
31

Computational Power of a Memory-Based Parallel Computation Model

with Communication

Yasuhiko Takenaga and Shuzo Yajima

武永康彦 矢島脩三

Departmemt of Information Science, Faculty of Engineering, Kyoto University

1 Introduction

Although memories are originally for storing data, several computations can be performed by

adding some functions to memories. Such memories are called functional memories. Because

memories can be highly integrated, extremely parallel computation can be realized using the

functional memories.

We have proposed memory-based parallel computation models, which consist of a random

access machine (RAM) and a new functional memory $[1, 2]$. The functional memory can access

multiple words in parallel according to the partial match with their addresses. The functional

memory is used as a SIMD (Single Instruction Multiple Data stream) type parallel computation

engine. An FRAM (RAM with Functional memory) which has a simple functional memory is

a basic model of memory-based parallel computation. Each word of the functional memory

consists of an index field that stores its memory address and a l-bit data field. We showed

that the class of sets accepted by the FRAM within polynomial time is identical with \triangle_{2}^{P} ,

that is, the class of sets accepted by a polynomial time bounded deterministic oracle Turing

machine with an NP-oracle [3].

On many of the parallel computation models, PSPACE is accelerated to polynomial time.

Vector machines $[4, 5]$ are SIMD type computation models of the power. Compared with the

models, the communication on the FRAM is limited so that no word can know the contents

数理解析研究所講究録
第 796巻 1992年 31-42

32

of other words. It seems to be the factor to bound the computational power of the FRAM.

In this paper, we consider communicate functions on the functional memory and investigate

the effect to the computational power. The cube-FRAM model, which we propose in this paper,

is an extended model of the FRAM and has a hypercube network on the functional memory. It

has been studied on the computation using hypercube networks. However, on the cube-FRAM

model, each word of the functional memory can store only one data bit, and so the operations

on the functional memory are very primitive and cannot execute even basic instructions of a

RAM.

We show in this paper that the class of sets accepted by the cube-FRAM within polynomial

time is identical with PSPACE. Also an extended model of the cube-FRAM, called cube-

CAFRAM (RAM with Content Addressable Functional memory) which has infinite data bits

in each word, has the same computational power. The results reveal that the even simple

processing elements like a word of the functional memory can achieve the same computational

power as RAM’s on a hypercube network. We can regard that the operations on the functional

memory are, in a sense, the essential ones for SIMD type parallel computation to realize the

computational power.

Researches on functional memories have been made since more than 30 years ago [6]. Con-

tent addressable memory (CAM) is a kind of functional memory. Highly integrated CAMLSI’s

are developed in recent years $[7, 8]$. High speed processing using CAM’s attracts interests of

many researchers [9, 10, 11, 12]. An efficient algorithm for unification using a CAM is proposed

in [10]. In this algorithm, memory addresses are stored in a CAM as initial data. Yasuura

et al. proposed a functional memory type parallel processor architecture [11]. In addition

to the functions of a CAM, the functional memory of [11] has a function of masked search

for addresses. We think the researches on memory-based parallel computation models give a

theoretical basis for the computation using the functional memory.

33

The functional memory of the FRAM is realizable by some modification of a random access

memory or a CAM [13]. Using today’s technology, it seems possible to realize a functional

memory LSI with the capacity of several megabits. It may be hard to construct a large

hypercube network on the functional memory. However, in practice, more realizable networks

like a binary tree work as powerful as a hypercube network, and even a collection of small

networks can accelerate computations of many problems.

In Section 2, we present the basic model FRAM. In Section 3, the cube-FRAM model

which has a hypercube network on the functional memory is proposed, and its computational

power is considered in Section 4.

2 FRAM: The Basic Model of Memory-Based Parallel

Computation

The FRAM is the most basic memory-based parallel computation model, which has only

limited instructions on the functional memory. On the functional memory of the FRAM,

parallel access to multiple data is possible according to the partial match with their memory

addresses.

The FRAM model consists of a RAM, an unbounded functional memory and a search result

register, as shown in Fig.1.

As shown in Fig.2, the functional memory consists of unbounded number of words, and

each of them consists of an index field and a l-bit data field. In the index field, $bi_{11}ary$ numbers

0,1,2,... are stored in order from the first word. The number in the index field is called an

address. The addresses cannot be rewritten. With a search argument and a mask data, a

parallel masked search can be performed for the index fields of $al1$ the words. The bits of the

index field where the mask data have 1 are masked. The contents of the data fields can be

34

rewritten. In Fig.2, two words which are framed with wide lines are matched with the search

argument.

