 2.3, and 2.4.)
The object of the construction of My, My, +«+, M,, is to define a “product dfa” N of
M, My, -+, M,, which is defined below. We consider N as a tool for the proof of the
theorem, and we do not actually construct N in the simulation.



Fig. 2.4 transition 6;3(p;s, ;)

Now we define N = (Q, 2,6, S,{S}), where

Q = {21,717} x {22,735} % + -+ x {2, 7},
S = (QIJQ2;"')qn))
5((p1,p2, . -,pn),O') = (51(.791,0),52(}72)0), e ’,5n(Pm0))>pi € {371')777})

and 6((p1,p2,***, Pn), o) is undefined if &;(p;, o) is undefined for some 1.

We use a state (py,pa,**+,pn) of N and a pebble-placement P of the game-tree in
the same meaning: for each i (1 < i < n), p; = z; if and only if there is a pebble on
zy in P, and p; = T; if and only if there is not a pebble on z,, in P.

Then by the definition of N, we have the following lemmas 2.3 and 2.4:

Lemma 2.3 Let P be a pebble-placement and let r; be a rule of G. If r; is applicable
to P and if P' is the resultant pebble-placement then

6(P,r;) = P' and 6(P',7;) = P.
If r; is not applicable to P, then 6(P,r;) is undefined.

Proof. Let P = (p1,p2,°+,pn) and let r; = (2;1,2,2,2;3). Suppose that r; is not
applicable to P. Then either p;; = T;7 (there is not a pebble on z;1), pj2 = T2
(a pebble is not on z,3), or p;3 = z;3 (a pebble is on z;3) holds. If pj; = T;7 then
6;1(pj1,7;) is undefined (see Fig.2.2), if p;2 = T;7 then §;2(p;s, ;) is undefined (see
Fig.2.3), and if p;3 = 25 then §;5(p;s, ;) is undefined (see Fig.2.4). Thus §(P, r;) is
undefined.

Suppose that r; is applicable to P. Then p;; = 2,1, pj2 = 2,2, and p;3 = T;3.

Thus . '
§(P,rs) = (p', p's -+ '), S
pjll = E—H) pj2’ = 7’7‘5, pj3l = 575’ and pi’ = Piyt ¢ {«71’]2>]3}'
Further we have §((p:/,p2',+**,00'),75) = P. o

Lemma 2.4 For any pebble-placement P and any symbol o € {a;,d;,b;,b;,¢;,6 |1 <
j<m},
§(P,0) = P or itis undefined.

Further, r; is not applicable to P if and only if there is w; € {a;@;,b;b;,¢;c;} such
that 5(P, w]') = P,

13
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Proof. For any p; € {2;,%7},1 £ i < n, and ¢ € {5;,};,5},1 < j < m, we have
6i(pi, ) = pi. (See Fig’s.2.2, 2.3, and 2.4.) For any o € {a;,b;, ¢;}, either &(pi,0) = pi
or &;(ps, o) is undefined.

The necessary and sufficient condition that &;(p;, a;) is undefined is that ¢ = j1
and p; = z;;, that is, there is a pebble on z;; in P. Likewise, the necessary and
sufficient condition for §;(p;, b;) to be undefined is that ¢ = 72 and p; = zj3, that is,
a pebble is on zj3 in P, and the necessary and sufficient condition for &;(p;, ¢;) to be
undefined is that ¢ = j3 and p; = z;3, that is, a pebble is not on z;3 in P. Thus, r;
is applicable to P if and only if none of 6( P, a;), 6(P,b;), nor 6(P,c;) are defined.

O

Note that L(G) is a subset of Dy,,. Further we can obtain the following lemma:

Lemma 2.5 For any o € Dy,,, and a pebble-placement P,
§(P,a) = P or it is undefined.
Proof. We can show the lemma by induction on |«|. o

Lemma 2.6 The first player has a winning strategy from a pebble-placement P if
and only if there is w € Ly,,* such that

U= wand §(P,w) = P.

