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Abstract This paper presents 7 classes of AND-EXOR expressions:positive
polarity Reed-Muller expressions, fixed polarity Reed-Muller
expressions, Kronecker expressions, pseudo Reed-Muller expressions,
pseudo Kronecker expressions, generalized Reed-Muller expressions and
exclusive-or sum-of-products expressions(ESOPs). Relations between these
classes are shown. The number of products to realize several classes of
functions are analyzed. Especially, the number of products in a minimal

ESOP for x1y;VxgygV - Vx,y, is shown to be 20 -1. Optimization

programs for these expressions were developed, and statistical results
for arithmetic functions, randomly generated functions, and all the
functions of 4 and 5 variables were obtained.
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1. Introduction

It has long been conjectured that exclusive sum-of-products
expressions (ESOPs) require fewer products than sum-of-products
expressions (SOPs). For example, an ESOP requires only n products to

represent a parity function of n variables while the SOP requires Zn_l.
Also, experiments using randomly generated functions show that ESOPs
require, on the average, fewer products than SOPs. However, this is not
always the case. There is a 2n variable function which requires

2" -1 products in an ESOP while only n products in an SOP.

This paper presents 7 classes of AND-EXOR expressions: positive
polarity Reed-Muller expressions, fixed polarity Reed-Muller
expressions, Kronecker expressions, pseudo Reed-Muller expressions,
pseudo Kronecker expressions, generalized Reed-Muller expressions and
exclusive-or sum-of-products expressions (ESOPs). Relations of these
classes are shown. The number of products to realize several classes of
functions are analyzed. Optimization programs for these expressions were
developed, and statistical results for arithmetic functions, randomly
generated functions, and all the functions of 4 and 5 variables were

obtained. Also, we will prove that the ESOP for xlyl\/xzyz\/"-\/xnyrl

requires 2"-1 products.
2. Several Classes of AND-EXOR Expressions

Many researchers defined various classes of AND-EXOR expressions, but
the terminology is not unified. In this section, we define several
classes and show the relations among them. Also, we propose a new class
of AND-EXOR expression.
Theorem 2.1:(Expansion Theorem) An arbitrary logic function f can be
expanded as either

f= fodxfy --—-(1) , or
f=§f2$ fl ---(2) , or
f=§fOEBxf1 ---(3), where

f0=f(0,X2,"',Xn): flzf(l,XZ,"’,Xn), and fzzfo@fl.

In the case of SOPs we can use only the type (3) expansion, which is
often called a Shannon expansion. However, in the case of AND-EXOR
expressions, we may use any of the three expansions. Thus, various
classes of expressions exist as follows:

2.1 Positive Polarity Reed-Muller Expression (PPRME)

When we apply the type (1) expansion to all the variables, we have
an expression consisting of positive literals only:
ag @31X1€B - DapXxy ®a12x1x2®a13x1X3$ o P
an n-1 XpXp-1P @ajg...n X1X9 Xp ---=(4)
This is called a Positive Polarity Reed-Muller Expression (PPRME).
Because PPRME is unique for a given function, no minimization problen
exists. The average number of product terms in the PPRMEs for

the n-variable functions is 27! [SAS 90a].
2.2 Fixed Polarity Reed-Muller Expression (FPRME)




‘When we apply either the type (1) or the type (2) expansion to each
variable, we obtain an expression similar to (4), except that either a
true or a complemented literal is used for each variable. This
expression is called a Fixed Polarity Reed-Muller expression (FPRME).

There are at most 2" different FPRMEs for an n-variable function.
The minimization problem is to find an expression with the minimum

numbers of products among the 20 different FPRMEs. As for minimization,
two different methods are known: One requires the space and the

computation time of 0(2") and 0(4"), respectively [LUI 90], and the

other requires the space and the computation time of 0(3™) [DAV78].
2.3 Kronecker Expression (KRQ)

When we apply either the type (1), (2) or (3) expansion to each
variable, we obtain an expression which is more general than FPRME. This
is called a Kronecker expression (KRO)[DAV78]. There are at most

3N different KROs for an n-variable function. As an algorithm to find a
KRO with the minimum number of products, a method using an extended

truth table of 3" entries and extended weight vector is known. The time

and space complexity of the algorithm are 0(n-3") and 0(3M),
respectively [DAV 78], [LUI 90]. ,
2.4 Pseudo Reed-Muller Expression (PSDRME)

When we apply either the type (1) or the type (2) expansion to f, we
have two sub-functions. For each sub-function, we can apply either type
(1) or (2) expansion. However, assume that we use different expansions
for each sub-function. In this case, we have a more general expansion
than a FPRME. This is called a Pseudo Reed-Muller Expression (PSDRME).
In PSDRME, both true and complemented literals can appear for the same

variable. There are at most 22n_1 different PSDRMEs. A minimum PSDRME
can be obtained from the extended truth table. However the number of
products in the expression depends on the order of the variables. This
class of expressions has not be studied according to the author’s
knowledge.