The search result register is a 1 -bit flag. 0 or 1 is loaded automatically into the register

according to the result of a search instruction.

The instructions of the FRAM is the same as those of an ordinary RAM except SEARCHO

and WRITEI instructions. The search result register can be an operand of the instructions.

The program is not stored in the registers and cannot be rewritten.

SEARCHO and WRITEI are the instructions that use the functional memory. The first

operand is a search argument and the second operand is a mask data. The contents of the

operands are regarded as binary numbers and $0’ s$ are assumed in higher bits out of consider-

ation. Namely, when n-bit binary numbers are given as operands, the 2^{n} memory cells with

addresses from 0 through $2^{n}-1$ are processed. A SEARCHO instruction performs a parallel

masked search and inspects if there existsa word whose data field stores0among the matched

words. If it exists, 1, otherwise 0 , is set in the search result register. This operation does not

change the contents of the data fields. A WRITEI instruction writes 1 into the data fields

of all the matched words. The contents of the data fields are not changed in the unmatched

words.

Search Result Register

Fig. 1 The scheme of the FRAM. Fig. 2 Searching on the functional memory.

35

The computation time on the FRAM is defined to be the number of executed instructions

as ordinary RAM’s.

The FRAM model realizes a completely SIMD type parallel computation. Each word of the

functional memory is alocal processing element and controlled by the random access machine.

We want to emphasize that the instructions of the FRAM are very simple. Both the function

of local computation and the way of communication between them, realized by WRITEI and

SEARCHO, are quite restricted.

We have shown the following theorem on the computational power of the FRAM [1].

Theoreml The class of sets accepted by the FRAM within polynomial time is identical with

\triangle_{2}^{P} .

3 Model with Communication

3.1 Communication on the Functional Memory

On the FRAM, the way of communication is restricted, as compared with bus connected

processor models, so that no word can receive the communicated value. Therefore, if a word

requires to refer the contents of another word, it is necessary to read it out to the random

access machine. Thus, it is impossible to communicate between the words in parallel for the

words. It is supposed to be the factor to limit the computational power of the FRAM.

In the CAM of [7], communication between the adjacent words is realized. The results of

searching can be shifted in parallel to the next words. It is used to deal with multiple words

like a single word and manage large data over the size of a word.

If the communication of this kind is added to the FRAM (or the CAFRAM), it accelerates

the computation of many practical problems [14]. However, in the polynomial time computa-

tion, acceptable class does not increase because each word can refer the contents of k words

36

by k times of communication. In this paper, we think of a more powerful communication on

the hypercube network.

3.2 Cube-FRAM Model

In this section, we propose a cube-FRAM model. The cube-FRAM has instructions to com-

municate between the words in parallel, in addition to the operations on the FRAM. In the

following, we define the communicate functions of the cube-FRAM.

The lines to connect the words construct a hypercube network. Each word is connected

with the words whose addresses are different bom its address at only one bit. For example,

the word with address 0 is connected with the words with addresses 1,2,4,8, etc.

The cube-FRAM has communicate instructions COMOR and COMAND. In the communi-

cate instructions, a bit position of the address is appointed as an operand. The communication

is executed in parallel between all the pairs of words whose addresses differ only at the bit

position. For example, when the lowest bit is appointed in a communicate instruction, com-

munications are executed between the words 0 and 1, 2 and 3, 4 and 5, etc. In the COMAND

instruction, logical product of the data bits is computed and stored into their data fields. In

the COMOR instruction, logical sum is computed and stored into their data fields. These

instructions are executed in a unit time.

The way of communication on the cube-FRAM preserves the SIMD type parallelism of the

FRAM.

37

4 Computational Power of the cube-FRAM

4.1 Algorithm for QBF

The QBF problem is one of the representative PSPACE-complete problems [15].

QBF : Is a quantified Boolean formula true?

A quantified Boolean formula is

$Q_{1}x_{1}Q_{2}x_{2}\cdots Q_{n}x_{n}F(x_{1}, x_{2}, \cdots, x_{n})$,

where $F(x_{1}, x_{2}, \cdots, x_{n})$ is a Boolean formula with variables $x_{1},$ $x_{2},$ $\cdots,$ x_{n} and $Q_{m}\in\{\exists, \forall\}(1\leq$

$m\leq n)$. \square

In this section, we show a polynomial time algorithm for QBF on the cube-FRAM.

In the following algorithm, we assume that the Boolean formula is in CNF. QBF is still a

PSPACE-complete problem under the constraint. Here, we consider k-variable QBF.