Example 2.1 Before we prove the lemma, consider the pebble game ¢ of Example
1.1, The cfg G guesses the following derivation:

U = rnWrm = WL BYTE
2 1robib1a,35r3UT50,T7 73

= 1obib1asd3raryTs 30405 T3
Let P, = (21,22, 23,%3,%3). Fo is the initial pebble-placement of G. Then
6(P0’ 7‘2) = (wls%) 1)3,2:4,.5;) = Pl‘

P, is the resultant pebble-placement after an application of r, to Fp.

Since there is not a pebble on the second component z, of r1, 71 is not applicable
to Py, and 6(Py,b1b;) = Py. Similarly, 5 and ry are not applicable to P;, since there
is not a pebble on the first component z, of r, and ry. Thus §( P, aa3) = Pi, and
5(P1, a.;fz‘{) = P]. Further

5(P1’r3) = (2?1,9.’72,5}_5, 274,5‘_5) = P,, and
5(P2,1"4) = (xI)E—Z)E) 274,3}5) = P3. :

P, is the pebble-placement after the second player applies r3 to Py, and Pj is the
pebble-placement after the first player applies r4 to 2. The symbols 7, 73, 73 are for
backtracking procedures. Thus we have

6(Ps,75) = Py, 6(P,73) = P1, and 6(P,,73) = P,
Therefore, there is w € Ty,,,* such that U = w, and §( Py, w) = B,
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Proof. (Only if): There is a game-tree, the root of which is P. We will prove the
“only if” part by induction on the depth of the game-tree. Assume that the depth
of the tree is one. That is, the first player applies r; = (2,1, 22, 2;3) to put a pebble
on z,, and j3 = n. Then U = r;7;, and if P’ is the resultant pebble-placement after
the application of r; to P, then

6(P,r;7) =6(P,75) =P

by Lemma 2.3. Thus the “only if” part holds for the basis of the induction.

Assume that the depth of the tree is greater than one, that r; = (2, 2,0, 2;3) is
the first player’s rule to apply to P and that P’ is the resultant pebble-placement.
Prior to show the inductive step, we will show that

for each j (1 < j < m), there is w; € Dy, such that
(*) V; = w;,6(P,w;) = P

If r; is not applicable to P’ then there is w; € {a,a;, b,;b;, ¢;5;} which satisfies (*) by
Lemma 2.4.

Suppose that r; is applicable to P/, and that P;’ is the pebble-placement after the
application of r; to P!. Since the first player has a winning strategy from P}/, there
is v; € Yyp" such that

U= v;,6(P,v) = P
by the inductive hypothesis, If we put w; = r;v,;77 then

V= rUT5 = Ty = wj,
§(P'ywj) = 5(le’v1""—j') = 5(131")"‘_1') = P

Thus (*) holds in the inductive step. We have shown (*).
Therefore we have

U= r,Wr;=r;Vi+ V77 = rjwy + - w5, and
S(Pyrjwy o Wy, T5) = 6(P' wy +« w, F5) = 6(P,7;) = P.

(If): We use induction on the number of steps of the derivation U = w. Assume
that the number of the steps is one, that is, U = r,;7; = w. Obviously the first player
has a winning strategy from P. =

Assume that

U= riWr; = Vi VT 2 rjwy o W75 = W,
Vi = w;,(1<j<m).