2.5 Pseudo Kronecker Expression (PSDKRQ)

When we apply either the type (1), (2) or (3) expansion to f, we
‘have two sub=functions. For each sub-function, we can apply either the
type (1), (2) or (3) expansion, and assume that we use different
expansions for each sub-function. In this case, we have a more general
expansion than a KRO. This is called a Pseudo Kronecker Expression
(PSDKRO) [DAV78]. In PSDKRO, both true and complemented literals can

appear for the same variable. There are at most 32n“1 different PSDKROs.
A minimum PSDKRO can be obtained from an extended truth table. The
number of products in the expression depends on the order of the
variables.
2.6 Generalized Reed-Muller Expression (GRME)

In the expression of the type (4), if we can freely choose the
polarities of the literals, then we have a more general expression than
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a FPRME. This is called a Generalized Reed-Muller Expression (GRME)
[DAVT78]. (Also called an inconsistent canonical form [COH62] or a
canonical restricted mixed polarity form [CSA 91]).

There are at most ann ! different GRMEs. No efficient minimization
method is known. Note that some researchers use the term GRMEs to mean
a different class of AND-EXOR expressions.

2.7 Exclusive-or Sum-of-Products Expression (ESQP)

Arbitrary product terms combined by EXORs are called an Exclusive-
or Sum-of-Products Expression (ESOP). The ESOP is the most general AND-

EXOR expression. There are at most 3t different ESOPs, where t is the
number of the products. No efficient minimization method is known, and
iterative improvement methods are used to obtain near minimal solutions.
An exact minimization method was developed, but it is very time- and
memory-consuming [PER90].
2.8 Relations among the classes
Theorem 2.2: Suppose that PPRME, FPRME, PSDRME, KRO, PSDKRO, GRME, and
ESOP denote the set of expressions. Then the following relations hold:
® PPRME < FPRME @ FPRME < PSDRME ® FPRME < KRO
@ KRO C PSDKRO ® PSDRME < PSDKRO ® PSDRME c GRME
(Proof) As for @~®, they are trivial and follows from the
definitions. As for ®, consider a PSDRME. It is also a GRME, and hence
the proof is completed. (Q.E.D.)
Example 2.1:
O xy®yz®zx is a PPRME.
~(all the literals are positive).

@ xy®yzézx is a FPRME, but not a PPRME. o ‘

(x and z have positive literals, but y has negative

literals).
@ xy®yz®zx is a PSDRME, but not a FPRME.

(y and z have literals of both polarities).
® xyz®x'y-z is a KRO, but not a FPRME.

(x, y and z have literals of both polarities).

@ XIBxydxy is a PSDKRO, but not a KRO.

® x®xydxy is a PSDKRO, but not a PSDRME.

(it contains two products of the highest degree).
® xdydx-y is a GRME, but not a PSDRME.
@ xdydx-y is a GRME, but not a PSDKRO.
xyz®x'y-z is a KRO, but not a GRME.

(it contains two products of the highest degree).
© x®yDxydx-y is an ESOP, but neither GRME nor PSDKRO.
Fig. 2.1 summarizes the Theorem 2.2 and Example 2.1.
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Fig 2.1 Various classes of AND-EXOR Expressions and their relation.

2.9 Complexities of the expressions for some functions

The numbers of the products to represent the function
X{®x9® - @x, are n for ESOPs, and 201 for SOPs. In the case of

2 for PPRME, and only 1 for other classes of AND-EXOR
expressions [SAS90a]. In the case of xlxzu-xn\/ilizu’in (n=2r),

90-1 for PPRME, 2(2F-1) for FPRME, and n for PSDRME. But for other

classes only two products are sufficient [SAS90a]. The sufficient

numbers of products to represent X1XZ\/X3X4\/"'\/XH_1XH (n=2r) are

r for SOPs and 2F-1 for ESOPs. The sufficient numbers of the

products to represent an n-bit adder are 2M-1 for ESOPs, Z“+1+n-2 for
other classes of AND-EXOR expressions, and 6-27-4n-5 for SOPs.

iliz“‘in.

Table 2.1. Number of products to represent various functions (n=2r).
PSD | PSD | PP FP

function | KRO | RME | RME | KRO RME | ESOP | SOP

x16x26 n-1
@ 2N n n n n n nia

X1x2+++xn 1 A 1 1 111
x1x2+--xn n_ r+l_

V % 1%2+ %0 2 n | 2"-1 | 212 2 21 2
x1x2V r_ r_ r_ r_ r_ r_

eV xn-1x0 2'-112"-12"-1| 2"-1 2°-112-1| n
n hit antly - an-1|

x 6-200 -4n-5

"
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3. Complexity of ESOPs
Experimental results show that ESOPs require fewer products than
SOPs to represent symmetric functions and randomly generated functions
[SAS 90al]. Also, an ESOP requires only n products to represent a parity
2“‘1

function of n variables while the SOP requires products. However,
this is not always the case. There is a 2n variable function whose ESOP

requires 2" -1 products while the SOP requires n products.
In this section, we derive upper and lower bounds on the number of
products in ESOPs. Especially, we show that xyy; VxgygV - Vxyy requires

20-1 products. The method to prove the lower bound here use special
properties which cannot be found in SOPs. Recently, an exponential lower
bound of ESOP for a clique function has been cbtained by using
Razborov's approximation method [DAM 90] [RAZ 88].