[Algorithm QBF]

Stepl : Perform following (1) and (2) for each sum-term.

(1) Make a search argument and a mask data according to each sum-term. In the mask

data, let the bits corresponding to the variables included in the sum-term be 0 and

the others be 1. In the search argument, let the bits corresponding to the variables

appearing as negative literals in the sum-term be 1 and the others be 0 .

(2) Execute a WRITEI instruction with the search argument and the mask data made

in (1).

Step2 : Repeat the following operation for $m=k$ to 1.

Execute a communicate instruction appointing the bit which corresponds to x_{m} . The

instruction is COMOR if the quantifier of x_{m} is \forall , and COMAND if it is \exists .

38

Step3 : (1) Make a mask data such that the lowest k bits are 1 and the others are 0 .

(2) Execute a SEARCHO instruction with the search argument made in (1) and 0 as a

mask data.

(3) If the content of the search result register is 1, the answer is ‘yes’. \square

In Step 1, for each given sum-term, we check the assignments for variables which do not

satisfy the sum-term by writing 1 in the corresponding words. For example, for a sum-term

$x_{5}+x_{2}^{-}+x_{1}$ in a five variable CNF Boolean formula, we make the mask data 0...01100 and the

search argument 0...00010. After Step 1, the data bit is 0 when the assignment satisfies the

Boolean formula, and otherwise 1. After performing Step2 until $m=i$, the content of a data

bit is determined only by the address bits corresponding to $x_{1},$ $\cdots,$ x_{j-2} and x_{i-1} . The value

is 0 when $Q;x_{i}\cdots Q_{n}x_{n}F(x_{1}, x_{2}, \cdots, x_{n})$ is true. After Step2, all of the 2^{k} data bits store the

same value. If the quantified Boolean formula is true, the value is 0 .

Stepl requires linear time. Step2 and Step3 takes time proportional to k . Then [Algorithm

QBF] is a linear time algorithm.

4.2 Computational Power of the cube-FRAM

We will show the following theorem on the computational power of the cube-FRAM.

Theorem2 The class of sets accepted by the polynomial time bounded cube-FRAM is iden-

tical with PSPACE.

Proof A PSPACE-complete problem QBF can be solved within polynomial time on the cube-

FRAM. Thus we can think that the cube-FRAM can work as a random access machine with

a PSPACE-oracle. It is clear that the class of sets accepted by the polynomial time bounded

cube-FRAM includes PSPACE. The converse is shown as follows.

We simulate a polynomial time bounded cube-FRAM by a random access machine. The

39

operations of the cube-FRAM which do not use the functional memory are easily simulated

within polynomial space. The results of the operations on the functional memory can be

referred only through the search result register. Thus, we have to compute the contents of

the data fields only when a SEARCHO instruction is executed. Compute the data bit and

examine if it is 0 for each word in turn. The value of a data bit in word A is computed

by the following recursive algorithm. Let the word with which A communicated at the last

communicate instruction be word B.

Stepl: Compute the value of the data bit in word A before the last communicate instruction.

Step2: Compute the value of the data bit in word B before the last communicate instruction.

Step3: Compute the present value of the data bit in word A using the result of Stepl and

Step2.

The necessary space for this algorithm is proportional to the product of the number of used

address bits and the number of executed communicate instructions. Therefore, a polynomial

time bounded cube-FRAM is simulated within polynomial space. \square

This speed up is obtained because each word can refer the contents of 2^{k} words by k times

of communicate instructions. If a network satisfies the condition, it may be used instead of the

hypercube network [16]. For example, we can easily see that a binary tree network can take the

place of a hypercube network, because the algorithm for QBF requires communications only

on the binary tree structure. The number of connections is $O(n)$ on the binary tree network,

and that on the hypercube network is 0(nlogn), where n is the number of nodes. Therefore,

the binary tree network is more effective and easy to realize. However, it may disturb the

SIMD type parallelism of the memory-based parallel computation models.

40

4.3 Cube-CAFRAM : An Extended Model

The cube-FRAM has minimum communicate functions to accelerate PSPACE to polynomial

time. Here, we consider a cube-CAFRAM model which has functions like CAM)s and a

communicate function.

The cube-CAFRAM is based on the CAFRAM model [2]. Each word of its functional

memory has infinite data bits and parallel masked search is performed both in the index field

and the data field. In a SEARCH instruction, it is found if there is a matched word or not. In

a WRITEBIT instruction, it rewrites the data bits according to the result of searching.

