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Some Problems in Formal Language Theory
Known as Decidable are Proved EXPTIME

Complete

Takumi Kasai*and Shigeki Iwata\dagger

Abstract
Some problems in formal language theory are considered and shown deter-
ministic exponential time complete. They include the problems for a given
context-free language $L$ , a regular set $R$ , a deterministic context-free language
$L_{D}$ , to determine whether $L\subset R$ , and to determine whether $L_{D}\subset R$ .

1 INTRODUCTION

A number of complete problems for deterministic exponential time have been pre-
sented. Since Chandra and Stockmeyer [1] established the notion of alternation in
1976, many authors have shown complete problems for deterministic exponential time
by using of alternation. Most of these problems were related to combionatorial games.
[2, 5, 6, 7, 8]

We consider in this paper several problems in the formal language theory and
show that the problems are deterministic exponential time complete. They were
already known as decidable. Let $L$ be a context-free language, $R$ a regular set, $L_{D}$

a deterministic context-free language. The problems we consider include the ones to
determine whether $L\subset R$ , and whether $L_{D}\subset R$ .

In order to prove that the concerned problems are deterministic exponential time
hard, we use the pebble game problem [5], which was already shown complete for
deterministic exponential time, and we establish the polynomial-time reduction from
the pebble game problem.

We write $\lambda$ to denote the empty string, and $|x|$ to denote the length of a string $x$ .
Let $\Sigma_{k}$ denote the set $\{[1,]_{1}, [2,]_{2}, \cdots, [k,]_{k}\}$ . See [4] for definitions of deterministic
finite automata (dfa) $M=(Q, \Sigma, \delta, q_{0}, F)$ except that the transition function $\delta$ is given
by a partial function from $Q\cross\Sigma$ to $Q$ . See also [4] for definitions of nondeterministic
finite automata (nfa), regular set, context-free grammar (cfg), context-free language
(cfl), deterministic context-free language (dcfl), deterministic pushdown automaton
(dpda), Turing machine, polynomial time, and polynomial-time reducibility.

The Dyck language $D_{k}$ of $k$ balanced parenthesisis the one generated by the cfg
$G=(\{S\}, \Sigma_{k}, P, S)$ , where $P$ is the set of productions of the forms

$Sarrow SS|\lambda|[jS]_{i}(1\leq i\leq k)$ .
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For a cfg $G$ , let $L(G)$ denote the language generated by $G$ , and for an automaton
or a machine $M,$ $L(M)$ denote the language accepted by $M$ . Whenever we say (given
a cfl $L,$ $\cdots$ , we assume that a cfg $G,$ $L(G)=L$ , is given, and in particular when we
say (given a dcfl $L,$ $\cdots$ , a dpda $M,$ $L(M)=L$ is assumed. When we say “given a
regular set $R,$ $\cdots$ , it always means that an nfa $M,$ $L(M)=R$ is given.

EXPTIME is the class of sets accepted by $2^{n^{k}}$ time bounded deterministic Turing
machuines for some $k$ . A language $L$ is called EXPTIME complete if $L$ is in EXPTIME,
and $L’$ is polynomial-time reducible to $L$ for any $L’$ in EXPTIME.

A pebble game [5] is a quadruple $\mathcal{G}=(X, R, S,t)$ where:

(1) $X$ is a finuite set of nodes,
(2) $R\subset\{(x_{a}, x_{b}, x_{c})|x_{a}, x_{b}, x_{c}\in X,x_{a}\neq x_{b}, x_{b}\neq x_{c}, x_{c}\neq x_{a}\}$ is called a

set of rules,
(3) $S$ is a subset of $X$ , and
(4) $t\in X$ is called the terminal node.

At the beginning of a pebble game, pebbles are placed on all nodes of $S$ , and we
call the placement the initial pebble-placement. A move of the game is as follows: if
pebbles are placed on $x_{a},$ $x_{b}$ , but not on $x_{c}$ , and $(x_{a}, x_{b}, x_{c})\in R$, then a player can
move a pebble from $x_{a}$ to $x_{c}$ in his turn. The game is played by two players, and each
player alternately applies one of the rules of $\mathcal{G}$ to move a pebble. The winner is the
player who can first put a pebble on the terminal node, or who can make the other
player unable to move.

The first player has a forced win (or winning strategy) from a pebble-placement
in $\mathcal{G}$ if there is a winning game-tree for the first player, whose root is labeled with
the pebble-placement. The winning game-tree of $\mathcal{G}$ for the first player (game-tree for
short) is the tree, nodes of which are labeled with pebble-placements, or WIN, where
WIN means that the second player is already unable to move, thus the first player
wins the game. We sometimes confuse a node of the game-tree with its label. A level
of a node in the tree is the length of the path from the root to the node. The level of
the root is zero. A depth of the game-tree is the maximum level among the nodes of
the tree. Any node $u$ of the even level in the tree is labeled with a pebble-placement
for the first player’s turn to move, and has exactly one child $v$ , where $v$ is obtained
by an application of a rule of the game to $u$ . Any non-leaf of the odd level is labeled
with a pebble-placement for the second player’s turn, and has exactly $m$ children,
where $m$ is the number of the rules of the game. For $1\leq j\leq m$ , the j-th child of $v$ is
labeled with a pebble-placement obtained by an application of the j-th rule $r_{J}$ of the
game to $v$ if $r_{j}$ is applicable; and with WIN if $r_{j}$ is not applicable to $v$ . Every leaf
of the game-tree is labeled either with WIN or with a pebble-placement in which the
first player wins.

The pebble game problem is, given a pebble game $\mathcal{G}$ , to determine whether there
is a winning strategy for the first player from the initial pebble-placement in $\mathcal{G}$ .

Theorem 1.1 [5] The pebble game problem is EXPTIME complete.