Definition 3.1: x and x are literals of a variable x. A logical product

which contains at most one literal for each variable is called a product
term. Product terms combined with OR operators form a Sum-of-Products
expression (SOP). Product terms combined with EXOR operators form an
Exclusive-Or Sum-of-Products expression (ESOP).

Definition 3.2: A minterm is a logical product containing a literal for
each variable. A minterm implying a function f is called a minterm of f.
Definition 3.3: An SOP for f is said to be a minimum

SOP (or MSOP) for f if the number of the products is the minimum. An
ESOP for f is said to be a minimum ESOP (or MESOP) for f if its number
of products is the minimum.

Definition 3.4: The number of products in an SOP F is denoted by t(F).
The number of products in an MSOP for f is denoted by t(f). The number
of products in an ESOP F is denoted by 7 (F). The number of products in
an MESOP for f is denoted by 7 (f).

Lemma 3.1: If f=géh, then 7 (f)= 7 (g)+7 (h).

Theorem 3.1: Let F=xFO&®xF1®F2 be an ESOP for a function f. Consider
the ESOPs G=FO@ xF1®xF2 and HiiFOGBFlGaxFZ which are obtained by
interchanging the literals 12x or 12x in F, respectively. Let g and h
be the functions represented by G and H, respectively.

Then 7 (f)=7 (g)=7 (h).

(Proof) Let the MESOPs for f and g be

Fm =§FI6@XFT@F% and @M =§G'6'€BxG'i‘€BG'§ , respectively.

Because F and F" represent the same function,

FOGBFZ:FBEBFQ, and FIGBFz:FTGBFE. |

Because G and G™ represent the same function,

Fo@Fo=6{®Gh, Fi@F)=G]®Gh and F;@®Fy=GT&G].

Therefore, Fi@F3=Gl®GY. and FT@F)=GT@G]. Note that

Fi=xFje xF{oF) =x(Gleclar]) ex(Glecjer)) orl=xle o] .
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From this, we have 7 (f)= 7 (g).
On the other hand, in a similar way, we obtain

6" =xGl® xcl®cY=xFTaxFiaF] .
So (@ =7 (f). Thus 7 (g)=7 (f). 7 (f)=7 (h) can be proved in a

similar way. (Q.E.D.)
Lemma 3.2: 7 (f)=7 (g;), where

g,=(1@xyp) - (1@x9y9) -+ (1®x,y,), and

fn'-' (Xl@yl) : (X2®YZ) e (Xn@ yn).

(Proof) Replace the literals as x;2 1 in g,, and we have f.
By Theorem 3.1, 7 (f)=7 (g). (Q.E.D.)
Lemma 3.3: If hy=xqyqVxgygV - Vxpy,, then hp=g @®1.

(Proof) g, = (1®xyyy) - (1@x9y9) -+ (1B Xy )

Ty - gy e &yp) -

gn@l =§n = X1y1VX2yZV“'VXnyn = hp,. (Q.E.D.)

Lemma 3.4: 7 (h,)=2"-1.

(Proof) By Lemma 3.3, h, can be represented as :

hy= (1@xqy]) - (1@xgy9) -+ (1®x,y,) D1,

n
Using the distributive law, we have the ESOP for h, with 2 -1 products.

(Q.E.D.)
Lemma 3.5:7 (f)= 7 (0:1), where 7 (0:1)=7 (f(0)® (1))
f(a)=f(a, x9,x3, ., xp), and a€{0,1}. (Proof is in Appendix)

Lemma 3.6:7 (f)={7 (0,0:0,1)+7 (0,0:1,0)+7z (1,1:0,)+7 (1,1:1,00}/2,
where 7 (a,bic,d)=7 (f(a,b)®f(c.d)), f(a,b)=f(a,b,x3. x4, ", %),

and a,b,c,de{0,1}. (Proof is in Appendix)

Lemna 3.7: 7z (f)=

{z (0,0,0:0,0,1)+7(0,0,0:0,1,0)+7 (0,0,0:1,0,0)+7 (0,1,1:0,0, 1)
+7(0,1,1:0,1,0)+7z (0,1,1:1,1,1)+7 (1,0,1:0,0,1)+7 (1,0,1:1,0,0)
+7(1,0,1:1,1, 1)+ (1,1,0:0,1,0)+7 (1,1,0:1,0,0)+7z (1,1,0:1, 1, 1) }/4,
where f(a,b,c)=f(a,b,c,x4,%5.°*, %)), a,b,c,de;h €{0,1} ,

and 7 (a,b,cid,e,h)=7 (f(a,b,c)®f(d,e.h)). (Proof is in Appendix)
Theorem 3.2: 7 (f)=2", where f =(x{®yp) - (x9®yy) - (x,;®Y).
(Proof) Let f,, be f in Lemma 3.6. Because

7 (0,0:0,1)+7(0,0:1,0)+7 (1,1:0,D+7 (1,1:1,0)=4- T (fn-l)’

we have 7 (f)=22-7 (f_1).It is easy to see that z (f )=2.