Since 6(P,w) =P, §(P,r;) is defined. If §(P,r;) = P, then P' is the pebble-
placement after the application of r; to P, and §(P',7;) = P. By Lemma 2.5 and by
§(P,wy -+ wy,) = P!, we have

5(PI, wj) = P’
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for every j (1 < j < m). If w; € {a;;, b;};,¢;55}, then r; is not applicable to P’ by
Lemma 2.4. If w; ¢ {a;a;, bjb;, ¢;T;}, then r; is applicable to P’ and w; is of the form
7;U;75, U; € Dy Thus

. — % — *®
V]’ = ‘I‘jUT‘j = r;UT; = Wy, and U = U5

If §(P',r;) = P;' then Pj' is the pebble-placement after the application of r; to P/,
and §(P,,v;) = P;. By the inductive hypothesis, U = v; and §(P;’,v;) = P;’ imply
that the first player has a winning strategy from P;’. Thus the first player can win
the game no matter what rule r; the second player may apply to P'.

Therefore the lemma is proved. w

By Lemma 2.6, the necessary and sufficient condition for the first player to have
a winning strategy from the initial pebble-placement in G is that there is w € Zy,,*
such that w € L(G) N L(N), and the condition is also that L(G) NNy L(M;) # ¢.

To complete the proof of the theorem, we have to construct M. It is clear that
we can easily construct the dfa M;' from M; which accepts Z4,,* — L(M;), the com-
plement of L(M;). Now we consider an nfa M such that M accepts the complement
of M, L(M;). Since

Zim” = (1 L(M:) = J(Bam® = L(M)) = U L(M') = L(M),
i=1 i=1 i=1

we can construct an nfa M as the collection of My’ My',---, M, together with the
initial state go of M by simply adding A-moves from g to each initial state of
M, My, ---,M,'. The set of the accepting states of M is the union of the ones
of MII) MQ') R Mn"

Therefore, there is a winning strategy for the first player from the initial pebble-
placemene in G if and only if L(G) ¢ L(M). The constructions of G and M can
be performed within polynomial time. We note that M can be constructed within

polynomial time since M is nondeterministic. Thus both P;’ and P; are complete for
EXPTIME. o

3 PROBLEMS ON DCFL’S

We consider in this section some problems concerning dcfl’s.
Theorem 3.1 The problem P;:

Given: a regular set R C 3",
To determine whether: Dy C R.

1s EXPTIME complete.
Proof. To prove the theorem, it suffices to show that the following P':

Given: a regular set R C X%,
To determine whether: D, ¢ R.
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is EXPTIME complete. By Lemma 2.2, P,/ is solvable within exponential time. We
show that the pebble game problem is polynomial time reducible to P’. The proof
proceeds similarly as in the one of Theorem 2.1.

Let ¢ = (X, R, S,z,) be a pebble game, X = {21, 22, ++,2.},|R| = m. Let G
be the cfg, let My, M,,++-, M, be the dfa’s, and let M be the nfa constructed in the
proof of Theorem 2.1. We have shown in the preceeding proof that the necessary and
sufficient condition for the first player having a forced win from the initial pebble-
placement in G is L(G) ¢ L(M), hence L(G) NN, L(M;) # ¢. We will construct a
dfa My such that L(G) = Dy, N L(Mp).

Lemma 3.1 There exist a dfa My such that L(G) = Dy, 0 L(Mp).

Proof. Assume that R; is the set of rules of G to put a pebble not on z,, ie,
Ry = {rj|r; = (21,2;2,2;3), 73 # n}, and that R, is the set of rules to put a pebble
on z,, Ry = {rj|r; = (2)1,2,2,2;3),53 = n}. Without loss of generality, we may
assume that Ry = {ry, -+, 7} and Ry = {ry41,***,7m}. We construct My, which
is shown in Fig.3.1, where the transition vy + +++ + r, from U to V; stands for £
transitions by rq,+++,r, from U to Vi. (See Fig.3.2(a).) Transitions by 77+ « -+ + 77,
Pe41 4+ and Frg7+ o -+ 7 in Fig.3.1 are similar abbreviations. For 1 < j < m,
let p; = a;@; + b;b; + ¢,;¢;. The transition by p; from V; to V;4; implies that either
a;T;, b;bj, or ¢;T; causes the transition from Vj to Vi, (See Fig.3.2(b).)