Example 1.1 Consider the following pebble game $\mathcal{G}=(X, R, S, x_{5})$ , where $X=$
$\{x_{1}, x_{2}, x_{3}, x_{4}, x_{6}\},$ $S=\{x_{1}, x_{2}, x_{3}\},$ $R=\{r_{1}, r_{2},r_{3},r_{4}\}$

) and $r_{1}=(x_{1}, x_{2}, x_{4}),$ $r_{2}=$

$(x_{2}, x_{1}, x_{4}),$ $r_{3}=(x_{3}, x_{4}, x_{2}),$ $r_{4}=(x_{2}, x_{4}, x_{5})$ .
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begin
1) Let $G,$ $L=L(G)$ be a cfg, and let $M,$ $R=L(M)$ be an nfa.
2) Constructa dfa M’such that L(M’) $=\Sigma^{*}-L(M)$ .
3) Construct the cfg G’ as in Lemma2.1such that L(G’) $=L(G)\cap L(M’)$ .
4) Use polynomial time algorithm to determine whether $L(G’)=\phi$ .
5) If $L(G’)=\phi$ then L C $R$ else $L\not\subset R$ .

end

Fig. 2.1 Algorithm to determine whether $L\subset R$

If the first player applies $r_{1}$ to move a pebble from $x_{1}$ to $x_{4}$ , the second player
then applies $r_{4}$ to move a pebble from $x_{2}$ to $x_{5}$ and the second player wins the game.
Suppose that the first player first applies $r_{2}$ to move a pebble from $x_{2}$ to $x_{4}$ . Then
the only rule for the second player to apply is $r_{3}$ to move a pebble from $x_{3}$ to $x_{2}$ .
Then the first player applies $r_{4}$ to move a pebble from $x_{2}$ to $x_{6}$ and wins the game.
Thus the first player has a forced win in $\mathcal{G}$ .

2 COMPLETE PROBLEM

Lemma 2.1 For a $cfgG$ and an $nfaM_{2}$ we can construct a $cfgG’$ such that $L(G’)=$
$L(G)\cap L(M)$ within polynomial time.

Proof. Let $G=(V, \Sigma, P, S)$ and $M=(Q, \Sigma’, \delta, \{q_{0}\}, F)$ . Without loss of generality, we
assume that $\Sigma=\Sigma’$ , and that $G$ is in Chomsky normal form. Let $G’=(V’)\Sigma,$ $P’,$ $S’$ ),
$V’=\{[q,X,p]|q,p\in Q_{)}X\in V\}\cup\{S$‘

$\}$ . $P’$ contains

$\{\begin{array}{l}[q,X,p][q,X,p]arrow aifX_{/}arrow_{\prime}a\in Pandp\in\delta(q,a)arrow[q,A,q][q,B,p]forq,p\in Q,a\in\SigmaifXarrow AB\in Pforq,q,p\in Q)\end{array}$

and $S‘arrow[q_{0}, S, q_{f}]$ for $q_{f}\in F$ .
By induction, we can prove that for $q,p\in Q,$ $X\in V,$ $w\in\Sigma^{*}$

$[q)X,p]\Rightarrow wG^{*}$ if and only if $X\Rightarrow^{*}wG$ and $p\in\delta(q, w)$ .

Thus
$S’\Rightarrow G[q_{0}, S, q_{f}]\Rightarrow^{*}wG$ if and only if $S\Rightarrow^{*}wc$ and $q_{j}\in\delta(q_{0}, w)$ .

The number of productions in $G’$ is polynomial to the length of $G$ and $M$ . Thus
the construction of $G’$ can be performed within polynomial time. $\square$

Next we present an algorithm in Fig.2.1 to determine whether $L\subset R$ for a given
cfl $L$ and a regular set $R$ .
Lemma 2.2 Given a cfl $L$ and a regular set $R$ , the algorithm shown in Fig.2.1 de-
termines whether $L\subset R$ within exponential time.

Proof. In line (2), apply an usual algorithm, for example p.22 of [4], to obtain a dfa $M_{1}$

such that $L(M)=L(M_{1})$ , and exchange the accepting states and the non-accepting
states of $M_{1}$ to obtain $M’$ , which accepts the complement of $R$ . Note that the time
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for the construction of $M’$ needs exponential time, since the number of states of $M_{1}$

is exponential compared with that of $M$ .
In line (4), apply the CYK algorithm [9] for example.
In total, our algorithm runs in exponential time to determine whether $L\subset R$ .

$\square$

Consider the following problem $P_{1}$ :

Given: a cfl $L$ , and a regular set $R$ .
To determine whether: $L\subset R$ .

Theorem 2.1 $P_{1}$ is EXPTIME complete.

Proof. Since EXPTIME is closed under complementation, it is sufficient to show that
the problem $P_{1}’$ :

Given: a cfl $L$ , and a regular set $R$ .
To determine whether: $L\not\subset R$ .

is EXPTIME complete, By Lemma 2.2, $P_{1}’$ is solvable within exponential time.
To show that $P_{1}’$ is EXPTIME hard, we establish that the pebble game problem

is polynomial-time reducible to $P_{1}’$ . Let $\mathcal{G}=(X,\tilde{R}, S, x_{n})$ be a pebble game. We
construct a cfg $G$ and an nfa $M$ within polynomial time such that there is a forced
win for the first player in $\mathcal{G}$ if and only if $L(G)\not\subset L(M)$ .

Prior to the construction of $M$ , we construct dfa $sM_{1},$ $M_{2},$ $\cdots,$ $M_{n}$ , where $n$ is the
number of the nodes of $\mathcal{G}$ , such that there is a winning strategy for the first player
in $\mathcal{G}$ if and only if $L(G) \cap\bigcap_{j}^{n_{=1}}L(M_{i})\neq\phi$. Then we construct an nfa $M$ , which
accepts the complement of $\bigcap_{i=1}^{n}L(M_{i})$ . Thus $L(G)\cap\cap^{n_{=1}}L(M_{i})\neq\phi$ is equivalent to
$L(G)\not\subset L(M)$ .

