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Max-Flow Problem of Strang’s Type
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B R K ¥ B % ¥ (Shimane Univ.)

1. Introduction

The celebrated duality theorem called max-flow min-cut theorem on a finite network due
to Ford and Fulkerson [1] has been generalized to many directions. Among them, we shall
be interested in Strang’s work [4]. Strang’s results were further generalized by Nozawa
[3] in the continuous case. Strang gave a max-flow min-cut theorem on a finite network
as a motivation of his theory. Here we shall be concerned with the Strang’s max-flow
problem on an infinite network. Related to this max-flow problem, we shall discuss several
mathematical programming problems as in [5].

More precisely, let X be the countable set of nodes, Y be the countable set of arcs and
K be the node-arc incidence matrix. We always assume that the graph G = {X,Y K} is
connected and locally finite and has no self-loop. For a strictly positive real function r on
Y, the pair N = {G,r} is called an infinite (discrete) network in this paper. In case r =
1, we can identify G with N = {G, 1}, and we may call G an infinite network.

Denote by L(X) the set of real valued functions on X. For u € L(X), let Su be its
support, i.e.,

Su={z € X;u(z) # 0},

and let Lo(X) be the set of u € L(X) such that Su is empty or a finite set. For notation
and terminolgy, we mainly follow [5] and [6].

For a given f € L(X), we call w € L(Y) a f-flow if there exists a number ¢ which satisfies
the condition

3" K(z,y)u(y) = tf(z) on X.

yeY
Denote by F(f) the set of all f-flows. In case f # 0, the number ¢ in the above definition
is uniquely determined by w, so we call it the strength of w and denote it by I(w).
Given a non-negative real function C on Y which is called a capacity, we consider the

following max-flow problem which was studied by Strang in the case where G is a finite
network:

(1.1) Find M(F(f); C) = sup{l(w); w € F(f),| w(y) [< C(y) on Y}.

For a subset A of X, denote by ¢4 the characteristic function of A, i.e., pa(z) = 1 for
z € A and @4(z) = 0 for z € X — A. Let a,b two distinct nodes and consider the special
case where f = @) — ¢(,). Then w € F(f) implies

> K(z,y)w(y) =0 on X —{a,b},
yeY
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I(w) == K(a,y)w(y) =Y K(by)w().

yeY yeY

Namely every f-flow is a usual flow from the source a to the sink b and Problem (1.1) is
the usual max-flow problem.

To state a dual problem of Problem (1.1), let us recall the definition of a cut. For
mutually disjoint nonempty subsets A and B of X, denote by A © B the set of all arcs
which connect directly A with B. A subset @ of Y is a cut if there exists a nonempty
proper subset A of X such that @ = A6 (X — A).

Let us define a quasi-norm ||u||¢ of u € L(X) by

lulle = - C(y) | 32 K(=,y)u(z) | .

y€Y z€X

For @ = A (X — A), we have

llpalle =11 = alle = > C(y).
yeEQ

Let us define an inner product < u,v > of u,v € L(X) by

<uv>= Y u(z)u(z)
c€X
whenever the sum is well-defined.
Let U(X) be the set of all functions u € L(X) taking values only 0 and 1, i.e., the range
u(X) of uis equal to {0, 1}. Notice that for every cut @ = A6 (X — A), both ¢4 and 1 -
©wa belong to U(X). ‘

Now we consider the general case where f satisfies the condition
(1.2) f#0, <|fl,1><o00 and < f,1>=0.
This condition holds if G is a finite network and F(f) contains w such that I(w) # 0.

Strang introduced the following min-cut problem:

(1.3) Find M*(U(f); €) = inf{llellc/ |< foo >[50 € U(f)},

where U(f) = {p € U(X);< ¢, f ># 0}.

In the special case where f = @) — @14 as above, it is easily seen that Problem (1.3)
is reduced to the usual min-cut problem. '

Strang stated the following duality theorem [4; p.128]:

THEOREM 1.1. Let G be a finite network. Then M (F(f);C) = M*(U(f);.C) holds
and both Problems (1.1) and (1.3) have optimal solutions.

