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The Problem of Normal Form for
Unlabeled Boundary NLC Graph
Languages

Koichi Yamazaki * Takeo Yaku !

Abstract

In the previous paper ( Rozenberg and Welzl 1986 a ), it is open that whether
there exists a positive integer ko such that there is a BNLC grammar G with
mazr(G) < ko and L = und(L(G)) for every unlabeled BNLC language L, where
mazr(G) is the maximum number of nodes productions in G, and und(L(G)) is
the set of underlying unlabeled graphs which are obtained from graphs in L(G) by
taking off the labels. In order to negatively solve this open problem, we first show a
pumping lemma for a BNLC languages. Then we will show that there is no integer
ko satisfying the above conditions, using the pumping lemma.

1 Introduction

NLC graph grammars are introduced by Janssens and Rozenberg as a basic
framework for the mathematical investigation of graph grammars. Since then this
model has been intensively investigated ( see, e.g., Janssens and Rozenberg 1980,
Ehrenfeucht et al 1984 and Janssens et al 1984 ). BNLC graph grammars are
introduced and investigated by Rozenberg and Welzl in ( Rozenberg and Welzl 1986
a,b). BNLC graph grammars are NLC graph grammars with the property whenever
-in a graph already generated- two nodes may be rewritten, then those nodes are
not adjacent. BNLC languages are an attractive subfamily of the family of NLC
languages (see 1986 b).

As is necessary in string grammars, in graph grammars it is important to inves-
tigate normal forms for grammars. Let G be a context-free string grammar, and
let mazr,;(G) be the maximum length of the right side of the productions in G.
“Whether there is a positive integer kg, such that for every context-free string lan-
guage there is a context-free string grammar G with mazry(G) < ko and L = L(G)
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?”. The answer of the above problem for ky = 2 is well known as the Chomsky
normal form. In this paper, we call the above problem the Chomsky normal form
for context-free string grammars. By Ehrenfeucht et al (1984), for BNLC graph
grammar the following problem was investigated : “Whether there is a positive
integer ko, such that for every NLC graph language L there is a NLC graph gram-
mar G with mazr(G) < ko and L = L(G) ?”, where mazr(G) is maximum of the
number of nodes of axiom and graphs of right hand side of productions in G. In
( Ehrenfeucht et al 1984 ), it was shown that there is no positive integer ko such
that ko satisfy the above condition. This problem is similar to the Chomsky normal
form for context-free string grammars. In this paper, we call the above problem the
Chomsky normal form problem for NLC graph grammars.

In ( Rozenberg and Welzl 1986 a ), the Chomsky normal form problem for
BNLC graph grammar was investigated : “Whether there is a positive integer kg
such that for every BNLC graph language L there is a BNLC graph grammar G
with mazr(G) < ko and L = L(G) ?”. In ( Rozenberg and Welzl 1986 a ), it was
shown that for every BNLC graph grammar there is no positive integer k¢ such
that ko satisfies the above condition as was previously shown in the NLC case. In
( Rozenberg and Welzl 1986 a ), however it is an open problem that whether there
is the Chomsky normal form for unlabeled BNLC languages, i.e., ” Whether there
is a positive integer ko, such that for every unlabeled BNLC language L there is a
BNLC grammar G with mazr(G) < ko and L = und(L(G)) ?”, where und(L(G))
is the set of underlying unlabeled graphs of L(G). It turns out that there exists
no positive integer ko of this problem. In this paper, by pumping lemma for NLC
languages, we will show that there exists no the Chomsky normal form for unlabeled
BNLC languages, i.e., there exists no positive integer ko that satisfy the following
condition: For every unlabeled BNLC language L, there is a BNLC graph grammar
G such that mazr(G) < ko and L = und(L(G)).

This paper is organized as follows. In Section 2, definitions basic notions. In
Section 3, pumping lemma for BNLC languages are given. In Section 4, for every &,
we construct a u-BNLC language Lj such that Lj is never constructed by a BNLC
graph grammar with mazr(G) < k, and give properties of L. In Section 5, it is
shown, using the pumping lemma and L, that there exists no the Chomsky normal

form for unlabeled BNLC languages.