We will explain briefly how the simulation of $\mathcal{G}$ works in $G$ and $M_{1}$
)

$s$ . The deriva-
tion of $G$ guesses a game-tree of $\mathcal{G}$ , that is, what rules of $\mathcal{G}$ the first player applies
in order to win the game. For the first player’s turn to move in the game-tree, a
derivation of $G$ guesses a rule which the first player applies to the pebble-placement,
while for the second player’s turn, derivations in $G$ guess for each rule whether the
rule is applicable to the coressponding pebble-placement. The purpose of $M_{i}’ s$ is to
examine whether the above guesses by $G$ are correct, and whether the derivation is
the one for the first player to win the game.

Assume that $X=\{x_{1}, x_{2}, \cdots, x_{n}\}$ , and that $\tilde{R}=\{r_{1)}r_{2}, \cdots, r_{m}\}$ . We write
$\Sigma_{4m}=\{r_{j},\overline{r_{j)}}a_{j},\overline{a_{J}}, b_{j},\overline{b_{j}}, c_{j},\overline{c_{j}}|1\leq j\leq m\}$ , where a symbol without bar and the
symbol with bar are intended to form a pair of balanced parenthesis in $\Sigma_{4m}$ . Let
$G=(\{U, W, V_{1}, V_{2}, \cdots, V_{m}\})\Sigma_{4m},$ $P,$ $U$ ), where $P$ contains

(1) $Warrow V_{1}V_{2}\cdots V_{m}$ ,

and for each rule $r_{i}=(x_{j1}, x_{j2}, x_{J^{3}}),$ $1\leq j\leq m$ of $\tilde{R}$ ,

(2) $\{UUarrow r_{j}\overline{r_{j}}arrow r_{j^{\frac{W}{r_{j}}}}(j3\neq n)(j3=n)$

(3) $V_{i}arrow a_{j}\overline{a_{i}}|b_{j}\overline{b_{j}}|c_{j}\overline{c_{i}}$ , and

(4) $V_{j}arrow r_{j}U\overline{r_{j}}(j3\neq n)$ .
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Fig. 2.2 transition $\delta_{j1}(p_{j1}, \sigma_{j})$

Fig. 2.3 transition $\delta_{j2}(p_{j2}, \sigma_{j})$

The nonterminal $U$ is associated with a pebble-placement for the first player’s turn
to move, while $W$ is for the second player. $V_{j},$ $1\leq j\leq m$ , means in the simulation
to guess an application of a rule $r_{j}\in\tilde{R}$ to the pebble-placement associated with $W$ .
The production rules in (2) are for the simulation of the first player in $\mathcal{G}$ to select
$r_{j}$ to move a pebble from $x_{j1}$ to $x_{j3}$ . The production $Uarrow r_{j}W\overline{r_{i}}$ is the one to
denote that the first player applies $r_{j}$ and the next turn is the second player, while
$Uarrow r_{j}\overline{r_{i}}$ denotes for the first player to apply $r_{j}$ and wins to put a pebble on $x_{n}$ .
The productions (1),(3),(4) are for the second player’s move. (1) is to try every rule
$r_{1)}r_{2},$ $\cdots,$ $r_{m}$ as the second player’s move. (3) is to indicate that $r_{j}$ is not a proper
rule to make: if a pebble is not on $x_{g1}$ (is not on $x_{j2}$ , is on $x_{j3}$ )) then $V_{j}arrow a_{j}\overline{a_{j}}$

( $V_{j}arrow b_{j}\overline{b_{j}},$ $V_{j}arrow c_{j}\overline{c_{j}}$ , respectively) can be applied. (4) is to select $r_{j}$ to move.
$V_{j}arrow r_{j}U\overline{r_{J}}$ is to apply $r_{j}$ and the next turn is the first player.

For $1\leq i\leq n,$ $M_{i}$ keeps track of the existence of a pebble on $x_{i}$ in $\mathcal{G}$ . If the
state of $M$; is in $x_{i}(\overline{x_{i}})$ then it means that there is (there is not, respectively) a
pebble on $x_{j}$ in $\mathcal{G}$ Let $M_{i}=(\{x_{i)}\overline{x_{1}}\}, \Sigma_{4m}, \delta_{1}, q_{i}, \{q.\})$ , and $q_{i}=x$ ; for $x_{i}\in S$ ,
and $q_{i}=\overline{x_{j}}$ for $x;\not\in S$ . For each $i(1\leq i\leq n)$ and $j(1\leq j\leq m)$ , let $\delta_{i}(p_{i}, \sigma_{j})$ ,
$p_{1}\cdot\in\{x_{j},\overline{x_{j}}\},$ $\sigma_{j}\in\{r_{j},\overline{r_{j}}, a_{j},\overline{a_{j}}, b_{J’},b_{i}^{-}, c_{j},\overline{c_{j}}\}$ , be the following transition. Assume that
$r_{j}=(x_{j1}, x_{j2}, x_{j3})$ is a rule in $\tilde{R}$ .

If $i=j1$ then $\delta_{1}\cdot(p_{1}, \sigma_{i})$ is the transitions shown in Fig.2.2. If $i=j2$ then it
is shown in Fig.2.3, and if $i=j3$ then it is in Fig.2.4. If $i\not\in\{j1,j2,j3\}$ then
$\delta_{i}(p;, \sigma_{j})=p_{j}$ for each $p;\in\{x_{t)}\overline{x_{i}}\}$ , and $\sigma_{j}\in\{r_{j},\overline{r_{j}}, a_{j},\overline{a_{j}}, b_{j},\overline{b_{j}}, c_{j},\overline{c_{j}}\}$ . Note that
$\delta_{j1}(x_{j1}, a_{j}),$ $\delta_{j2}(x_{j2}, b_{j})$ , and $\delta_{j3}(\overline{x_{j3}}, c_{j})$ are undefined. (See Fig’s 2.2, 2.3, and 2.4.)
The object of the construction of $M_{1},$ $M_{2},$ $\cdots,$ $M_{n}$ is to define a “product dfa” $N$ of
$M_{1},$ $M_{2},$ $\cdots,$ $M_{n}$ , which is defined below. We consider $N$ as a tool for the proof of the
theorem, and we do not actually construct $N$ in the simulation.
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Fig. 2.4 transition $\delta_{j3}(p_{j3}, \sigma_{j})$