In the next section, we shall begin with proving this theorem which was roughly stated
in [4). We shall study whether this theorem is valid or not on an infinite network. Related
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to the f-flows, we shall consider an extremum problem which is analogous to the extremal

width of a and b (cf. [5]).

2. Max-flow min-cut theorem on a finite network

In this section, we always assume that G is a finite network, i.e., X and Y are finite
sets. To apply the duality theory in [2], we shall formulate Problem (1.1) as a usual linear
programming problem on paired spaces.

Let us take |

X=Y=LY) xR, Z=W=L(X) x L(Y) x L(Y),
P=L(Y) x R, Q ={0} x L*(Y) x L*(Y),
TX:T( ) (Zerﬁ( ) ()_tfa w, )J
Yo = (0»_1)a (0’_C> C)

Define bilinear functionals:

(x,¥)1 = ((w,1), (W', t')1 = Z;W(y)w'(y) + tt!
for x = (w, 1),y = (w),#) € L(Y) x R,
(z, W)z = ((u,v,w), (W, v, 0))s =< u,u’ >+ Y v(y)v'(y)+ Y w

y€Y y€Y

for z = (u,v,w),w = (v/,v,w') € L(X) x L(Y) x L(Y). Then X and Y (resp. Z and
W) are paired linear spaces with respect to (-, -);(resp.(:,:)2). We see that the quintuple
{T, P,Q,y,,%0} is a linear program and

—M(F(f);C) = inf{(x,y0)1;x € P,Tx — 29 € Q}.
Denote by T™ the adjoint of T. Then

T*(u,wi,wa) = () K(z z) 4wy — wyy, — < u, f>).
z€X

The dual problem is to find the value

ladit 3

M = Sup{(Zg, W)Q;W € Q+:Y0 -T"'w € P+})
where P¥ and Q% are dual cones of P and Q respectively and given by
t = {0} x {0}, @F = L(X) x L*(Y) x L*(Y).

Rewriting the right hand side of M ¥, we see that — M is equal to the value of the

following extremum problem: Minimize the objective function

Z Cly ) + wa(y)]

yeY



71

subject to wy,w, € LT (Y), < u, f >=1 and

Y K(z )+ wi(y) —wa(y) =0 on Y.
z€X

Therefore we have
M=V = inf{||ul|lc;u € L(X), < u, f >= 1}.

Since X and Z are finite dimensional and P and Q are polyhedral cones, there is no
duality gap (cf. [2]), i.e., M(F(f);C) = M. It follows that M(F(f);C) = V. By an easy

calculation, we obtain

1) V=min{ljullc/|< uf >|ue LX), < u f ># 0},
and hence

(22)  V=min{|lullc/|<u f>)ueV(},

where V(f) = {u € L(X);0<u(z) <1 on X,<u, f>#0}
Our next step is to show that V(f) can be replaced by U(f) in (2.2). To do this, we
need a discrete analogue to the coarea formula.

LEMMA 2.1. Letu € L*(X) and u(X) = {ag, a1,02,+ -+, 0} with ag = 0 < oy <
ay < -+ < a, and put Ay, = {z € X;u(z) > ax} . Then

n

Y u(@)f(z) =Y (an — 1) D f(a)

z€X k=1 €A

PROOF. Put 8 = ¥ ea, f(z) for 0 < k < n and let Apy; = @ and Bo41 = 0. By the
relation

By = Ax — Ap1 = {2z € Xu(z) = o},

we see that

Sue)f) = 3 Y u)f)
z€X " k=1z€Br_1

= Z Oék—l(ﬁk—1 - /Bk)'
k=1
Changing the order of summation, we obtain the desired relation.