2 Preliminaries

We start with basic notations concerning graphs, graph grammars and concrete
derivation which we need for this paper. For details, see (1986 a). We based on
the definition in (1986 a). We assume familiarity with elementary graph theory.
In particular, we use the following notions as defind in Harary (1969): adjacent,
neighbor, subgraphs, induced subgraphs.
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2.1 Graphs

We consider finite undirected node labeled graphs without loops and without
multiple edges. For a set of labels X, a graph X (over X) is specified by a finite set
Vx of nodes, a set Ex of two element subsets of Vx (called the set of edges) and
a function px from Vx into X (called the labeling function). Notice that Fy is a
set of sets of the elements of Vx. Disregarding the labeling function one gets the

‘underlying unlabeled graph of X, denoted by und(X). The set of all graphs over X

is denoted by Gz. The graph X — z is the subgraph of X induced by Vx —{z}. The
neighborhood of z in X, nbhx(z), is the set {ox(y) | {z,y} € Ex}. A graph X'is
isomorphic to X, if there is a bijection from Vx/ to Vx which preserves labels and
adjacencies. The set of all graphs isomorphic to X is denoted by [X]. The size of
X, X is the number of nodes in X. We also denote the cardinality of Vx by }Vx,
ie, 1 X =§Vx.

Let ® be a set of labels. A graph X is called a ® - boundarygraph, if no two
nodes of X that are labeled by elements of ® are adjacent.

2.2 Graph Grammars

A node label controlled (NLC) grammaris a system G = (X, A, P, conn, Z,,),
where X is a finite nonempty set of labels, A is a nonempty subset of X' (the set
of terminals), P is a finite set of pairs (d,Y) where d € ¥ and Y € Gy (the set
of productions), conn is a function from X into 2% (the connection function), and
Z4uz € Gy (the aziom).

By [P] we denote the set {(d,Y”’) | Y’ € [Y] for some'(d,Y) € P}. By mazr(G)
we denote maz({§Z..} U {Y | (d,Y) € P for some d € £}). The set ¥ — A'is
refered to as the set of nonterminals. We define the set of nonterminal nodes by T',
i.e., ' = X' — Delta. In the context of G, given a graph X € G5 we refer to nodes
labeled by elements of T' (A, respectively) as nonterminal nodes (terminal nodes,
respectively). ,

Let X,Y and Z be graphs over X with Vx NV = 0 and let z € Vx. Then X
concretely derives Z (in G, replacing z by Y ), denoted by X =, (5,y) Z or simply
by X =(2Y) Z if ((px(m),Y) € [P], Vz=Vx_.UVy, Bz = Ex_,UEyU {{:B', y} I
z' € nbhx(z), y € Vv, ¢x(z') € conn(py(y))}, ¢z equals to px_, on Vx_;, and
¢z equals to py on Vy. Intuitively speaking, we replace z in X by the graph Y and
connect a node y of Y to a neighbor z’ of z if and only if px(z') € conn(py(y)).

A graph X directly derives a graph Z (in G), in symbols X =_ Z, if there is a
graph Z' € [Z], such that X concretely derives Z' in G. =7 is the transitive and
reflexive closure of =,. If X =% Z, then we say that X derives Z (in G). The
language of G is the set {X € Ga | Z,z =7, X}. A set L of graphs is an NLC
language if there is an NLC grammar G such that L = L(G). A boundary NLC
(BN LC) grammar is an NLC grammar G = (X, A, P, conn, Z,,), where Z,, is a T
- boundary graph and for all (d,Y) € P, d €T and Y is a I' - boundary graph. A
graph language L is an NLC (BNLC) language, if there is a NLC (BNLC) grammar



G such that L = L(G). A language L of unlabeled graphs is u-NLC (u-BNLC)

language, if there is an NLC (BNLC) language L' such that L = und(L'). Let G

is NLC graph grammar. G is chain-free, if for all (d, Y) € P with Vy = {y} (ie.,
§Y = 1), y is a terminal node.

2.3 Concrete Derivation

Let G = (X, A, P,conn, Z,,) be an NLC grammar. If a graph X concretely

derives a graph Z in G, replacing a node z by a graph Y, then we refer to the

construct X =(,y) Z as a concrete derivation step in G (from X to Z). A sequence
of successive concrete derivation steps in G

D2 Xo = @ovi) X1 (@12) " D (enar¥a) Xns
where n > 0 and the sets Vx,, Vy,, 1 < i < n, are pairwise disjoint, is refered to as
a concrete derivation in G (from XO to X,).