Thus 7 (fn)gzn. On the other hand, by the distributive law, we have

7 (fy) =27, Hence the theoren. (Q.E.D.)
Lemma 3.8: |z (-t () I|=1.



74

(Proof) Suppose that g=h. Because g=h@®1 and h=g®1, we have
(=<7 (h)+l and 7 (h)=< 7 (g)+] by Lemma 3.1. Therefore, we have

7(g)-7 (W) =<1 and 7 (h)-7 (g) =1. Hence the Lemma. (Q.E.D.)
Theorem 3.3: 7 (hn)=2n—1, where hy =x1y1Vx9ygV - Vxpy, .

(Proof) By Lemma 3.4, 7 (h,) <20-1, By Theorem 3.2 and Lemma 3.2,

7 (g)=2" By Lemma 3.8, |7 (hp)-7 (g))I=1. Thus,

T (g)-7 (hy))<land 7 (h)zt (gn)—1=2n—1 .(Q.E.D.)
Theorem 3.4: 7 (rp)=3", where

rp=(x @y @z))  (xg@yg@z) -+ (x, @y B2z).

(Proof) Let f be r in Lemma 3.7. Note that

7 (0,0,0:0,0,1)+7 (0,0,0:0,1,00+7 (0,0,0:1,0,0)+7 (0,1,1:0,0,1)+
7(0,1,1:0,1,00+7 (0, 1,1:1,1,D+7 (1,0,1:0,0, 1)+ 7 (1,0,1:1,0,0) +
t(1,0,1:1,1,D)+7 (1,1,0:0,1,0)+7 (1,1,0:1,0,0)+ 7 (1,1,0:1,1, 1)

’ =127 (r_p).

Therefore, we have 7 (rn)_Z_B - T (rn_l). Because T (r‘l =3,
we have 7 (rp)= 3™ On the other hand, by the distributive law, it is

easy to see that 7 (rp)=3" . Hence the theorem.  (Q.E.D)

4. Experimental Results
As for the simplification of AND-EXOR expressions, various methods
have been developed for each class of the expressions. They can be

‘divided into two classes: One uses spectral techniques, the other one

iterative improvement techniques. Spectral methods normally work on

complete truth tables, requiring 2% entries. An exception is [BES 91]
which processes cubes directly to simplify ESOPs.

Minimization algorithms for FPRME, PSDRME, KRO, and PSDKRO are
known. For example, to minimize PSDKRO, the space and computation time

of 0(3™) and 0(n-3"), respectively, are sufficient[DAV76, LUI90, MUK90].
It is not difficult to obtain the minimum of 14-variable functions using
a workstation. On the other hand, the iterative improvement method
reduces the number of products by modifying the set of product terms

in the expressions. The necessary memory size is proportional to n-t,
where t is the number of products and n is the number of the variables.

The computation time is proportional to t2 or t3. By this method, we can
simplify ESOPs, the most general AND-EXOR expressions, but it takes much
computation time and cannot guarantee the minimality of the solutions
[BRA90, EVE67, FLE87, PER89, HEL88, ROB82, SAS90a, SAS90b]. For each
classes of AND-EXOR expressions, we developed an optimization progranm,
and minimized various functions.
4.1 Arithmetic functions '

Table 4.1 compares the numbers of products and literals of SOPs and
ESOPs for various arithmetic functions. The columns headed with "1-bit”
denote the ESOPs with two-valued input variables, and the columns headed




with "2-bit” denote the ESOPs with four-valued inputs. They correspond
to PLAs with 1-bit decoders and PLAs with two-bit decoders, respectively
- [SAS 81, SAS84, SAS90b, PER89]. In these examples, ESOPs require fewer
products than SOPs. In this experiment SOPs were minimized by QM[SAS84],
and ESOPs were simplified by a non-deterministic algorithm [BRA91].
Table 4.2 compares the number of products for various AND-EXOR
expressions. |f| denotes the number of products in the truth tables. The
number of products tends to decrease in the following order: |fl, PPRME,
FPRME, SOP, KRO, PSDRME, PSDKRO, and ESOP.
4.2 Randomly generated functions (n=4 to 14)
Table 4.3 shows the number of products for randomly generated
functions. For each n, a pseudo-random function of n variables with

2“'1 minterms were generated, and minimized. In this case, the numbers
of products for |f| and PPRME are comparable, but as for FPRME, KRO,
PSDRME, PSDKRO, SOP, and ESOP, the numbers of products decrease in this
order. In this experiment SOPs were simplified by MINI2 [SAS84], and
ESOPs were simplified by EXMIN [SAS90b].
4.3 4-variable functions

