0000000000
0 7980 1992 0 108-118
108

A New Approach for Solving Large-Scale Discrete Optimization
Problems

Yuji NAKAGAWA!
il Bt

tFaculty of Engineering,
Okayama University of Science

ABSTRACT

A generalized optimization system with a discrete decision space is defined, and
an optimization problem associated with the system is described. A new solution
method, which is called Modular Approach (MA), is presented to solve the optimiza-
tion problem. This method extends the Morin-Marsten hybrid idea to solve trouble-
some problems for Dynamic Programming. The present method is also an extension
of branch-and-bound using breadth-first search. Computational experiences for large-
scale test problems of the multiple-choice knapsack show the great power of MA.

1. INTRODUCTION

An optimization problem that has a discrete space to be determined, is called a discrete optimiza-
tion problem. The typical solution methods for the problem are Dynamic Programming (DP) and
Branch-and-Bound (B&B). However, basic ideas of the two methods are quite different. The B&B,
which solves an original problem by repeatedly dividing it into smaller problems, is the top-down
scheme. On the other hand, DP is the bottom-up scheme, which decomposes stages by turns,
enumerates partial solutions, and finally solves the primal problem.

The B&B method consists of the branching and the fathoming. The bounding divides problems
and the fathoming judges whether or not the generated subproblems should be added into a candidate
list. The branching includes the searching that selects a candidate from the candidate list. The early
B&B has only two fathoming tests of feasibility and bounding [Geoffrion, Marsten; 72].

Kohler and Steiglitz [74] introduced the dominance, which is the core of DP, into B&B in a gen-
eralized form. Ibaraki [77] discussed the importance of dominance in B&B. On the other hand, Morin
and Marsten [76, 77] introduced the bounding test, which is the core of B&B, into DP. They call their
method hybrid DP/B&B. The hybrid DP/B&B is practically the same as B&B using the breadth-
first-search (FIFO policy). The relationship of DP and B&B was discussed by Ibaraki [87] in detail.
Tbaraki [87] is devoted to generalizing B&B and DP.

Nakagawa[90] proposed a new solution method called modular approach (MA) for discrete optimi-
zation problems. This paper is a development of the paper [Nakagawa; 90). MA is a bottom-up
scheme as well as DP. First, MA considers an optimization system corresponding to a given discrete
optimization problem. Next, MA executes the following items 1) and 2) recursively and solves the pri-
mal problem:

1) Apply fathoming tests to the current system and reduce the decision space, and -
2) Integrate several modules into one module and reduce the number of modules in the current sys-
tem.

MA is an extension of hybrid DP/B&B and is easily applicable to problems with a hierarchical
structure that DP does not deal with very easily.

A number of multiple-choice knapsack test problems with maximum 250,000 variables, which have

no integer-dominated variables, were solved on a work-station (CPU R3000). The computational result
shows that a policy [CIM] of choosing modules to be integrated plays an important role. The policy
[CIM] is an original one of MA, and does not be used in B&B or DP.

2. |A|— tuple

A cartesian product of a family {A4,};cs is written as
A)(A = 'X A.’, ’ (1)
i€A

where

A = {A Az - } € N (the set of natural numbers). (2)
Let a direct sum of a family of mutually exclusive sets, { U;};ca, be

Uia= + U, 3

T (3)

A |A|-tuple, which is an element of cartesian product A ,,, is defined as

ay = (aAl, VRS a,\w) (4)

For example, when A= {2,5,8}, a5= (ay,as5,aq) .
For two ordered tuples a} and a2, it holds that
(1) if o} =a? for any i€A, then a} = d3,
(2) if a}>al for any i€A, then a) > a},
(3) if al>af for any i€A, then a} > ai.

3. Discrete Optimization System and Problem

Consider a system [T] that consists of |I] units (initial modules), where I= {1,2, --- } € N.
Each module has been designated a number i € I. Each module i€ has |K;| alternatives, where
K;={1,2, - -+ } € N. The set K; is a set of module alternatives. Its Cartesian product X= K, is

the initial decision space. The solutions x€X are alternatives for the system [Z].

The system [Z] is assumed to be under a constraint space SCN Wl 1f a solution x€X is'x€S, then
x is a feasible solution. We consider a real value function f; X—R as a performance index for the sys-
tem. Thus the discrete optimization system is written as the following four tuple.

(2] = [I’ X, s, f]' (5)
The purpose of this paper is to solve the following discrete optimization problem corresponding to

(Z].