The node set of D is Vp = U Vx,. The edge set of D is Ep = G Ex,. The

1=0

labeling function ¢p of D is deﬁned by ¢p(z) = ¢x,(z) if z € VXO and pp(z) =
oy,(z) if z € Vy,, for some 7, 1 < ¢ < n. Note that Vp = Vy, U U Vy,, hence ¢p

is defined on the whole set Vp. Moreover, if z € VX ., for some 1, 1 <1< n, then
ox;(z) = ¢p(z). Thus every concrete derivation D defines naturally a graph with
set of nodes Vp, set of edges Ep and labeling function ¢p. Note that this graph
D is a I'-boundary graph whenever X is a I'-boundary graph and G is a BNLC
grammar.

Let Op be a distinguished element not in Vp Wthh is called the origin of the
derivation D. The predecessor mapping predp of D is a function from Vp into
Vp U {Op} such that for z € Vp

Op ifz € Vx, and
z; ifzeVy,, forani, 0<i<n—-1

predp(z) = {

Hence predp maps every node z in Vp to the node from which z is directly
derived (or to Op if z was already present in Xj).

The history histp(z) of a node ¢ € Vp in D is the sequence (Yo, Y1,°**, Um),
m>1,y; € Vplorall s, 1 < ¢ < m,suchthat yo = Op, y,, = z, and y; = predp(yi+1)
for all 7, 0 <1 < m — 1. Let D be a derivation and let z and y be nodes in V. A
node z is an ancestor of y in the derivation D if ¢ € histp(y). Nodes z and y are
independent if = ¢ histp(y) and y ¢ histp(z). Let (yo,y1,-**,Y¥m) be a sequence
such that histp(z) = (yo,y1,**, Ym), and let 0 < i < 5 < m. Then we denote the
sequence (i, Yi+1,°**,Y;) by histp(yi,y;). (We can define histp(z,y) only when z
is an ancestor of y). Let

D : Xo =z v1) X1 =(@1,3) = (@no1,Ya) Xn

be a derivation. We denote the set {zg, z,- -, z,—1} of rewritten nonterminal nodes
in derivation D by Cp. We call the graph X,, the result in the derivation D.
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Let D' be derivation

D X(') = (2, Y}) X{ = (l,Y)) T (h_,,Yy) XL
The derivation D’ is isomorphic to D if there is a bijection A from Vp: to Vp
such that h |y, is an isomorphism from Vx: to Vx; and for z' € Vx: (0 < i <n— 1),
h(predps(z')) = predp(h(z')). The set of all derivations isomorphic to D is denoted
by [D].
Let D be a derivation.

D Xo =@y X1 F@ %) 0 F@aoi¥a) Xn
We call the graph X,, the result in the derivation D.

3 A pumping lemma for BNLC languages

In this section, we introduce a pumping lemma for BNLC grammars. In this
paper we need the pumping lemma is the proof of the main theorem.

In order to state the pumping lemma, we need to develop some concepts. Let
= (X, 4, P, conn Za,) be a BNLC grammar. Let D be a following concrete

denvatmn in G :
D: Xo=@oyi) X1 =@ ¥2) " (zna1,Yn) Xny

such that there exist z,,z, € Cp (z, # z,) satisfying z, € histp(z,) and pp(z,) =
op(z,). We call the above derivation rough derivation on (z,, z4).

Let us consider the following derivation D,

. ! ! !
D: X, = (@i0),Yicoy+1) X3 (= P (a 1)41) Xes

i) Yiy+1) i(e=1)Yi(e~

where the sequence (7(0),%(1),:--,i(e — 1)) is a sequence ascending order of the
subscripts in the set {z; € Cp | z, € histp(z;) and z, & histp(z;)}-

In what follows, we will show that the derivation D can be iterated in this section.
Let m be a positive integer. Let Dj, D}, ---, D! € [D] be derivations, and h; be an
isomorophism from D; to D for each j, 1 < j < m of the following forms:

xi
X3

D X =
Y 0 @yoyYioy1)

(’”»'(n’ Vi)

_ . XI
(@emryYe-ry) ¢

hi + Vbt = Viter(D,zp,oq) 2l — z;, where [ € {i(0),i(1),--,i(e — 1)}, which
satisfy the following four conditions:
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(1) ‘/iter(D,xP,xq) N VD; = {.'Bq} and Zq = ’1’}(0); '
(2) Foreach1<j<m-—1, Vo, NVpy,, = {z3} and 2} =z},
(3) Vo, _, NVp;, = {z77'} and 27"~ = 277, and

(4) For every i, j such that | i —j [> 2, Vp: N Vp, = 0.