There are 65536 functions of 4 variables. These functions can be
classified into 402 equivalence classes under NP equivalence relation
[HAR65, MURT79]. Table 4.4 shows the distribution of the number of
products for the functions. This result was obtained by minimizing each
of 402 representative functions, and then weighting by the number of the
different functions in each equivalence class. From this table, we can
obtain the average number of the products. In the table, t denotes the
number of products and av denotes the average number of the products.
The average numbers of the products decreases in the following order:
FPRME, KRO, PSDRME, SOP, PSDKRO, and ESOP. In this experiment we
optimized SOPs by QM,and ESOPs by an exhaustive method [KOD89].
4.4 5-variable functions

There are 252 different b-variable functions. These functions can be
classified into 6936 equivalence classes under LP equivalence relation
[SAS91, KOD91].Table 4.5 shows the distribution of the number of
products for the functions. This result was obtained by optimizing each
of 6936 representative functions, and then multiplying the number of the
functions in each class. From this table, we can calculate the average
numbers of the products for KRO, PSDRME, PSDKRO, and ESOP. The average
numbers of the products decrease in this order. In this experiment the
ESOPs were optimized by a special minimization algorithm [KOD90].

4.5 6-variable functions

It has been verified that arbitrary 6-variable function can be
realized by ESOPs with at most 16 products [KOD91]. So, we have the
following result.

Theorem 4.1 : Let © (n) and ¥ (n) be the sufficient number of products
to realize an arbitrary n-variable function by an SOP and an ESOP,

respectively. Then <';I>(n)=2n'1 and \If(n)=2“_2 for n=6.

75



Table 4.1. Number of products and literals to represent arithmetic
functions.

# of products # of literals

Data| _SOP | __ESOP ____ | __SOP | | ESOP___
Name | 1bit [ 2bit | 1bit | 2bit | 1bit [ 2bit | 1bit | 2bit
ADR4 | 75| 17| 31| 11| 423| 139 168] 99
LOG8 | 123| 98| 96| 94| 1019|1162 785 | 1090
MLP4| 121 85| 61| 52| 889 910| 441 467
NRM4 | 120| 70| 73| 56| 887| 799| 602| 618
ROM8 | 76| 52| 31| 26| 406| 431 | 181| 208
ROT8 | 57| 38| 35| 28| 389 414| 280 353
SQRS | 180 | 147| 114| 1121398 1675| 809 | 1181
WGT8 | 255| 54| 54| 25|2078| 530] 356 207

Table 4. 2. Number of products to realize arithmetic functions.

Data PP FP PSD PSD
Name | [f| |RME | RME | RME | KRO | KRO | ESOP | SOP

ADR4 | 255 34 34 34 34 34 31 75
LOG8 | 255 | 253 | 193 | 163 | 171 128 96| 123
MLP4 | 225 97 97 90 97 81 61| 121
NRM4 | 255| 216| 185 | 150 | 157 | 105 1] 120
RDM8 | 255 56 56 46 56 41 31 76
ROT8 | 255| 225| 118 81 83 44 35 57
SQR8 | 255| 168 | 168 | 164 | 168| 146 | 112 180
WGT8 | 256 | 107| 107 | 107 107 107 54 | 255
SYMO | 420| 210 173 ] 127 173 90 52 84

Table 4.3. Number of products to realize randomly generated functions.

PP FP PSD | PSD
n | If| |RME | RME | KRO | RME | KRO | ESOP | SQOP
4 8 6 5 4 4 4 3 4
5 16 16 10 8 7 6 5 6
6 32 36 17 17 13 12 10 13
7
8
9

64 64 54 48 30 26 19 24
128 | 122 101 | 100 56 50 39 46
256 | 236 | 226 | 212| 112 99 69 86

10 512 | 528 | 459 | 439 | 235| 206 | 142| 167

11 | 1024|1021 | 956 | 925 | 458 | 391 | 276| 331

12 | 2048 | 1996 | 1925 | 1899 | 909 | 775| 572 | 611

13 | 4096 | 4136 | 3923 | 3865 | 1813 | 1563 | 1097 | 1157
_14 181928210 7924 | 7826 | 3617 | 3107 | 2190 | 2234




Table 4.4. Number of 4-variable functions requiring t products.

t | FPRME KRO PSDRME | PSDKRO | ESQOP SoP
0 1 1 1 1y 1 1
1 81 81 81 81 81 81
2 836 2268 1764 2268 2268 1804

3 3496 8424 | 11864 | 18248 | 21744 | 13472
4 8878 | 15174 | 27934 | 33910 | 37530 | 28904
5| 17884 | 19260 | 19628 9708 3888 | 17032
6| 20152 | 19440 3880 1296 24 3704
71 11600 864 360 0 512
8 2336 0 24 24 26
9 240 0