Now we define $N=(Q, \Sigma_{4m}, \delta, S, \{S\})$ , where

$Q=\{x_{1},\overline{x_{1}}\}\cross\{x_{2},\overline{x_{2}}\}\cross\cdots\cross\{x_{n},\overline{x_{n}}\})$

$S=(q_{1}, q_{2}, \cdots, q_{n})$ ,
$\delta((p_{1},p_{2}, \cdots,p_{n}))\sigma)=(\delta_{1}(p_{1}, \sigma))\delta_{2}(p_{2}, \sigma),$

$\cdots,$
$\delta_{n}(p_{n}, \sigma)))p;\in\{x_{t)}\overline{x_{1}\cdot}\})$

and $\delta((p_{1},p_{2}, \cdots,p_{n}), \sigma)$ is undefined if $\delta_{i}(p_{1}\cdot, \sigma)$ is undefined for some $i$ .
We use a state $(p_{1},p_{2}, \cdots,p_{n})$ of $N$ and a pebble-placement $P$ of the game-tree in

the same meaning: for each $i(1\leq i\leq n),$ $p_{j}=x_{j}$ if and only if there is a pebble on
$x_{n}$ in $P$ , and $p:=\overline{x_{i}}$ if and only if there is not a pebble on $x_{n}$ in $P$ .

Then by the definition of $N$ , we have the following lemmas 2.3 and 2.4:

Lemma 2.3 Let $P$ be a pebble-placement and let $r_{j}$ be a rule $of\mathcal{G}$ . If $r_{j}$ is applicable
to $P$ and if $P$‘ is the resultant pebble-placement then

$\delta(P, r_{j})=P’$ and $\delta(P,\overline{r_{i}})=P$.

If $r_{j}$ is not applicable to $P$ , then $\delta(P, r_{j})$ is undefined.
Proof. Let $P=(p_{1},p_{2}, \cdots,p_{n})$ and let $r_{j}=(x_{j1}, x_{j2}, x_{g3})$ . Suppose that $r_{j}$ is not
applicable to $P$ . Then either $pj1=\overline{x_{j1}}$ (there is not a pebble on $x_{j1}$ ), $p_{j2}=\overline{x_{j2}}$

(a pebble is not on $x_{j2}$ ), or $pj3=x_{j3}$ (a pebble is on $x_{j3}$ ) holds. If $p_{j1}=\overline{x_{j1}}$ then
$\delta_{j1}(P41)r_{j})$ is undefined (see Fig.2.2), if $p_{j2}=\overline{x_{J^{2}}}$ then $\delta_{j2}(r)$ is undefined (see
Fig.2.3), and if $pj3=x$j3 then $\delta_{j3}(pj3, r_{J})$ is undefined (see Fig.2.4). Thus $\delta(P, r_{j})$ is
undefined.

Suppose that $r_{j}$ is applicable to $P$ . Then $p_{j1}=x_{j1},$ $p_{j2}=x_{j2}$ , and $p_{j3}=\overline{x_{j3}}$ .
Thus

$p_{j1}=^{i_{\frac{)=}{x_{j1}}}},pj2\delta(rp_{1^{l}}\}^{p_{=^{2’}\overline{x_{j2}},p_{J}^{n_{3^{l}}’}}}$

and $p;’=p;,$ $i\not\in\{j1, j2,j3\}$ .
Further we have $\delta((p_{1^{l}},p_{2’, )}p_{n^{l}}),\overline{r_{j}})=P$. $\square$

Lemma 2.4 For any pebble-placement $P$ and any symbol $\sigma\in\{a_{j},\overline{a_{j}},$ $b_{j_{J}}\overline{b_{j}},$ $c_{j)}\overline{c_{j}}|1\leq$

$j\leq m\}$ ,
$\delta(P, \sigma)=P$ or it is undefined.

Further, $r_{j}$ is not applicable to $P$ if and only if there is $w_{j}\in\{a_{j}\overline{a_{j}}, b_{j}\overline{b_{j)}}c_{j}\overline{c_{j}}\}$ such
that $\delta(P, w_{j})=P$ .
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Proof. For any $p;\in\{x;,\overline{x_{i}}\},$ $1\leq i\leq n$ , and $\sigma\in\{\overline{a_{j}}, \Gamma_{j},\overline{c_{j}}\},$ $1\leq j\leq m$ , we have
$\delta_{i}(p;, \sigma)=p:$ . (See $Fig’ s.2.2,2.3$ , and 2.4.) For any $\sigma\in\{a_{j}, b_{j}, c_{j}\}$ , either $\delta_{i}(p;, \sigma)=p$ :
or $\delta_{1}(p_{i}, \sigma)$ is undefined.

The necessary and sufficient condition that $\delta_{j}(p_{1}, a_{j})$ is undefined is that $i=j1$
and $p;=x_{j1}$ , that is, there is a pebble on $x_{j1}$ in $P$ . Likewise, the necessary and
sufficient condition for $\delta_{j}(p_{j}, b_{i})$ to be undefined is that $i=j2$ and $Pi=x_{j2}$ , that is,
a pebble is on $x_{j2}$ in $P$ , and the necessary and sufficient condition for $\delta_{l}(p_{i}, c_{j})$ to be
undefined is that $i=j3$ and $p;=x_{j3}$ , that is, a pebble is not on $x_{\gamma 3}$ in $P$ . Thus, $r_{j}$

is applicable to $P$ if and only if none of $\delta(P, a_{j}),$ $\delta(P, b_{j})$ , nor $\delta(P, c_{j})$ are defined.
$\square$

Note that $L(G)$ is a subset of $D_{4m}$ . Further we can obtain the following lemma:

Lemma 2.5 For any $\alpha\in D_{4m}$ and a pebble-placement $P$ ,

$\delta(P, \alpha)=P$ or it is undefined.
Froof. We can show the lemma by induction on I $\alpha|$ . $\square$

Lemma 2.6 The first player has a winning strategy from a pebble-placement $P$ if
and only if there is $w\in\Sigma_{4m^{*}}$ such that

$U\Rightarrow*w$ and $\delta(P, w)=P$.