LEMMA 2.2. Let u,{ax} and A, be the same as above and put Q, = A; © (X — Ayx)
fork=1,--+,n. Then

n

Y Cly)| > K(z,y)u( Z ar —o—1) », C(y)

y€eY T€X k=1 yEQL
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PROOF. Note that B; N By =@ if j # k and

| " K(z,y)u(z) |= ax — oy
z€X
if y € B; © By and j < k. Note that if the endpoints of y belong to B;, ie., {z €
X; K(z,y) # 0} C Bj, then
| | > K(z,y)u(z) |=0

z€X

pr= ., Cly) v;= ) C(y)

yGB,»eBk yEQj

Put

with v,41 = 0. Then it is easily seen that
J
Sumi= Yy Cly) = Cly)=
k=0 YyEA;S(X—Aj) veQ;

and similarly

Z pix = >, C(y) = vj41.

k=3+1 YEQ 41

By the above observation, we have

S0 | Y K@pu@) | = 33 o — )

y€eY z€X 7=0 k=341
n J n n
= ZO‘J Z/‘ka ZO‘J Z Hjk
7=1 7= k=341

n n
= Yo - Y.
=1 7=0

Now we shall prove a fundamental lemma.

LEMMA 2.3. The relation V = M*(U(f); C)holds and there exists ¢ € U(f) such that
M=(U(£);C) = llelle/ 1< o, f >]-

PROOF. Let us put M* = M*(U(f);C). Clearly, V < M*. Suppose that V < M*, ie
there exists € > 0 such that M* > V +¢. Then

(2.3) lelle = (V+e) [< o, f >
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holds for all ¢ € U(f). Since (2.3) holds trivially for ¢ € U(X) — U(f), (2.3) holds for all
¢ € U(X). For any proper subset A of X, we have ¢, € U(X) and by (2.3)

Y. C2(V+e)l<eaf>|.
y€EAS(X —A)

Let u € V(f) and u(X) = {ao, a1, -, 0} with g = 0 < oy < -+ < a,, < 1 and put
Ar = {z € X;u(z) > ox}. Multiplying both sides of the above inequality (with A = Ay))
by ar — ax—; and summing both sides over k, we have by Lemmas 2.1 and 2.2

n

lulle = Z(ak_ak-—l) Z C(y)

k=1 YEAO(X—AL)

n

Z(ak —a1)(V +e€) [< pa,, [ >]

k=1

v

> (V+6)]2i:(05k—04k—1) Y. f(z)|

T€AL

= V4e)|<uf>].

Namely we have V + ¢ < ||ul¢c/ |< u, f >] for all u € V(f), and hence V + & < V. This
is a contradiction. Thus V = M™*. Since U(f) contains only a finite number of elements,
there exists ¢ € U(f) such that M* = ||¢|lc/ |< ¢, f >]| -

Summing up (2.2), (2.3) and Lemma 2.3, we complete the proof of Theorem 1.1.

3. Max-flow min-cut theorems on an infinite network
In order to study a max-flow problem on an infinite network, we consider the subset
Fo(f) = F(f)N Lo(Y) of the set of f-flows. In this section, we always assume the following

condition:

(3.1) feLy(X),f#0and < f,1>=0.

Let {G,}(Gn =< X,,Y, >) be an exhaustion of G, i.e., each G, is a finite subnetwork of
G and {G,} approximates G increasingly. For simplicity, we assume that Sf C X;. Define
C, € LT (Y) by C,(y) = C(y) for y € Y,, and C,(y) = 0 for y € Y — Y, and consider the

following extremum problems:

(3.2) Find M, = M(F(f);C);

(3.3)  Find M* = M*(U(f); C,).

We shall be concerned with the limits of {M,} and {M}}.

LEMMA 3.1. lim,_.co M(F(f); C) = M(Fo(f); C).
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PROOF. If w is a feasible solution of Problem (3.2), then w € L¢(Y) by the condition
| w(y) |< Cn(y) on Y, and hence M, < M, 41 < M(Fo(f);C). For any € > 0, there exists
w € Fo(f) such that

M(Fo(f); C) —e <I(w), |w(y)|<C(y) on Y.