() max [f(x): xeSCN'”] (6)

4. Modular System and Modular Problem
A modular system at a level | € {0}+L is defined as

[20) = (MO, V), (A, D), s, 4] (7)

where)
L a set of system numbers; L = {1,2, - -+ } € N,
MY a set of module numbers composing the system [,
v a family of mutually excusive sets of unit numbers; U = {U,,} meMO
U, a set of unit numbers composing a module m € MO,

A® an alternative space of [E); AV= x 40,
meMl

109

110

AS,I,) a set of alternatives for a module m € M" at a system level [,
t® mapping from the decision space AO¢toa partial decision space x ¢ x,

A modular system [S(%)] is the system [Z] itself. That is, M@= 1, U,= {m} (m €I,
AD= K, (mel), andt®:A® X,

Let us now discuss a process that generates [)3(1)] from a system [E(l_])] at the previous level
(I-1). We begin by applying fathoming tests to the system [E(l"l)]. Then suppose that, without loss

of optimality, we can reduce a module alternative set A{™ (mEM('"l)) into a module alternative set
AW, That is,

AD c ALY (mem®Y), (8)

Next, using a polic])"/l([,CIM] (this policy will be discussed later), MA chooses a subset c (|1cW)>2)
from a module set M), The IC(‘)I modules chosen are integrated into a new module with a module
number !+|I|. The integration of modules means to consider all combinations of alternatives of

modules me C*" as an alternative set Awlll for the module I4|I] . That is,

i l
A= (1,2, .., 1401} (9)
Then the decision space corresponding to module alternative set A,y is
xD = x xO. 10
§+|I| mec® m ()

The decision variables for the alternative set Ag)m and the decision space XSQ“[are apy g and Xpy),
respectively. Let a bijection mapping from Aﬂr)m to Xﬁ)m be defined as

o AR — X (11)

A set of units composing a module I+|I] is
Upin= + Un. 12
= (12)

A module set M© composing a system [E(I)] is obtained by removing modules m € ¢ from M"Y and
adding the new module /+|I|; that is,

MO = MUY — O 4 (1411} (13)
Let

tW= x t
meM(')

then t? is the mapping from AO= A(XI)M(,, to X, We have the relations
1] =| MO|> | MO > - - > | MU =1, (15)

Y U,=1 (leL). (16)
meM®

ms (14)

Then we have a modular system [£()] at a level I. A modular system [Z*V] is assumed to be the
last system having only one module |L|+|1]; i.e., M{*D= {|L|+]1]}, Uigpern= 1.
Each of modular systems [E(l)] (leL) is corresponding to the following modular problem:

[m): max[f(x): aM(,)EA(l), x=t(l)(aM(0), xeS]. (17)
Obviously, this problem is equivalent to [II]. As a special case, if we never use the fathdming; that is,
if Eq. (8) is

AD= 48D (meM®) (18)

at any level I€L, then an alternative set AWIBUI obtained from Eq. (9) at the last level [=|L| has the
relation

|4 Pn1= 1X). (19)

That is, we have all possible solutions of the system [Z].

5. Fathoming

This section discusses three types of fathoming. The fathoming is used for reducing a decision
space AY of a system [E(’)] (I€L). As a result of a fathoming test, if we can judge that the optimal
value (the objective function value of an optimal solution) of [Z\] does not change even if a subset 42,
is removed from an alternative set A4,, of a module meMU), then the subset A2, has fathomed and can
be removed from further consideration. We say that the set Al is inactive and the remaining set
A—AL is active,

Let a problem [H(‘): am € A}] be the problem [H(I)] added a constraint a,, € A}, C 4,,. Since a
problem [Hw: a4, € A}] is a subproblem of [II], it holds that

vOPTI®: a0, € A3 < P70, (20)
where v T” is the optimal value of a problem {]. Three tests of fathoming is considered for the sub-
problem [IY: q,, € 4}].

1) Feasibility test: If the result of this test shows that the subproblem has no feasible solutions, then
the alternative set A2, is inactive.

2) Dominance test: If there exists a set A2 C A,, such that

vPTD: a,, € A2] < v o, € 42], (21)
then subproblem [H('): a, € A,ln] is said to be dominated. The alternative set AL is judged to be
inactive.