Example 2.1 Before we prove the lemma, consider the pebble game $\mathcal{G}$ of Example
1.1. The cfg $G$ guesses the following derivation:

$U\Rightarrow r_{2}W\overline{r_{2}}\Rightarrow r_{2}V_{1}V_{2}V_{3}V_{4}\overline{r_{2}}$

$\Rightarrow^{*}$ $r_{2}b_{1}\overline{b_{1}}a_{2}\overline{a_{2}}r_{3}U\overline{r_{3}}a_{4}\delta_{4}^{-}\overline{r_{2}}$

$\Rightarrow r_{2}b_{1}\overline{b_{1}}a_{2}\overline{a_{2}}r_{3}r_{4}\overline{r_{4}}\overline{r_{3}}a_{4}\overline{a_{4}r_{2}}$.

Let $P_{0}=(x_{1},x_{2}, x_{3},\overline{x_{4}},\overline{x_{5}})$ . $P_{0}$ is the initial pebble-placement of $\mathcal{G}$ . Then

$\delta(P_{0}, r_{2})=(x_{1},\overline{x_{2}}, x_{3}, x_{4)}\overline{x_{6}})=P_{1}$ .
$P_{1}$ is the resultant pebble-placement after an application of $r_{2}$ to $P_{0}$ .

Since there is not a pebble on the second component $x_{2}$ of $r_{1},$ $r_{1}$ is not applicable
to $P_{1}$ , and $\delta(P_{1},$ $b_{1}b_{1}\neg=P_{1}$ . Similarly, $r_{2}$ and $r_{4}$ are not applicable to $P_{1}$ , since there
is not a pebble on the first component $x_{2}$ of $r_{2}$ and $r_{4}$ . Thus $\delta(P_{1}, a_{2}\overline{a_{2}})=P_{1}$ , and
$\delta(P_{1}, a_{4}\overline{a_{4}})=P_{1}$ . Further

$\delta(P_{1)}r_{3})=(x_{1}, x_{2},\overline{x_{3}}, x_{4},\overline{x_{5}})=P_{2}$ , and
$\delta(P_{2}, r_{4})=(x_{1},\overline{x_{2}},\overline{x_{3}}, x_{4}, x_{6})=P_{3}$ .

$P_{2}$ is the pebble-placement after the second player applies $r_{3}$ to $P_{1}$ , and $P_{3}$ is the
pebble-placement after the first player applies $r_{4}$ to $P_{2}$ . The symbols $\overline{r_{4}},\overline{r_{3}},\overline{r_{2}}$ are for
backtracking procedures. Thus we have

$\delta$ ( $P_{3}$ , F4) $=P_{2},$ $\delta(P_{2},\overline{r_{3}})=P_{1}$ , and $\delta(P_{1},\overline{r_{2}})=P_{0}$ .
Therefore, there is $w\in\Sigma_{4m^{*}}$ such that $U\Rightarrow^{*}w$ , and $\delta(P_{0}, w)=P_{0}$ .
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Proof. (Only if): There is a game-tree, the root of which is $P$ . We will prove the
“only if’) part by induction on the depth of the game-tree. Assume that the depth
of the tree is one. That is, the first player applies $r_{J}=(x_{j1}, x_{j2}, x_{j3})$ to put a pebble
on $x_{n}$ , and $j3=n$ . Then $U\Rightarrow r_{j}\overline{r_{J)}}$ and if $P$‘ is the resultant pebble-placement after
the application of $r_{j}$ to $P$ , then

$\delta(P, r_{j}\overline{r_{j}})=\delta(P’,\overline{r_{j}})=P$

by Lemma 2.3. Thus the “only if” part holds for the basis of the induction.
Assume that the depth of the tree is greater than one, that $r_{j}=(x_{j1}, x_{j2}, x_{j3})$ is

the first player’s rule to apply to $P$ and that $P$‘ is the resultant pebble-placement.
Prior to show the inductive step, we will show that

for each $j(1\leq j\leq m)$ , there is $w_{j}\in D_{4m}$ such that

$(^{*})$ $V_{j}\Rightarrow^{*}w_{j},$ $\delta(P’, w_{j})=P’$ .

If $r_{j}$ is not applicable to $P$‘ then there is $w_{J}\in\{a_{j}\overline{a_{j}}, b_{j}\overline{b_{j}}, c_{J}\overline{c_{j}}\}$ which satisfies $(^{*})$ by
Lemma 2,4.

Suppose that $r_{J}$ is applicable to $P’$ , and that $P_{j’}$ is the pebble-placement after the
application of $r_{j}$ to $P’$ . Since the first player has a winning strategy from $P_{j’}$ , there
is $v_{j}\in\Sigma_{4m^{*}}$ such that

$U\Rightarrow^{*}v_{J},$ $\delta(P_{j’}, v_{j})=P_{J}’$

by the inductive hypothesis, If we put $w_{j}=r_{j}v_{j}\overline{r_{j}}$ then

$V_{j}\Rightarrow r_{j}U\overline{r_{j}}\Rightarrow^{*}r_{j}v_{j}\overline{r_{j}}=w_{j}$ ,
$\delta(P^{J},w_{j})=\delta(P_{j}^{l}, v_{j}\overline{r_{j}})=\delta(P_{j}’,\overline{r_{j}})=P’$ .

Thus $(^{*})$ holds in the inductive step. We have shown $(^{*})$ .
Therefore we have

$U\Rightarrow r_{j}W\overline{r_{j}}\Rightarrow r_{j}V_{1}\cdots V_{m}\overline{r_{j}}\Rightarrow^{*}r_{j}w_{1}\cdots w_{m}\overline{r_{j}}$, and
$\delta(P, r_{j}w_{1}\cdots w_{m}\overline{r_{j}})=\delta(P’, w_{1}\cdots w_{m}\overline{r_{j}})=\delta(P’,\overline{r_{j}})=P$ .