There exists ng such that Sw C Y, for all n > ng. Then w is a feasible solution of Problem
(3.2) for n > ng, and hence M(Fo(f);C) — e < I(w) < M, for all n > n,.
We see easily the following:

REMARK 3.2. The value of Problem (3.2) is equal to the value of the following max-flow
problem on G, :

(3.4) Maximize t subject to w € L(Y,),| w(y) |< Cn(y) on Y and

> K(z,y)w(y) =tf(z) on X,.
y€Y,

Related to Problem (3.3), consider the following min-cut problem on G, :

(3.5)  Find M*(U(f; Xa); Cn) = inf{Zyev, Ca(y) | Toex, K(z,9)0(2) [0 € U(f; X0)},

where U(f; X,,) is the set of all ¢ € L(X,,) such that o(X,,) = {0, 1} and ¥ ¢x, ©(z)f(z) #
0. |

LEMMA 3.3. M = M*(U(f; X,,); C.) holds and there exists ¢ € U(f) such that M} =
lellea/ 1< @, f >

PROOF. The equality follows from our construction. Problem (3.5) has an optimal solu-
tion ¢’ € U(f; X,,) by Theorem 1.1 and the extension ¢ of ¢’ to X — X,, by 0 belongs to
U(f) and satisfies our requirement.

LEMMA 3.4. lim,_ ., M* = M*(U(f); C) and there exists ¢ € U(f) such that M*(U(f); C)
=llelle/ 1<, f>]-

PROOF. By definition, M} < M, ; < M*(U(f);C) is clear. There exists o, € U(f)
such that M} = ||eallc,./ |< ¢n, f >| . Since f € Lo(X), it should be noted that the set
{I< ¢, f >|;¢ € U(f)} contains only a finite number of real numbers which are apart from
0, so that there exists a > 0 such that

(3.6) |< @, f >|> a> 0 for all ¢ € U(f).

Since ¢,(X) = {0,1}, we may assume that {p,} converges pointwise to @ € L(X) by
choosing subsequences if necessary. We see by (3.6) that @ € U(f). Since f € Lo(X),
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< Yp, [ >—< P, f > as n — oo. It follows that

liminf M7 > 3 liminf C.(y) | 3° K(z,y)en(2) | / |< @, >

n— 00

2 2 C)| X K,y)e) | /< f>|

y€Y z€X

> M*(U(f);0).

This completes the proof.
By Theorem 1.1 and Lemmas 3.1, 3.3 and 3.4 and Remark 3.2, we obtain the following:

THEOREM 3.5. M(Fo(f);C) = M*(U(f);C) holds and there exists an optimal solu-

tion of the min-cut problem.

In the special case where f = ¢} — ¢ya}, this theorem was proved in [5)].

4. Extremal width of a network
Denote by Q(f) the set of all cuts generated by ¢ € U({), i.e.,

Q(f) ={Sp e (X — Sp);» € U(f)}

and consider the following extremum problem of minimizing

HW) = > r(y)W(y)?

y€Y

subject to W € L*(Y) and

S W(y)/|< e, f>>1for all @ =Spe (X - Sp)eQ(f).
yEQ

Let u(Q(f))~" be the value of this problem. In the case where f = @y — (.3, this value
is called the extremal width between {a} and {6} of N in [5].
Denote by E*(Q(f)) the set of all feasible solutions of this problem, i.e...

EQ(f) ={W € L*(Y); M"(U(f); W) > 1}.

Then we have
p(Q(N))™ =inf{H(W); W € E*(Q(/))}-
We shall consider the extremum problem of finding the following value related to f-flows:
d*(Fo(f)) = inf{H (w); w € Fo(f), I(w) = 1}.

We shall prove



76

THEOREM 4.1. Assume Condition (3.1). Then d*(Fo(f)) = p*(Q(f))~*.

PROOF. Let w € Fo(f),I(w) =1 and put W(y) =| w(y) | . For any ¢ € U(f),
<o, f> = | X wly) X K(z,y)¢(z) |

y-EY z€X
< WY Kz, y)e(z) |,
yEY z€X

so that W € E*(Q(f)). Thus p*(Q(f))™ < H(W) = H(w), and hence u*(Q(f))™" <
d*(Fo(f)). On the other hand, let W € L*(Y) satisfy M*(U(f); W) > 1. Then by Theorem
3.5,

M(Fo(f); W) = M™(U(f); W) > 1.