3) Bounding test: Suppose that a nonexact method has already found a feasible near-optimal solu-
tion xV*AR and its objective function value FNEAR When we get an upper-bound of the subprob-
lem [H(‘): a,, € A,l,,] by some technique (in most cases, relaxation techniques are used), if

vUBIO: o, € A)) < fVEAR (22)
where vYP[] is upper-bound of a problem [‘], the subproblem has no feasible solutions better than
x¥FAR Hence the alternative set AL is inactive.

After the fathoming test, we can remove an inactive alternative set 4,, from an alternative set A,
of a module m € MY of a system [E(l)]. Then alternative space A of system [2(1)} is reduced.

The fathoming mentioned above is only for the case of finding only one optimal solution. When
we want to find all of optimal solutions, at the dominance test, replace Eq. (21) with

vPTD: a,, € AL] < vOPTIY: o, € A2] (23)
and at the bounding test replace Eq. (22) with
oUBY; o, € AL] < fNPAR, (24)

6. Procedure for Modular Approach
MA uses a policy

[Py]= [[Fm]1 [C‘UM]]! ’ (25)

where
[Fm] policy for determining what kinds of fathoming are applied for which modules.
[CIM] policy for choosing modules to be integrated.

We can subdivide the policy [Fm] as follows:

[Fm]= [[CFM], [NEAR), [FT) (26)
where

[CFM] policy for determining which modules will be put under the fathoming tests.

[NEAR] near-optimal solution x *#4% NEAR,

and its objective function value (near-optimal value) .f
[FT] policy that is how to use what kind of fathoming tests.

111

112

Suppose that we have prepared two functions Fathom() and ChoiceIM() to execute the policies
[Fm] and [CIM), respectively. Fig. 1 shows a procedure of MA by a pseudo code considering abstrac-
tion of data structure. An arrow <= means multiple outputs of function. For example,
{ 4, B} <= func(C, D) means that the function func() has two input data C and D, and returns
two data A and B. The functions in Fig. 1 are as follows:

Fathom() executes fathoming tests to System [S~V] by using policy [Fm|. Then, if possible, find
a better near-optimal solution. The function returns a reduced decision space A):M(H)’ and a near-
optimal solution.

ChoiceIM() chooses modules to be integrated from a module set MY by using a policy [CIM]. The
return of this function is a set C\V of selected modules.

Integrate() integrates the modules me CY) into one module i+|I| so as to obtain a new modular
system [£)]. This function returns the new system.

FindOptimalSolution() finds an optimal solution of a system [£{/D] having only one module. The
return is an optimal solution x %77,

7. Policies of MA

When MA is applied to practical problems, the performance of MA greatly depends on the policy
|Py]. Here we discuss some examples of the policy [Py]= [[Fm], [CIM]].

Policy [Fm] can be divided into three policies [CFM], [NEAR], and [FT]. As for Policy [CFM], it
should be adopted to apply fathoming tests to all modules at the first level =1, At ! > 1, the follow-
ing policies are considered: Choose a module generated most recently by the integration or having the
greatest number of alternatives. Furthermore, we can consider the policy that all modules or the
modules having alternatives more than a certain number are fathomed at every certain number of lev-
els. The policy [CFM] used by B&B and DP
is the rigid one that applies fathoming tests only to the most recently generated module.

If there exists some efficient bounding technique which quickly calculates good upper bounds, a
good near-optimal value fY4% is very useful in reducin% alternative spaces. However, if it does not
exist, then a good fYPAR is of no practical use. A good f'PAR and a good bounding work as one body.
The general bounding technique uses the relaxation of integer restriction of problems. However, some

" problems are solved effectively by using approximate equations [Nakagawa et al. 78].

The number of modules in a system can be reduced by integration. Generally the proper policy
[CIM] for choosing integrated modules is to choose two modules having the fewest number |A|
(me M) of alternatives [Nakagawa et al. 78]. Since it is desirable that Y menol Am| at every level is as
small as. possible. However, this is not always true. In section 9, we will see an evidance against this.

Now let us consider relations between MA; B&B, and DP. We classify B&B into
1) earlyB&B: The early B&B which does not use the dominance in the fathoming,

2) B&B: B&B using the dominance.

DP is classified as follows:

1) pureDP: DP that does not use the bounding,

2) hybridDP/B&B: DP using the bounding.
Then Fig. 2 illustrates the relationship with MA.