10 32 24

av 5.50 4.73 4.20 3. 84 3. 66 4.13

Table 4.5 Number of the 5-variable functions

requiring t products.

t KRO PSDRME PSDKRO ESQP

0 1y 1 1 1
1 243 243 243 243
2 24948 1620 24948 24947
3 354780 345060 1346220 1351836
4 2508570 3333906 16417026 39365190
5 12029418 28341090 | 170332794 | 545193342
6 55321704 | 222639840 | 828743400 [ 2398267764
7| 187202664 | 1237084812 | 2280973932 | 1299295404
8| 418029660 | 1489676400 | 883268712 11460744
9| 804890520 | 879161364 | 104197428 7824
10 | 1006381476 | 345677544 9049320

11| 1053603288 79186896 587088

12 | 544903200 7718328 26136

13| 195821712 1632960 0

14 13630680 155520 0

15 256608 11664 0

16 0 48 48

17 7776

21 48

av 10. 05 8.01 6.97 6. 17

7
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5. Conclusion

In this paper, we presented 7 classes of AND-EXOR expressions:
PPRME, FPRME, PSDRME, GRME, KRO, PSDKRO, and ESOP. In particular, PSDRME
is a new class defined in this paper. Also we developed optimization
programs for each class and optimized various functions. ESOPs require
the least number of products but are difficult to minimize. PSDKROs
require the least but one number of products. The space and time

complexity for the optimization of PSDKRO are both 0(3"). Also we
showed that the ESOP for the function xyy; Vxgyy V- Vx,y, requires 20-1
products.
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APPENDIX
(Proof for Lemma 3.5) Let F be an MESOP for f and be represented as
follows:
FO)x® F()xle Fx4, s (A1)
where F(a) (ae{0,1,2}) are ESOPs which do not contain

variable x, x0 =X, x1= X , and x2=1.

By setting x =0 in (A1), F(Q)@®F(2)= f(0). = =-=—-—====--- (A2)
By setting x =1 in (A1), F(QQ)&F(2)= f(l). = ---==----- (A3)
By (A2) @ (A3), we have F(O)®F(1)= f(O)®f(l).  -—-——-------—- (A4)

Let 7 (a)=7 (F(a)). From (A4), we have T (O)+z ()= 7 (fO)BTF()) .
Note that = (f)=7 (0)+7 (1)+ 7 (2). Because 7 (2) =0, we have

T ()= (FO)f)). (Q.E.D.)
(Proof for Lemma 3.6) Let F be an MESOP for f and be represented as
follows:



F0,0)x%% r@0, )% @ R0, Z)xoyZGB R (1, O)XIyOGB R(L Dxly

o F(L2)xlv?e F.0 x40 FE Dxyle F@ 252 e (1)
where F(a,b) (a,be{0,1,2}) are ESOPs which do not contain variable

x nory, x0 =%, xl= x, and x2=1, y0= ¥, yl= y , and y%=1.

By setting (x,y) =(0,0) in (B1),

F(0,0)F(0,2)®F(2,00®F(2,2) =f©0.  ===—- (B2)
By setting (x,y) =(1,1) in (Bl), '

F(LL)®F(,2)®F (@2, 1)®F(2,2) = f(,D. === (B3)
By setting (x,y) =(0,1) in (Bl), '
F(O,1)®F(0,2)®F(2, 1)BF(2,2) = O, D).  ===——- (B4)
By setting (x,y) =(1,0) in (B1),
F(1,0)®F(1,2)®F(Q2,0)®F(2,2) = f(1,00). ==——-- (B5)

By (B2) and (B4), F(0,0)&F(0,1)®F(2,0)®F(2,1)= £(0,0)edf(0,1)--(B6)

By (B2) and (B5), F(0,0) ®F(0,2)®F(1,00®F(1,2)= £(0,0)f (1 0)--(BT)

By (B3) and (B4), F(0,1)®F(0,2)®F(1,1)®F(1,2)= £f(1,1)f(0,1)--(B8)

By (B3) and (B5), F(1,0)®F(1,1)®F(2,0)0®F(2,1)= f(1,1)e@f(1,0)--(B9)

Let = (a,b)=7 (F(a,b)). From (B6) to (B9), we have

70,0+, D+7(2,0)+7(2,1)=7 (0,0:0,1),

7(0,00+7(0,2)+7 (1,0)+7 (1,2)= 7 (0,0:1,0),

0, D+z 0,2+ (1, D+ (1,2)=7(1,1:0,1), and

T (1,0O+z (L, D+ 2,0+ @2, D=7 (1,1:1,0).

By adding thefour inequations above, we have

2{7 (0,0)+7z (0, D+ (0,2)+7 (1,0+7 (I, D+7 (1,2)+7 (2,0 +7 (2, 1)}>

7 (0,0:0,1)+7 (0,0:1,0)+7 (1,1:0,1)+7 (1,1:1,0).