(If): We use induction on the number of steps of the derivation $U\Rightarrow^{*}w$ . Assume
that the number of the steps is one, that is, $U\Rightarrow r_{J}\overline{r_{j}}=w$ . Obviously the first player
has a winning strategy from $P$ .

Assume that

$U\Rightarrow r_{j}W\overline{r_{j}}\Rightarrow r_{j}V_{1}\cdots V_{m}\overline{r_{j}}\Rightarrow^{*}r_{j}w_{1}\cdots w_{m}\overline{r_{j}}=w$ ,
$V_{j}\Rightarrow^{*}w_{j},$ $(1\leq j\leq m)$ .

Since $\delta(P, w)=P,$ $\delta(P, r_{j})$ is defined. If $\delta(P, r_{j})=P’$ , then $P’$ is the pebble-
placement after the application of $r_{j}$ to $P$ , and $\delta(P’,\overline{r_{j}})=P$ . By Lemma 2.5 and by
$\delta(P’, w_{1}\cdots w_{n})=P’$ , we have

$\delta(P’, w_{j})=P’$
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for every $j(1\leq j\leq m)$ . If $w_{j}\in\{a_{j}\overline{a_{j}}, b_{j}b_{j}^{-},c_{j}\overline{c_{j}}\}$ , then $r_{j}$ is not applicable to $P^{l}$ by
Lemma 2.4. If $w_{j}\not\in\{a_{j}\overline{a_{j}}, b_{j}\overline{b_{j}}, c_{j}\overline{c_{j}}\}$

) then $r_{j}$ is applicable to $P’$ and $w_{j}$ is of the form
$r_{j}v_{j}T_{J},$ $v_{j}\in D_{4m}$ . Thus

$V_{j}\Rightarrow r_{j}U\overline{r_{j}}\Rightarrow^{*}r_{j}v_{j}\overline{r_{j}}=w_{j}$, and $U\Rightarrow^{*}v_{j}$ .

If $\delta(P’, r_{j})=P_{j}’$ then $P_{j}’$ is the pebble-placement after the application of $r_{j}$ to $P’$ ,
and $\delta(P_{i}’, v_{j})=P_{j}’$ . By the inductive hypothesis, $U\Rightarrow^{*}v_{j}$ and $\delta(P_{j}’, v_{j})=P_{j}’$ imply
that the first player has a winning strategy from $P_{j}’$ . Thus the first player can win
the game no matter what rule $r_{j}$ the second player may apply to $P’$ .

Therefore the lemma is proved. $\square$

By Lemma 2.6, the necessary and sufficient condition for the first player to have
a winning strategy from the initial pebble-placement in $\mathcal{G}$ is that there is $w\in\Sigma_{4m^{*}}$

such that $w\in L(G)\cap L(N))$ and the condition is also that $L(G) \cap\bigcap_{j}^{n_{=1}}L(M,)\neq\phi$ .
To complete the proof of the theorem, we have to construct $M$ . It is clear that

we can easily construct the dfa $M$; from $M_{i}$ which accepts $\Sigma_{4m^{*}}-L(M_{1}\cdot)$ , the com-
plement of $L(M_{i})$ . Now we consider an nfa $M$ such that $M$ accepts the complement
of $\bigcap_{j}^{n_{=1}}L(M_{j})$ . Since

$\Sigma_{4m^{*}}-\bigcap_{i=1}^{n}L(M_{i})=\bigcup_{1=1}^{n}(\Sigma_{4m^{*}}-L(M_{j}))=\bigcup_{j=1}^{n}L(M_{j’})=L(M)$ ,

we can construct an nfa $M$ as the collection of $M_{1}’,$ $M_{2}’,$
$\cdots,$

$M_{n}’$ together with the
initial state $q_{0}$ of $M$ by simply adding $\lambda$-moves from $q_{0}$ to each initial state of
$M_{1}’,$ $M_{2}^{l},$

$\cdots,$
$M_{n}$ . The set of the accepting states of $M$ is the union of the ones

of $M_{1}’,$ $M_{2}’,$
$\cdots,$

$M_{n}’$ .
Therefore, there is a winning strategy for the first player from the initial pebble-

placemene in $\mathcal{G}$ if and only if $L(G)\not\subset L(M)$ . The constructions of $G$ and $M$ can
be performed within polynomial time. We note that $M$ can be constructed within
polynomial time since $M$ is nondeterministic. Thus both $P_{1}’$ and $P_{1}$ are complete for
EXPTIME. $\square$

3 PROBLEMS ON DCFL $S$

We consider in this section some problems concerning dcfl’s.

Theorem 3.1 The problem $P_{2}$ :

Given: a regular set $R\subset\Sigma_{2}^{*}$ .
To determine whether: $D_{2}\subset R$ .

is EXPTIME complete.

Proof. To prove the theorem, it suffices to show that the following $P_{2}$ ‘:

Given: a regular set $R\subset\Sigma_{2}^{*}$ .
To determine whether: $D_{2}\not\subset R$.
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$sf_{\alpha rt}$

Fig. 3.1 dfa $M_{0}$

is EXPTIME complete. By Lemma 2.2, $P_{2}’$ is solvable within exponential time. We
show that the pebble game problem is polynomial time reducible to $P_{2}$‘. The proof
proceeds similarly as in the one of Theorem 2.1.