MA includes hybridDP/B&B as its special case. That is, if Policy [CFM] is a policy to choose a
module that is generated most recently (i.e., has the largest module number)and Policy [CIM] is to

choose two modules having the largest module number, then MA is .essentially the same as
hybridDP/B&B. :

8. Example

In this section, MA is illustrated by a simple example. Consider a series-parallel reliability system
having five units as shown Fig. 3, and each unit has four alternatives. Table 1 shows the reliability
and cost of alternatives. The allowable maximum cost is b= 60.

A discrete optimization system can be written as

[2] = [LX,S,f]’ ' (27)

where
I={l,2,3,4,5}
X = XI K,’, K,' = {1,2,3,4} (161)
HS

S = |xeXig(x)= 3 fz) < b
iel

f(x) = {1=(1—ry(z1)ro(22)) (1 =73(23)) } ra(24) 75 (5)

The problem to be solved is to find a combination of alternatives that achieves the maximum sys-
tem reliability within the allowable cost b; i.e., to find an exact solution of optimization problem [II]
corresponding to system [Z].

Table 2 shows the input [£(”)] for the function ModularApproach(). Policy [Py] is
[CFM] = to apply the fathoming tests to all modules at every level,
[NEAR)=[fVEAR xNEAR) _ 10.9349, (1,3,1,3,4)],

[FT] = (this policy will be explained later by an example),

[CIM] = to integrate modules having the fewest alternatives by turns by taking the function
form of f(x) into consideration.

At level I = 1, the function Fathom() reduces the alternative space by using the following fathom-
ing tests:

1) Dominance: An alternative a;=2 (g,(2)=5.8, r;{2)=091) is dominated by an alternative
ay=1 (g4(1)=5.7, 7;(1)=0.95). The alternative a;=2 is inactive.
2) Feasibility: Even if all modules besides a module under the fathommg test use alternatives of the
minimum cost, we have
9(1,1,1,4,1)= 73 > 5=60.
The alternative a4=4 is judged to be inactive.
3) Bounding: Even if all modules besides a module under the fathoming test use alternatives of the
maximum reliability,
£(4,4,4,1,4)= 0.6923 < fYFAR - 0.9349
£(4,4,4,2,4)= 0.8407 < fNEAR
£(4,4,4,3,1)= 0.8536 < fNEAR
()=

£(4,4,4,3,2)= 0.9303 < fNVEAR

The alternatives z3= 1, 2 and z4= 1, 2 are inactive.

First ChoiceIM() chooses modules 4 and 5 as modules to be integrated by taking the form of relia-
bility function f(x) into consideration. Function Integrate() integrates modules 4 and 5 into module 6
and returns a modular system [£()] . These results is shown in Table 3(a).

After level =2, the procedures mentioned above are repeated and lastly an optimal solution ag=2
(x%PT=(1,2,2,3,4), f%°T=0.9390) is yielded. The progress are shown in Table 3(b), (c), (d). The
integrating process of modules is illustrated in Fig. 4.

9. Computational Results

The purpose of this computational experience is to show the power of policy CIM, which is a dis-
tinctive characteristic of MA. The MA algorithm for the multiple choice knapsack problem was imple-
mented through a code written in C language and tested on a UNIX workstation (SONY NEWS-3260;
CPU R3000). The computer code treats all floating-point calculations in double precision.

The multiple-choice knapsack problem with |I| classes and |K;| 0-1 variables for each class is
written

[MCK]: max Y} Y cala

i€l kEK;

113

114

st Y aaba<bd

icl kEKi
K;

Yéa=1 (i€l

k=1
€420, integer (k€ K, i€ I).

where I={1,2, --- }e N, K;={1,2, --- } e N.
The MA algorithm treats a multiple-choice knapsack problem as an equivalent nonlinear knapsack
problem. The nonlinear knapsack problem with |I| variables and | K;| alternatives for each variables:

[NK]: max}; fi(z:)
iel
st Y giz) <b
iel
;€ K; (i€l

where fi(k)= ca, gi(k)= ay (k € K;, i€ I). The problem{:NKJ(has much smaller solutlon space than
[MCK], since the solution space of [MCK] and {NK] are 2 nd I |K] (=2 gloglel), respec-

iel
tively.
The discrete optimization system corresponding to [NK] can be written as

[2] = [Iy Xv S)f]v (*)
where

X = H I(,',

i€l
S = {x € X:g{x)= Y gi(z) < b
iel

f(x) =3 fil=z)

i€l

Two types of Multiple-Choice Knapsack test problems were randomly generated by an uniform ran-
dom number generater [Marse and Roberts 83]. Type 1 problems has integer coefficients ay, cy (z € I,
k€ K;) and