Note that = (f)=7 (0,0)+7 (0, 1)+7 (0,2)+7z (1,0)+z (1, D +7 (1,2)+

7(2,00+7 (2,1)+7 (2,2). Because 7 (2,2)=0, we have 2- 7 (f) =

7 (0,0:0,1)+7 (0,0:1,0)+7 (1,1:0,1)+7 (1,1:1,0). Hence the lemma.
(Q.E.D.)

(Proof for Lemma 3.7) Let F be an MESOP for f and be represented as

follows:

F(0,0,0)x%%0 (0,0, 1)x0%!a® F(0,0,2)x0022@F (0, 1,0)x0y!20
F0.1, Dx0% 2 @ F0, 1, 2)x°y1z2@F(o 2, 0x%22% (0,2, 1)x0y 2 1
F(0.2.2)x%%22@ F(1,0,0xy02% ra,0, Dxly%le F(0,2)xly 022
F(L,1,0)xlylz0% F(, 1, Dxlylzle P, 1, 2xlylz2 oF 12,0k ¢ 9
F(L 2, Dxly?zle F(1,2 2) xly22@F (2,0, 0)x2y°z°ea F(2,0,1)x2y0z!
F(2,0,2)x2y0220 F(2.1,00x%y 20 F@2, 1, Dxlylzle F(2.1,2) x2ylz2

®F(2,2,00x%y220@ F(2.2, 1)x%%l@ F(2,2,2)x%y%:% , -—-(C1)

where F(a,b,c) (a,b,c €{0,1,2} ) are ESOPs Wthh do not contain

variable x, y nor z,

O3, oy, el 0o ylay g

By setting (x,y,z) =(0,0,0) in (Cl),
F(0,0,0)®F(0,0,2)®F(0,2,0)BF(0,2,2)®F(2,0,0)dF(2,0,2)®F(2,2,0)

®r,2,2)-=1¢0,00.  —me——— (C2)

By setting (x,y,z) =(0,1,1) in (C1),

F(0.1,1)®F(0,1,2)®F(0,2,1) ®F(0,2,2)®F(2,1,1) ®F(2,1,2)®F(2,2, 1)

DD DDD

z'1 z0=5,zl=z,andz

boq,
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®r@,2,2) =f©1,1.,  —em—m——e- (€3)
By setting (x,y,z) =(1,0,1) in (C1),

F(1,0, 1) ®F(1,0,2)®F (1,2, 1)®F(1,2,2)®F(2,0,1)®F(2,0,2)®F (2,2, 1)
®Fr@2,2,2) =f@,0,.  =mmemmee——e (C4)
By setting (x,y,2z) =(1,1,0) in (C1),

F(L,1L,O)BF(1,1,2)®F(1,2,00®F(1,2,2)DF(2,1,000F(2,1,2)®F(2,2,0)
®F2,2,2) =f1({,1,0). ettt (C5)
By setting (x,y.z) =(0,0,1) in (C1),

F(0,0,1)®F(0,0,2)®F(0,2,1)BF(0,2,2)®F(2,0,1)BF(2,0,2)®F(2,2, 1)
®r@2,2,2 =f©@o0,L. mmmm—mme—ee- (C6)
By setting (x,y,z) =(0,1,0) in (C1),

F(0,1,0)®F(0,1,2)®F(0,2,0)F(0,2,2)BF(2,1,0)BF(2,1,2)®F(2,2,0)
®F@2,2,2) =f@L,0.  mmmme—e—e—e- (Cn
By setting (x,y,z) =(1,0,0) in (Cl1),

F(1,0,0)®F(1,0,2)dF(1,2,0)F(1,2,2)®F(2,0,0)DF(2,0,2)®F(2,2,0)
®r,2,2) =fg,000.  =mmmmmm————- (C8)
By setting (x,y,z) =(1,1,1) in (C1),

F(1,1,1)@®F(1,1,2)BF (1,2, 1)®F(1,2,2)8F(2,1,1)®F(2,1,2)®F(2,2,1)
®Fr,2,2) =, L,.,. =mmemme—eee- (€9)
By (C2)® (C6),

F(0,0,0)®F(0,0,1)®F(0,2,00®F(0,2,1)®F(2,0,00®F(2,0,1)®F(2,2,0)
®F(2,2,1)=f(0,0,001(0,0,1). ----(C10)
By (C2)& (CT),

F(0,0,0)®F(0,0,2)dF(0,1,00®F(0,1,2)®F(2,0,0) BF(2,0,2) ®F(2,1,0)
®F@2,1,2)=f(0,0,0®f(0,1,0).  ===—= (C11)
By (C2) @ (C8), _

F(0,0,0) ®F(0,0,2)®F(0,2,00@F(0,2,2)®F(1,0,0)®F(1,0,2)®F(1,2,0)
®rQ,2, 2)=f©,0,00)®r(1,0,0).  ==--- (C12)
By (C3) & (C6),