Let $\mathcal{G}=(X,\tilde{R}, S, x_{n})$ be a pebble game, $X=\{x_{1}, x_{2}, \cdots, x_{n}\},$ $|\tilde{R}|=m$ . Let $G$

be the cfg, let $M_{1},$ $M_{2},$ $\cdots,$ $M_{n}$ be the dfa’s, and let $M$ be the nfa constructed in the
proof of Theorem 2.1. We have shown in the preceeding proof that the necessary and
sufficient condition for the first player having a forced win from the initial pebble-
placement in $\mathcal{G}$ is $L(G)\not\subset L(M)$ , hence $L(G) \cap\bigcap_{j}^{n_{=1}}L(M_{j})\neq\phi$. We will construct a
dfa $M_{0}$ such that $L(G)=D_{4m}\cap L(M_{0})$ .
Lemma 3.1 There exist a $dfaM_{0}$ such that $L(G)=D_{4m}\cap L(M_{0})$ .
Proof. Assume that $R_{1}$ is the set of rules of $\mathcal{G}$ to put a pebble not on $x_{n)}$ i.e.,
$R_{1}=\{r_{j}|r_{j}=(x_{j1}, x_{j2}, x_{j3}),j3\neq n\}$ , and that $R_{2}$ is the set of rules to put a pebble
on $x_{n},$ $R_{2}=\{r_{j}|r_{j}=(x_{j1}, x_{j2}, x_{j3}),j3=n\}$ . Without loss of generality, we may
assume that $R_{1}=\{r_{1}, \cdots, r_{1}\}$ and $R_{2}=\{r_{1+1}, \cdots, r_{m}\}$ . We construct $M_{0}$ , which
is shown in Fig.3.1, where the transition $r_{1}+\cdots+r_{1}$ from $U$ to $V_{1}$ stands for $\ell$

transitions by $r_{1)}\cdots,$ $r_{1}$ from $U$ to $V_{1}$ . (See Fig. $3.2(a).$) ‘Ttansitions by $\overline{r_{1}}+\cdots+\overline{r_{1)}}$

$r_{1+1}+\cdots+r_{m}$ and $\overline{r_{\ell+1}}+\cdots+\overline{r_{m}}$ in Fig.3.1 are similar abbreviations. For $1\leq j\leq m$ ,
let $\mu_{j}=a_{j}\overline{a_{j}}+b_{j}\overline{b_{j}}+c_{j}\overline{c_{j}}$. The transition by $\mu_{j}$ from $V_{j}$ to $V_{j+1}$ implies that either
$a_{j}\overline{a_{j}},$

$b_{j}\overline{b_{J}}$ , or $c_{j}\overline{c_{j}}$ cau$s$es the transition from $V_{J}$ to $V_{j+1}$ . (See Fig. $3.2(b).$ )
Let $\delta$ be the transition function of $M_{0}$ . Recall that $D_{4m}$ is generated by $G’=$

$(\{S\}, \Sigma_{4m}, P, S)$ , where $P$ contains $Sarrow SS|\lambda|[;S]_{j}$ for $1\leq i\leq 4m$ . It is clear that
$L(G)\subset D_{4m}$ since any derivation in $G$ can be “mapped into” a derivation in $G’$ by
replacing $U,$ $W,$ $V_{1},$

$\cdots,$
$V_{m}$ by $S$ .

Thus in order to prove the lemma it suffices to show that for $\alpha\in D_{4m}$

$U\Rightarrow^{*}\alpha G$ if and only if $\delta(U, \alpha)=U’$ ,
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Fig. 3.2 abbreviations in Fig.3.1

for each $j(1\leq j\leq m),$ $V_{j}\Rightarrow^{*}\alpha G$ if and only if $\delta(V_{j}, \alpha)=V_{j+1}$ ,
$W\Rightarrow^{*}\alpha G$ if and only if $\delta(V_{1}, \alpha)=V_{m+1}$ .

(Only if): Let us use induction on $|\alpha|$ . If $|\alpha|\leq 2$ , the cases are trivial. Consider
$\alpha,$ $|\alpha|=k>2,$ $ass$uming that the “only if” part holds for each $\beta\in D_{4m},$ $|\beta|<k$ .
Suppose $U\Rightarrow^{*}\alpha G$ Then the first step of the derivation should be $U\Rightarrow r_{j}W\overline{r_{j}}G$ for some
$j(1\leq j\leq m)$ , and $W\Rightarrow^{*}\beta G\in D_{4m},$ $\alpha=r_{j}\beta \mathcal{T}_{j},$ $|\beta|<k$ . By the inductive hypothesis,
we have $\delta(V_{1}, \beta)=V_{m+1}$ . Thus $\delta(U, \alpha)=\delta(U, r_{j}\beta T_{j})=\delta(V_{1}, ffi_{\overline{j}})=\delta(V_{m+1},\overline{r_{j}})=U’$.
The cases that $V_{j}\Rightarrow^{*}\alpha G$ and $W\Rightarrow\alpha G*$ can be similarly proved.

(If): By simple induction on $|\beta|,\beta\in D_{4m}-\{\lambda\}$ , we can show that
(i) $\delta(U, \beta)=U’$ or it is undefined, and
(ii) for each $j(1\leq j\leq m))\delta(V_{i},\beta)\in\{V_{j+1}, \cdots, V_{m+1}\}$ or it is undefined.

Again we will use induction on $|\alpha|$ to show the “if” part. If $|\alpha|\leq 2$ the proof is
obvious. Consider $\alpha,$ $|\alpha|=k>2$ , and assume that the (if‘ part holds for each $\beta$ ,
$|\beta|<k$ .

Suppose $\delta(U, \alpha)=U^{l}$ . If $\alpha=\alpha_{1}\alpha_{2}$ and if $\alpha_{1},$ $\alpha_{2}\in D_{4m}-\{\lambda\}$ , then $\delta(U, \alpha_{1})=U’$

by (i). The transition from $U^{l}$ is made only by one of $\overline{r_{1}},$

$\cdots,$
$\overline{r_{1}}$ and $\delta(U’, \alpha_{2})$ is

undefined. Thus $M_{0}$ does not accept $\alpha_{1}\alpha_{2}$ . So $\alpha=r_{j}\beta\overline{r_{j}}$ for some $j(1\leq j\leq\ell)$ and
$\beta\in(D_{4m}-\{\lambda\})$ . Since $\delta(U,r_{j})=V_{1}$ and $\delta(V_{1},\beta T_{j})=U’$ , we obtain $\delta(V_{1}, \beta)=V_{m+1}$ .
By the inductive hypothesis we have $W\Rightarrow^{*}\beta G$ Thus

$U\Rightarrow r_{j}W\overline{r_{j}}G\Rightarrow^{*}r_{j}\beta T_{j}=\alpha G$

The cases $\delta(V_{1}, \alpha)=V_{i+1}$ and 6 $(V_{1)}\alpha)=V_{m+1}$ can be similarly proved. $\square$

We define a homomorphism $h:\Sigma_{4m^{*}}arrow\Sigma_{2}^{*}$ as follows:
$h([j)=[1[2^{\{}$

$h(]_{i})=]_{2}^{i}]_{1}$
$(1\leq i\leq 4m)$
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Assume that $\triangle=\{h([:), h(]_{i})|1\leq i\leq 4m\}$. Then the following lemma holds.