For any positive number ¢ < 1, there exists w € Fo(f) such that | w(y) |< W(y) and
I{w) > t. Clearly w' := w/I(w) € Fo(f) and I(w') = 1, so that

d*(Fo(f)) < H(w/I(w)) < HW)/t.

Letting t — 1, we have d*(Fo(f)) < H(W), and hence d*(Q(f)) < u*(Q(f))~*. This com-
pletes the proof. ' '

Related to the above flow problems, let us consider the following extremum problem of
minimizing the Dirichlet sum:
(41)  Find d(f) = inf{D(u);u € L(X) and <u, f >= 1},
where D(u) := H(du) and

du(y) = —r(y)™ Y K(z,y)u(z).

z€X

We have the following reciprocal relation:
THEOREM 4.2. Assume Condition (3.1). Then d(f)d*(Fo(f)) = 1.

PROOF. Let w € Fo(f), I(w) = 1 and u € L(X), < u, f >= 1. Then
I=<u,f> = > w(y) ) K(zy)u(s)

y€Y z€X
< [HW)PD@)2,

so that 1 < d(f)d*(Fo(f)). Denote by Fy(f) the closure of Fo(f) in the Hilbert space
Ly(Y;r) ={w € L(Y); H(w) < oo} with the inner product

H(w,w') = > r(y)w(y)w'(y).

y€Y
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Then we have d*(Fo(f)) = d*(Fa(f)). Let {w,} be a sequence in Fo(f) such that I(w,)
=1 and H(w,) — d*(Fo(f)) as n — oo. Since (wn + wy)/2 € Lo(Y) is a f-flow of unit
strength , we see by the standard method that H(w, —w,,) — 0 as n, m — oco. There exists
W € Lp(Y;r) such that H(w, — @) — 0 as n — co. Clearly @ € Fy(f) and I(w,) — I(¥)
as n — oo. It follows that I(@) = 1 and d*(F(f)) = H(®). For any w' € Fy(0)(a finite
cycle) and for any real number ¢, we have @ + tw' € F5(f), so that H(@) < H(@ + tw').
By the usual variational method, we have H (@, w') = 0. We see by the same arguement as
in [7] that there exists & € D(N) such that di(y) = @(y) on Y. Here D(N) is the set of
all u € L(X) with finite Dirichlet sum. Notice that H(®, w,, — w,) = 0 for all n, m by the

above observation, so that H(w) = H(@, w,). It follows that

< f> = Y Uz)d K(z,y)wa(y)

= Y u) Y K, i)
yE€Y z€X

= H(w,, @)= H(w)= D(4).
Therefore < f,4/D(%) >=1, and

d(f) < D(a/D(@) = D(a)™ = H(@)™ = d"(Fo(f))™".

Thus d(f)d*(Fo(f)) < 1. This completes the proof.

Theorems 4.1 and 4.2 were proved in [5] in the case where f = @3 — (4.

References

[1] L.R. Ford and D.R. Fulkerson, Flows in networks, Princeton Univ. Press, Princeton,
N.J. 1962.

[2] K. S. Kretschmer, Programmes in paired spaces, Canad. J. Math. 13(1961), 221-238.
[3] R. Nozawa, Max-flow min-cut theorem in an anisotropic network, Osaka J. Math.
27(1990), 805-842.

[4] G. Strang, Maximal flow through a domain, Math. Programming, 26(1983), 123-143.
[5] M. Yamasaki, Extremum problems on an infinite network, Hiroshima Math. J. 5(1975),
223-250.

[6] M. Yamasaki, Max-flow min-cut theorems on an infinite network, RIMS Kokyuroku
680(1989), 81-88.

[7] M. Yamasaki, Nonlinear Poisson equations on an infinite network, Mem. Fac. Sci.
Shimane Univ. 23(1989), 1-9.