F(0,0,1)®F(0,0,2)®F(0,1,1)®dF(0,1,2)®F(2,0,1)BF(2,0,2)DF(2,1,1)
®F@,1,2)=f0,1,)®r,0,1). === (C13)
By (C3)& (CT),

F(0,1,0)®F(0,1,1)®F(0,2,0)®F(0,2,1)®F(2,1,0)0®F(2,1,1)®F(2,2,0)
®Fr2,2,1)=r(,1,)r(0,1,0). === (C14)
By (C3) @ (C9), ,

F(0,1,1)®F(0,1,2)®F(0,2,1)®F(0,2,2)®F(1,1,1)®F(1,1,2)®F(1,2,1)
®F(,2,2)=f, 1, ,, 1y . === (C15)
By (C4)® (C6),

F(0,0,1)®F(0,0,2)BF(0,2,1)BF(0,2,2)®F(1,0,1)®F(1,0,2)®F(1,2,1)
@F(1,2,2)=f(1,0,1)®f(0,0,1). S e (C16)
By (C4) & (C8), -

F(1,0,00®F(1,0, 1) ®F(1,2,00®F(1,2,1)®F(2,0,0)BF(2,0,1)®F(2,2,0)
®&F(2,2,1)=f(,0, ) (,0,00).  ——e—e (C17)
By (C4) & (C9),

F(1,0, D®F(1,0,2)®F(1,1,1)®F(1,1,2)®F (2,0, 1) BF(2,0,2)®F(2,1, 1)
&F@2,1,2)=f1,0, )1, L.  eeee- (C18)
By (C5) e (CT), ,

F(0,1,00®F(0,1,2)®F(0,2,00BF(0,2,2)®F(1,1,00®F(1,1,2)®F(1,2,0)
®F(,2,2)=f(1,1,00®f(,1,0).  —eeee (C19)
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By (C5) @ (C8),

F(1,0,0)®F(1,0,2)®F(1,1,0)®F(1,1,2)®F(2,0,0) ®F(2,0,2)®F(2,1,0)
®&Fr2,1,2)=r1,1,0)r,0,00. === (C20)
By (C5) & (C9),

F(L,LO)&F(1,1,)®F(1,2,00®F(1,2,1)®F(2,1,00®dF(2,1,1)®F(2,2,0)
®FQ, 2, )=f1,,0s®rQ,1,1). === (c21)
Let 7 (a,b,c)=7 (F(a,b,c)), and 7 (a,b,c:d,e,h)=7 (f(a,b,c)®f(d,e,h)).
From (C10) to (C21), we have 37 (0,0,0)+37 (0,0,1)+47 (0,0,2)+37 (0,1,0)
+37 (0,1, 1)+47(0,1,2)+47 (0,2,0)+4 7 (0,2, 1)+4 7 (0,2,2) +37 (1,0,0)
+37 (1,0, 1)+47 (1,0,2)+37 (1,1,0+37 (1,1, D+47 (1,1,2) +4 7 (1, 2,0)
t47 (1,2, )+47 (1,2,2)+47 (2,0,0)+4 7 (2,0, 1)+4 7 (2,0,2) +4 7 (2, 1,0)
t47 (2,1,1)+47 (2,1,2)+47 (2,2,0)+4 7 (2,2,1) =
{z(0,0,0:0,0,1)+7 (0,0,0:0,1,0)+7 (0,0,0:1,0,00+ 7 (0,1,1:0,0,1)
+7(0,1,1:0,1,0)+7 (0,1,1:1,1, 1D+ = (1,0,1:0,0,1)+7 (1,0,1:1,0,0)
+7(,0,1:1,0,0)+7 (1,1,0:0,1,00+7 (1,1,0:1,0,0)+7 (1,1,0:1,1, 1) }.
Note that = (f)= 7 (0,0,0)+7 (0,0,1)+7 (0,0,2)+7 (0,1,0)+7 (0,1,1)
+7(0,1,2)+7(0,2,00+7 (0,2, 1)+7 (0,2,2)+7 (1,0,0)+7 (1,0, 1)+ 7 (1,0, 2)
+7(L1L,0O+z (1L, LD+ (1,1,)+7(1,2,00+7 (1,2, 1)+ (1,2,2)+7 (2,0,0)
+7(2,0,D+7(2,0,20)+7 (2, 1,0)+7 (2,1, D)+7 (2,1,2)+7 (2,2,00+7 (2,2, 1)
+7(2,2,2).

Because 7 (a,b,c)=0, we have 4:- 7 (f)={7 (0,0,0:0,0,1)+7 (0,0,0:0,1,0)
+7(0,0,0:1,0,0)+7 (0,1,1:0,0,D+7 (0,1,1:0,1,0)+7 (0, 1,1:1, 1, 1)
+7(1,0,1:0,0,1)+7(1,0,1:1,0,0+7 (1,0,1:1,1, D+7 (1,1,0:0,1,0)
+7(1,1,0:1,0,0)+7 (1,1,0:1,1,1) }. Hence the lemma. (Q.E.D)