1< gy — ca <8

1< Gipyy — a3 <8
for any k, k+1 € K; (i € I), and
(@i + aijx)
X T

This test problems are the most difficult problems in the paper [Sinha and Zoltners 79]. Type 2 test
problems has real (double precision) coefficients

0.0 S Cik+1 — Cik 51.0
0.0 < Gik+1 — Cik _<_1.0
for any k, k+1 € K; (i € I), and

(@i + aiuq)
i€l 2

The coefficients of test problems of both of types 1 and 2 are treated as double precision real numbers
in the present computer code.

The computer code of MA used the following policies:

{CFM] At the beginning and when a near-optimal (the current best) solution is renewed, all
modules are put under fathoming tests. Otherwise, a generated new module is fathomed.
[NEAR)] Initial near-optimal solutions are generated by a modification of the N-N method [Naka-

gawa, Nakashima 77]. A near-optimal solution is renewed by a better solution found
during bounding tests.

[FT) Upper bounds of subproblems are obtained by using the Sinha-Zoltners bound [Sinha,
Zoltners 79] (This bound should be investigated in detail, since the bound hardly seems
to be much better than the LP bound)

[CIM] A: Choose two modules having the fewest alternatives,

B: Choose a module having the fewest alterntives and a module having the most alterna-
tives,

C: Choose two modules having the most alternatives,

D: Choose two modules having the maximum mudule number

(Note that a module generated the most recently by an integration has the maximum
module number).

The computational code with the policy D as CIM is essentially the same as the hybrid DP/B&B

or the branch-and-bound using the breadth-first-search.

Table 4 shows the computational results for type 1 test problems, whose coefficients are all

integer. The times reported are in seconds and does not include the times for obtaining initial near-

optimal solutions. When we use the policy C as CIM, the code can not solve some of 25 test problems
whose size is |I|= 100 and]|K;]= 50. The code with th policy D solved all of 25 test problems whose
size is |I|= 2000 and |K;|= 50. However, the code can not solve some of 3000x50 test problems. The
code with the policy A or B are clearly superior to the one with policy C or D. Between A and B,
there is no big difference in computational times. The code with A or B can solve all of 25 randomly
generated test problems whose size is |I|= 5000 and |K;|= 50. The memory space needed for keeping
the largest size of intermidiate modular problems depends on the maximum number of alternatives per
a modular problem. As for the memory space, policy B is clearly superior to policy A. The computa-
tion times by policy B are scattered. For example, in the case of |I|= 5000 and |K;|= 50, times for 20
out of 25 problems are less than 1.0 seconds, where the additional times of 68.2 & 1.6 seconds are used
for getting initial near-optimal solutions for MA (see Table 5).

Table 6 shows the computational result for type 2 test problems, whose coefficients are all real
numbers. The comparison of Tables 4 and 6 gives that problems with real coefficients is much more
difficult than ones with integer coefficients. Table 6 shows the big power of the policy CIM. The policy
B is the best one for CIM and is very stable in both of the computation time and the required memory
space.

10. Concluding Remarks

This paper presents Modular Approach in a generalized form as a new solution method for
discrete optimization problems. The present method extends the hybridDP/B&B and is easily appli-
cable to the problems having hierarchical structure that are difficult for Dynamic Programming and
Branch-and-Bound to apply without any special idea. Since the present approach is flexible, it will
develop more efficient solution algorithms even for the problems that can be solved by Dynamic Pro-
gramming or Branch-and-Bound. Computational experiments of the existing papers are done for prob-
lems with only integer coefficients and for less than 20 test problems per one size. Our computational
experience suggests that more than 20 test problems per one size should be solved since different prob-
lems of the same size has the quite different computational times. Test problems with real coefficients
should be solved, since problems with integer coefficients are much easier than the ones with real coef-
ficients.

115

116

Acknowledgments

The author is grateful to Dr. Ronald L. Rardin, Professor of Purdue University, for his valuable
advices and discussions.

References

Armstrong R. D., D. S. Kung, P. Sinha and A. A. Zoltners : A computational Study of a multiple-
choice knapsack algorithm”, ACM Trans. on Math. Software, Vol. 9, pp. 184-198 (1983).

Dyer M. E., N. Kayal and J. Walker : ”A branch and bound algorithm for solving the multiple-choice
knapsack problem”, J. Camputational and Applied Math., Vol. 11, pp. 231-249 (1984).