Let 6 be the transition function of M,. Recall that D, is generated by G' =
({8}, Zum, P, S), where P contains S — SS|A|[; S]; for 1 <i < 4m. It is clear that
L(G) C Dy, since any derivation in G can be “mapped into” a derivation in G’ by
replacing U, W, V3, «++,V,, by S.

Thus in order to prove the lemma it suffices to show that for o € Dy,,

U =;> o if and only if §(U,a) = U/,

17
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Fig. 3.2 abbreviations in Fig.3.1

foreach j (1<j7<m), V; =*> a if and only if §(V;,a) = Vj44,
w => a if and only if 6(V1, a) = Vinta.

(Only 1f) Let us use induction on |a|. If |o| < 2, the cases are trivial. Consider
a,|a| = k > 2, assuming that the “only if” part holds for each B8 € Dy, |B] < k.
Suppose U -—3 a. Then the first step of the derivation should be U =7 WT; for some

j(1<j5< m) and W # B € Dy, a = 1;075, |B] < k. By the 1nduct1ve hypothe51s,
we have §(Vi, f) = Vinya. Thus 6(U a) = §(U,r;675) = 6(Vi, f75) = 6(Vipa1,75) = U
The cases that V; => a and W => a can be similarly proved.
(If): By simple mductlon on lﬁ} B € Dy — {1}, we can show that

(i) §(U, B) = U’ or it is undefined, and

(ii) for each j (1< 7 < m), 6(V;, B) € {Vi41,**, Vins1} ot it is undefined.
Again we will use induction on |&| to show the “if” part. If |a| < 2 the proof is
obvious. Consider «, || = k > 2, and assume that the “if” part holds for each g,
18] < k.

Suppose §(U,a) = U'. If a = a5 and if o, 02 € Dyy, — {A}, then §(U, 1) = U’
by (i). The transition from U’ is made only by one of 71,--+,77 and §(U’, «3) is
undefined. Thus M, does not accept ooz, So o = 7,875 for some j (1 < j < ¢) and
B € (Dym —{A}). Since 6(U,r;) = V; and 6(V4, B7;) = U’, we obtain §(V;, ) = Vipy1.
By the inductive hypothesis we have W =*> B. Thus

U =>1'JW7'J =>r, ;= .

The cases §(V;,a) = Vi3 and §(V3, @) = Viu41 can be similarly proved. u]

We define a homomorphism A : 24,,.‘" — %" as follows:

MO =05 ) (1 <icam
RQ) =1 }‘“ < 4m)



Assume that A = {h([;), h(};) | 1 <1 < 4m}. Then the following lemma holds.
Lemma 3.2 h(Dyy,) = Dy N A%,

Proof. By the definition of h and Dy, h( D4y ) is the language, which can be generated
by the cfg ({S}, Z,, P, S), where P contains S — SS | A | [;[2'S]' )i for 1 <i < 4m.
Thus the lemma follows. o

- We will complete the proof of Theorem 3.1. By the definition of A, for languages
L,L' C B4n", we have that L = ¢ if and only if A(L) = ¢, and that A(L N L) =
h(L) N k(L'). Thus

L(G) ¢ L(M) ifandonlyif Demn () L(M)# ¢

1=0

if and only if  h(Dsm) N[ A(L(M;)) # ¢.
‘ =0
It is easy to construct a dfa M; such that h(L(M;)) = L(M;) for 0 < i < n. Let Mp1,
be the dfa, which accepts A*. Then,

L(G) ¢ L(M) ifandonlyif DynaA*n()L(M)#¢
1=0
n+1 o
if and only if Dy N ) L(M;) # ¢.
0
We can construct an nfa M _which accepts the complement of N4} L(M; ) as in the
proof of Theorem 2.1, since Mo, M1, . Mn+1 are deterministic. Thus,

L(G) ¢ L(M) ifand onlyif D, ¢ L(M).