COM instruction is added to the instruction set of the CAFRAM, which is a communicate

instruction on the hypercube network. The lowest bit of the data field is exchanged between

the pairwised words by the instruction.

The class of sets accepted by the polynomial time bounded cube-CAFRAM is identical

with PSPACE. The proof is almost the same as the case of the cube-FRAM. This model is

realistic and convenient to make algorithms on it. We can observe that satisfiability of any

Boolean formula with k-variables is computed on the CAFRAM in linear time using 2^{k} words.

Therefore, QBF with any Boolean formula is solved in linear time on the cube-CAFRAM.

5 Conclusion

In this paper, we have proposed the memory-based parallel computation model with com-

munication called a cube-FRAM, and considered their computational power. In addition to

the parallel masked search for their memory addresses, the cube-FRAM model can commu-

nicate between the words of the functional memory on the hypercube network. We showed

that PSPACE is accelerated to polynomial time on the model. The operations on the func-

tional memory of the cube-FRAM are very simple and, in a sense, essential ones to reahze the

41

computational power on a SIMD type parallel computation model.

References

[1] N. Takagi, Y. Takenaga and S. Yajima:“A Memory-Type Parallel Computation Model

and Its Computational Power” Trans. IPSJ, 31, 11, pp.1565-1571(1990).

[2] Y. Takenaga, N. Takagi and S. Yajima: “A Memory-Based Parallel Computation Model

with a Content Addressable Memory and Its Computational Power,” Report of Technical

Group on Theoretical Foundations of Computing, IEICE, COMP89-118 pp.39-44(1988).

[3] L. J. Stockmeyer :“The Polynomial Time Hierarchy,” Theoretical Computer Science, 3,

1, pp.1-22(1977).

[4] V. R. Pratt, M. O. Rabin and L. J. Stockmeyer : “A Characterization of the Power of

Vector Machines,” 6th STOC, pp.122-134(1974).

[5] K. Iwama : “A Canonical Form of Vector Machines,” Report of Technical Group on

Theoretical Foundations of Computing, IEICE, COMP88-22, pp.53-58(1988).

[6] T. Kohonen: Content Addressable Memories 2nd ed., Springer-Verlag (1987).

[7] T. Ogura, J. Yamada, S. Yamada and M. Tan-no :“A 20-kbit Associative Memory LSI

for Artificial Intelligence Machines,” IEEE J. Solid-State Circuits, vol.24, no.4, pp.1014-

1020(1989).

[8] T. Hamamoto, T. Yamagata, M. Mihara, T. Kobayashi and M. Yamada : “A 288kbit

Fully Parallel Content Addressable Memory Using Stacked Capacitor Cell Structure,”

IEICE National Convention Record, Spring’91, C-649 (1991).

42

[9] L. Chisvin and R. J. Duckworth, : “Content-addressable and Associative Memory : Al-

ternatives to the Ubiquitous RAM,” IEEE Computer, 22, pp.51-64(1989).

[10] M. Ohkubo, H. Yasuura, N. Takagi and S. Yajima : “A Hardware-Oriented Unification

Algorithm Using a Content Addressable Memory,” Trans. IPSJ, 28, 9, pp.915-922(1987).

[11] H. Yasuura, T. Tsujimoto and K. Tamaru:“ Functional Memory Type Parallel Processor

Architecture for Combinational Problems,” Trans. IEICE, vol.J72-A pp.222-230(1989).

[12] A. Kokubu, T. Higuchi and T. Furuya: “ Parallel Associative Memory System of Semantic

Network Machine,” Report of Technical Group on Architecture, IPSJ, ARC80-9, pp.65-

72(1990).

[13] N. Takagi, Y. Takenaga and S. Yajima : “On a New Supercomputer with a Memory-

Based Parallel Computation Engine,” Report of Technical Group on Architecture, IPSJ,

ARC80-13 pp.97-103(1990).

[14] N. Ishiura and S. Yajima: “Linear Time Fault Simulation Using a Content Addressable

Memory,” Proc. of the 4th KARUIZAWA Workshop on Circuits and Systems, pp.63-

68(1991).

[15] J. E. Hopcroft, and J. Wyllie : Introduction to Automata Theory, Languages and Com-

putation, Addison-Wesley R.M. (1979).

[16] Y. Takenaga and S. Yajima :“The Topology of Networks on a Memory-Based Parallel

Computation Model,” Report of Technical Group on Theoretical Foundations of Com-

puting, IEICE, COMP90-71, pp.53-58(1988).