Geoffrion A. M. and R. E. Marsten : "Integer programming algorithms: A framework and state of the
art survey”, Manag. Sci., Vol. 18, No. 9, pp. 465-491 (May 1972).

Ibaraki T.: "The power of dominance relations in branch-and-bound algorithms”, J. Assoc. Comput.
Mach., Vol. 24, No. 2, pp. 264-279 (Apr. 1977).

Ibaraki T.. ”Enumerative approachs to combinatorial optimization”, Annals of Operations
Research,Vol. 10, No. 1-4, pp. (1987).

Kohler W.H. and K. Steiglitz : ”Characterization and theoretical comparison of branch-and-bound
algorithm for permutation problems”, J. Assoc. Comput. Mach., Vol. 21, No. 1, pp. 140-156 (Jan.
1974).

Marse K. and S. D. Roberts : "Implementing a portable FORTRAN Uniform (0,1) generator”, SIMU-
LATION, Vol. 41, pp. 135-139 (Oct. 1983). pp 135-139 (1983).

Marsten R. E. and T. L. Morin : A hybrid approach to discrete mathematical programming”, Math.
program., Vol. 14, pp. 21-40 (1977).

Morin T. L. and R. E. Marsten : "Branch-and-bound strategies for dynamic programming”, Oper.
Res., Vol. 24, No. 4, pp. 611-627 (July-Aug. 1976).

Nakagawa Y. and K. Nakashima : ”A heuristic method for determining optimal reliability allocation”,
IEEE Trans. Reliab., Vol. R-26, No. 3, pp. 156-161 (Aug. 1977).

Nakagawa Y., K. Nakashima, and Y. Hattori : ”Optimal reliability allocation by branch-and-bound
technique”, IEEE Trans. Reliab., Vol. R-27, No. 1, pp. 31-38 (Apr. 1978).

‘Nakagawa Y. : ”A new method for discrete optimization problems”, Electronics and Comunications in
Japan, Part 3, Vol. 73, No. 11, pp. 99-106 (1990), translated from Trans. of the Institute of Elec-

tronics, Information and Communication Engineers, Vol. 73-A, No. 3, pp. 550-556 (March 1990)
{In Japanese).

Parker R. G. and R. L. Rardin : "Discrete Optimization”, Academic Press (1988).

Sinha P. and A. Zoltners : ”"The multiple-choice knapsack Problem”, Operations Res., Vol. 27, No. 3,
pp. 125-131 (1978).

1 FUNCTION ModularApproach()
2 INPUT System [E”], Policy [Py] = [[Fm], [CIM]};

BEGIN
4 1~ 0
5 wHILE |MP|>1 DO
6 le=1l+1; \
7 { A 4y, INEAR) } <= Fathom(1, (8", [Fm]);
8 " %= ChoicelM(MU0, 4D ., (CIM]);
9 [<= Integrate(¢, (2471, A(x')“;.q);
10 ENDWHILE
Dol
i; IF |4 xogr'lffr!;{m; JOPT gNEAR,
13 ELSE
14 xOPT < FindOptimalSolution([Z));
15 1o = HxOFT;
16 ENDIF
17 RETURN Optimal Solution x 9P, Optimal value /0”; MA
18 END

Fig. 1 A Procedure of Modular Approach. Fig.2 Relations between three methods (MA, B&B, and DP).

17

('€'2'2'1) = 1 0%

{rezztrerrnl | o8x o
{er} | ofv
ﬁm.v.n.n.z o
Am * ?VE
{8'9} (0%
{r'z} i
*N v Avw#.
b=

¥ [949] Je S9[qeLreA Jo 9335 (P)g AqRL

{(ze 1) (e (ez)
(e rn(rrn} X L
{otsvezr} | Jv

{ez'1}'{s'r} ©

{'9} wH

{L'¢} 2

{e'z'1} 14

{z'1} ¥

{1} oV
£=1

‘g [9A9] ye SS|qELIRA JO 9)E)

S (3)¢ 21921

{ED' @Y} | &% "
{feet} | v
{1y {sv}{c} oY
1'9'¢} ¥
{err} @9
{1} SV
{e1} oV
{e'z1} i
{1} Rig
=1