The construction of M can be performed within polynomial time. Therefore the proof
of the theorem is completed. o

Corollary 3.1 For a given regular set R and for each k > 2, the problem to determine
whether Dy, C R is EXPTIME complete.

Proof. The problem can be solved within EXPTIME. Let R be a regular set. We
prove that

Dy CR ifandonlyif Dy C RU(E: — 7).

Assume that D, C R, and that w € Dy. If w € 5" then w € D;. If w ¢ £,* then
w € X" — X", Thus w € RU(Z," — ;") and we obtain that Dy C RU (X" — Z,7).

Assume that Dy C RU(E;" — Z,%), and w € D,. Since w € RU (X" — X;") and
w & I — Lo*, we obtain that w € R. Thus D, C R.

As we can construct the nfa accepting R U (Z3* — X,*) within polynomial time,
the corollary is proved. a

Open problem 1 The complexity of the problem to determine whether D; C R
for a given regular set R is remained open.

Since we can construct a dpda M to accept D,, we obtain the following corollary.
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Corollary 3.2 The problem Pj:

Given: a defl L, and a regular set R.
To determine whether: L C R.

is EXPTIME complete.

Corollary 3.3 The problem P,:

Giwven: a dcfl L C X*, and a regular set R C X”.
To determine whether: L U R = ¥*,

1s EXPTIME complete.

Proof. Let M be a dpda which accepts L. Since M is deterministic, we can construct
a dpda M’ such that M’ accepts X* — L. (See [4],p.238, for example.) Then we can
construct a cfg G, which satisfies L(G) = L(M').

Since LU R = £* is equivalent to L(G) C R, and G can be constructed within
polynomial time, Py is EXPTIME complete by Corollary 3.2. o

Remark The problem to determine whether R C L for a given regular set R and
a dcfl L is solvable within polynomial time by constructing a cfg G generating the
complement of L and by applying the algorithm of Fig.2.1 to determine whether
RN L(G) = ¢, which is equivalent to R C L.

Open problem 2 Let L be a dcfl and R be a regular set. The féllowing problems
are in EXPTIME, however, their complexities are open.

(1) R=1L?
(2) Lg R?
(3) RC L?

REFERENCES

[1] A. K. Chandra and L. J. Stockmeyer, Alternation, Proceedings 17th Ann. IEEE
Symp. on Found. of Comput. Sci. (1976), pp.151-174.

[2] A. S. Fraenkel, and D. Lichtenstein, Computing a perfect strategy for n x n chess
requires time ezponential in n, J. Combinatorial Theory, 31(1981), pp.199-214.

(3] H. B. Hunt II, D. J. Rosenkrantz, and T. G. Szymanski, On the equivalence,
containment, and covering problems for the regular and contexi-free languages, J.
Comput. System Sci., 12(1976), pp.222-268.

[4] J. E. Hopcroft, and J. D. Ullman, Introduction to Automata Theory, Languages,
and Computation, Addison-Wesley, Reading Mass., 1979.

[5] T. Kasai, A. Adachi, and S. Iwata, Classes of pebble games and complete problems,
SIAM J. Comput., 8(1979), pp.578-586.

[6] J. M. Robson, The complezity of GO, Proceedings, IFIP 1983(1983), pp.413-417.



21

[7] J. M. Robson, N by N checkers is EXPTIME complete, SIAM J. Comput.,
13(1984), pp.252-267.

[8] L. J. Stockmeyer, and A. K. Chandra, Provably difficult combinatorial games,
SIAM J. Comput., 8(1979), pp.151-174.

[9] D. H. Younger, Recognition and parsing of context-free languages in time n®
Inform. Contr., 10(1967), pp.189-208.

)

BEE 1
FERUEATERT LE 2 ThrA b HHIAKELECILLLTS 1.
B2

RICHEDBEEA, Bobhhokd. HHZA, HEELLWTINTHAZE.
¥ 0T h