Lemma 3.2 $h(D_{4m})=D_{2}\cap\triangle^{*}$ .
Proof. By the definition of $h$ and $D_{4m},$ $h(D_{4m})$ is the language, which can be generated
by the cfg $(\{S\}, \Sigma_{2}, P, S)$ , where $P$ contains $Sarrow SS|\lambda|[1[_{2^{\{}}S]_{2^{\{}}]_{1}$ for $1\leq i\leq 4m$ .
Thus the lemma follows. $\square$

We will complete the proof of Theorem 3.1. By the definition of $h$ , for languages
$L,$ $L^{(}C\Sigma_{4m^{*}}$ , we have that $L=\phi$ if and only if $h(L)=\phi)$ and that $h(L\cap L’)=$

$h(L)\cap h(L’)$ . Thus

$L(G)\not\subset L(M)$ if and only if $D_{4m} \cap\bigcap_{j=0}^{n}L(M_{1}\cdot)\neq\phi$

if and only if $h(D_{4m}) \cap\bigcap_{=j0}^{n}h(L(M_{i}))\neq\phi$ .

It is easy to construct a dfa $\overline{M_{j}}$ such that $h(L(M_{i}))=L(\overline{M_{j}})$ for $0\leq i\leq n$ . Let $M_{n+1}^{-}$

be the dfa, which accepts $\Delta^{*}$ . Then,

$L(G)\not\subset L(M)$ if and only if $D_{2} \cap\Delta^{*}\cap\bigcap_{i=0}^{n}L(\overline{M_{i}})\neq\phi$

if and only if $D_{2} \cap\bigcap_{j=0}^{n+1}L(\overline{M_{i}})\neq\phi$ .

We can construct an nfa $\overline{M}$ which $accept\underline{st}he$ complement of $\bigcap_{1=0}^{n+1}L(\overline{M_{1}})$ as in the
proof of Theorem 2.1, since $\overline{M_{0}},\overline{M_{1}},$

$\cdots,$ $M_{n+1}$ are deterministic. Thus,

$L(G)\not\subset L(M)$ if and ody if $D_{2}\not\subset L(\overline{M})$ .

The construction of $\overline{M}$ can be performed within polynomial time. Therefore the proof
of the theorem is completed. $\square$

Corollary 3.1 For a given regular set $R$ and for each $k\geq 2$ , the problem to determine
whether $D_{k}CR$ is EXPTIME complete.

Proof. The problem can be solved within EXPTIME. Let $R$ be a regular set. We
prove that

$D_{2}\subset R$ if and only if $D_{k}\subset R\cup(\Sigma_{k}^{*}-\Sigma_{2}^{*})$ .

Assume that $D_{2}\subset R$, and that $w\in D_{k}$ . If $w\in\Sigma_{2}^{*}$ then $w\in D_{2}$ . If $w\not\in\Sigma_{2}^{*}$ then
$w\in\Sigma_{k}^{*}-\Sigma_{2}^{*}$ . Thus $w\in R\cup(\Sigma_{k}^{*}-\Sigma_{2}^{*})$ and we obtain that $D_{k}\subset R\cup(\Sigma_{k}^{*}-\Sigma_{2}^{*})$ .

Assume that $D_{k}\subset R\cup(\Sigma_{k}^{*}-\Sigma_{2}^{*})$ , and $w\in D_{2}$ . Since $w\in R\cup(\Sigma_{k}^{*}-\Sigma_{2}^{*})$ and
$w\not\in\Sigma_{k}^{*}-\Sigma_{2}^{*}$ , we obtain that $w\in R$ . Thus $D_{2}\subset R$ .

As we can construct the nfa accepting $R\cup(\Sigma_{k}^{*}-\Sigma_{2}^{*})$ within polynomial time,
the corollary is proved. $o$

Open problem 1 The complexity of the problem to determine whether $D_{1}\subset R$

for a given regular set $R$ is remained open.

Since we can construct a dpda $M$ to accept $D_{2}$ , we obtain the following corollary.
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Corollary 3.2 The problem $P_{3}$ :

Given: a dcfl $L$ , and a regular set $R$ .
To determine whether: L $CR$ .

is EXPTIME complete.

Corollary 3.3 The problem $P_{4}$ :

Given: a dcfl $L\subset\Sigma^{*}$ , and a regular set $R\subset\Sigma^{*}$ .
To determine whether: $L\cup R=\Sigma^{*}$ .

is EXPTIME complete.

Proof. Let $M$ be a dpda which accepts $L$ . Since $M$ is deterministic, we can construct
a dpda $M’$ such that $M’$ accepts $\Sigma^{*}-- L.$ (See $[4],p.238$ , for example.) Then we can
construct a cfg $G$ , which satisfie$sL(G)=L(M’)$ .

Since $L\cup R=\Sigma^{*}$ is equivalent to $L(G)\subset R$ , and $G$ can be constructed within
polynomial time, $P_{4}$ is EXPTIME complete by Corollary 3.2. $0$

Remark The problem to determine whether R $CL$ for a given regular set $R$ and
a dcfl $L$ is solvable within polynomial time by constructing a cfg $G$ generating the
complement of $L$ and by applying the algorithm of Fig.2.1 to determine whether
$R\cap L(G)=\phi$ , which is equivalent to $R\subset L$ .
Open $pro$blem 2 Let $L$ be a dcfl and $R$ be a regular set. The following problems
are in EXPTIME, however, their complexities are open.

(1) $R=L$?
(2) $L\subsetneq R$?
(3) $R\subsetneq L$?
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