Then we obtain the following derivation :

Xe @or) Xi Z(eeoryy) Xo

: " "
=>(xi(o)'Yito)H) Xq‘H =>($§(e—l)’yil(e—l)+l) Xq+e

n "
= @oy Yoy Xgtet1 = @ty ¥ emtyar) Xarae

" "
=>($£?0)’Yi'(%)+l ) Xq+(m—-1)e+l ﬁ(zi(me_l)yyizne_l).'.l ) Xq+me

:>($;”,Yq+1) thzl+me+1 T (241, Ye42) Xg+me+2
Tt ﬁ(«’l‘n—l,yn) Xrl:+me ‘
()
We call the derivation (*) m times pumped derivation and denote pump(D, z,, T4, m).
Now We can state the pumping lemma for BNLC languages.

Lemma 3.1 (A pumping lemma for BNLC languages) Let D be a
rough derivation on (z,, z,) and pump(D, z,, 4, m) be the m times pumped deriva-
tion on (z,,z,), where m is an arbitrary positive integer. If the result of D isin Ga
then the result of pump(D, z,, 4, m) is in Ga.

4 Properties of L;

We treat Chomsky normal form problem for u-BNLC languages, i.e., “ Whether
there is a positive integer ko, such that for every u-BNLC language L thereis a BNLC
grammar G with mazr(G) < ko and L = und(L(G)) ?”.

We will solve the above problem by proving the following Theorem 4.1:

Theorem 4.1 For each positive integer &, there is a u-BNLC language L such
that the following condition hold: For all BNLC grammar G with mazr(G) < k,
und(L(G)) # Ly hold.

It is not difficult to see that if theorem 4.1 is true then there is no positive integer
of the problem. In this section we will construct Lj of theorem 4.1, and we will deal
properties on L.
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For each positive integer k, L; of theorem 4.1 is construct by the following
method.

A construction method of L, : For each positive integer k, we consider
a BNLC grammar Gy = (Zg, Ak, P, conng, Zazy), where Xx = {a1,az,+++,ax,5},
Ay = {a1,as,--,a}, conng(a;) = q; for all 1 < 1 < k, conng(s) = Ax, Zazi 18
a single node with label s; P, = {(s,Yw), (s, Yax)}, where Yi; is complete graph
with set of nodes {uj,uz, -+, ug, ux+1}, where gy, (u;) = a; for all 1 < i < k,
oy, (uk+1) = s, Yor is complete graph with set of nodes {v;,vs,--+, v}, where
Oy, (v:) = a; for all 1 < ¢ < k. We difine an unlabeled graph language Li by

An underlying unlabeled Lj; has the following characteristic properties.

Proposition 4.2 Let k > 2 be an arbitrary integer, e be a positive integer
and let H be a graph in L(Gy) such that §Vy =k -e. Then
(1) The graph H has exactly e disjoint complete subgraphs with £ nodes.
(2) The graph H has exactly k disjoint complete subgraphs with e nodes.

We call the complete subgraphs of (1) in proposition 4.2 different label group,
and the complete subgraphs of (2) in proposition 4.2 same label group.

Same label groups and different label groups has characteristic properties. We
will show properties of same label groups and different label groups.
We consider an underlying unlabeled graph H, in L;. Let H be a graph such

that und(H) = H,, and D be a derivation of H in Gy:

D : X, = (z0,11) X =(21,Y2) " P (2n-1,Yn) Xn

Let z and y be nodes in H,. We say that nodes z and y come under an identicaly
same label group in H if pg(z) = ¢u(y), and that nodes z and y come under an
identicaly different label group in H if z € Vy, and y € Vy, forsome 1 <i<n-—1.

Proposition 4.3 Let H, be an underlying unlabeled graph with & - ¢ nodes
in Ly, Fy, F>,- -+, F, be different label groups in H,, and let Ey, Es, .-, Ex be same
label groups in H,. For any nodes z and y in Vg, if z and y are adjacent then

(1) Nodes z and y come under an identicaly same label group and do not come
under an identicaly different label group. or

(2) Nodes z and y come under an identicaly different label group and do not
come under an identicaly same label group.

As a consequence of this proposition, we obtain the following Lemma 4.4.

Lemma 4.4 Let H, be an underlying unlabeled graph with more than
k*(k > 2) nodes in Ly, and let F be a complete subgraph with more than £ nodes
in H,. Then for all nodes z and y in Vg, z and y come under an identicaly same
label group.



5 Proof of the theorem

In this section we will show that there is no BNLC grammar G such that
mazr(G) < k and Ly = und(L(G)) by leading contradition.
We assume that there exists a BNLC grammar G such that mazr(G) < k and
Ly = und(L(G)). And we consider a graph H! € L(G) using pumping lemma for a
graph H € L(G). Then we show that und(H?') ¢ L.

From now on assume that there exists BNLC grammar G = (X, A, P, conn, Z,;)
such that L, = und(L(G)) and mazr(G) < k. Let f be {£, g be §A, H be a graph
in L(G) with k(k + 2+ f — g)(k — 1) nodes, and let D be a derivation of H in G.
By the supposition, und(H) € Li. Hence by the (2) of proposition 4.2 und(H) has
k complete subgraphs with (k + 2+ f — g)(k — 1) nodes. We denote the k complete
subgraphs in the graph H by E;, E,, -+, E;. (For all 1 < j <k complete subgraph
in und(H) that correspond with complete subgraph E; in H is also denoted by E;.)
In the derivation D we denote the nonterminal node that yield jth created nodes
in E; by yJ' For convenience we also denote the nonterminal node that yield last
created nodes in F; by ye(, Then for each 1 < ¢ < k, set of nonteminal nodes
{yls y2) : )ye(; } is denoted by N;.

Remarks.

(1) If a nonterminal node y yield terminal nodes u € E; and v € Ej, then
y € N,' n NJ'.

(2) For1<i<k,e(i)>k+f—g+2

For each 1 <4 < k, we denote by N/ set {4, | 45 € N,k +1<n <e(d)} I
a graph X in the derivation D has a node z € N/ then X has at least £ + 1 nodes
of E;. Because at least k¥ + 1 nonterminal nodes in N/ must be rewriten to rewrite
nonterminal node yi,,. For 1 < i <k by §N! > f—g+ 1 there exists at least a pair
of nodes with identicaly nonterminal label, i.e., there exist a pair of nodes y,;(,), yt'(,)
such that o p(vh:y) = ¥p(Yisy) € E—A, where /c+1 < (i) < (i) < e(7). Then for all
positive integer m and each 1 < 7 < k we consider a derivation pump(D yh( Y yt( ys M)
that is constructed by D; copy1, Di copy2y ***» Di copym € [0rig(D, Yheiy Vi ))] Let h;
is isomorophism from Vp, .. to Vp foreach 1 < 57 < m.

(yh(g) y,(,))

We denote by E;(orig(D, yh(z), yt(,))) set of nodes {y € V, orig(D oyl o icy) | v € E;},
and by E;(D; copy;) set of nodes {y € Vp, ., | hi ;(y) € Ei(orig(D, yhy, ¥i:)))}- For
convenlence we denote by (i (i) T o) respectlvely node u, v such that h; j(u) =
yh( yhi 5(v) = yt( ). For the above g} ,), ;) (1 < 1 < k), the following lemma is
satisfied.

Lemma 5.1 There exists sequence histp(yjy, Vi) that hold the following
condition:

Condition : For node y € histp (y,‘;(i), y;'(i)), If in the derivation D a graph X has
y, then y and all terminal nodes of graph X are adjacent.
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We construct graph H! as following: Let histp(zs, z:) be sequence that be ob-
tained by Algorithm A of Lemma 5.1, and pump(D, z4, z;,1) be a derivation that
be constructed by the derivation D and Dy, € [iter(D, zs, z:)], and let H' be a
result of the derivation pump(D, zp, 2¢,1). Then the following lemma hold.

Lemma 5.2 und(H') ¢ L;.
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