7 1949] 3e sa[qerrea Jo 23®35 (q)g AlqRl

{tre)(ee)} | o$x o
e} | v

{s'r}{e}{e} {1} o
{o‘ec'1} a¥
fe'v} 2
{r‘e} B4
{g} 14
{rec1} oY
{rgz4} ofv
{re'1} ov

1=

"1 [2A9] ye sa[qEITEA Jo 21®315 (®)g 2Iqe],

€8 008 | 991 €L G'0T | 660 | 660 | 86°0 | 260 | 86°0 i4
6°L 0ce | ¥¥1 Sy 96 860 | 960 ; L60 | €60 | 960 €
gl 0°0¢ | €01 9¢ 8'C 260 | S8°0 | G6°0 | 08°0 | 160 4
£s 82 | S8 ge | LS 68°0 | 0.0 | 98°0 | 9.0 | S6°0 T
(os6 | (6 | (05 | @ | (0% | @ | @& | @)% | @)% @ ¥
380D Lypqenay 2AIJRLIDN Y
S2ATyRUIdIR JO 350D pue LyMqenay I 2iqel
‘sa[npout Jo ssaco1d Suryerdejur uy 8L
6 ampo
{GrEer@ My | x| |
3 H
precal | v b
I | Jx |, 1 s ompopa|—| smpos
ez} | Jv pe
{ErerErm} | ofx :
3 o :
pree} | (Sv
GE@) | dx | S
prereal | v
{1} | WX .
) | oY ‘meysAs Ljmiqerar prrered-satzas ¥ g 819
{sp{pY{ey{e} i} | o0
{s % ‘e 1} | o

(X WIsAG Jo eye g QIqe]

‘aurty [euoryeindwod ayy 10 uolyejiw] a5eI03S 3Y) 0} 0P I[qE[IRAR 30U,

(-swayqoid 3593 G 23 2AJ0s 03 Aressedou Ioeds

£Zh6S *3[® JO "wnu Xew o]
- - 91019 - oW1} WNUWIXEUW 0$%0001 98e101s WnWIUIW 3Y) SjedIpUl Joquinu siyy) ‘swoarqoid 3s93 gz 10 |[“v| X xew
I8 7421 aw; a8eraare jo wnwnrew “3°1 ‘wojqold rempow suo 13d SaAljEUIIE JO IPQWINU WNUITXRU,
0109¢ “3[e JO ‘Wnu Xew 'spuodas i smajqoid 393 gZ Jo amy (wnwrxew Io) afesAe,,
- - §0T¥Z — 2wy} WnmWnrew 08 X008 ‘sse[> 1ad sajqeirea jo yaquinu :fy|
1zee swr; a8eraAe *$aSSB[D JO Iaqunu :{fj
GG0S61 Iz . 0 'Wnu Xew
‘ 902 8SLES | I3 €Lp9 T9ZE8 | T JO ‘WU xew
¥yco8c — STL 9°G01 | °uwm} wnwnrew 05%001 . .
R . - b 6°C950¢€ 0°2C.l9¢ | Puwmy wWnuIxXew 050008
S 10%¢E ¥'qr S'61 am) a8eraA® .)
6'v16C 9'9¢S2 sumy 23e1aae
12062 9812 0£99T | "I jJO "Wnu Xew 2188 L1P€91)T JO ‘WnU Xew
9°8C¥ - ¥y j441 W} WnWIXeW 0$X0€ - - . . uﬁ”u8=aﬂma 08X 000¥
0'ee 80 et sum oBesone SPTPST O TPILI 1} I 000
9'02z7 £'80Sy | °wm a8eiese
a 0] g v N X
x| 0g6¢e 01958 Te JO ‘uwrnu xew
safod - — 0°€£99 6%20L U} WRWIXeuw 05%000€
€0291 9°6€91 suy d3esane
JUSDYF30D) [eaYy YA SWIQOId 1S9, Jo sy[nsay [euoneindwo)) g 9|qe], 926601 (4144 €9GIST | "3 jO "Wnu Xew
. 0°925612 - [&48744 L'¥82¢ W WRIXeW 05%0002
TyLLTT ¥°T6L L°0v8 auny aderase
06.€8 £262% cLTIS "i[e Jo "wWnu xew
6°'¥veL - S°'8¢¢S 8679 swn} WRWXew 05%0001
09001 G991 6981 sy a8e1aAe
’-N Jo uonyeoyrpow v £q swajqoid 3s3} jJo s s dEM&ma&dmeBdmdeZ_ iy o1see tosez riste e go mmy ew
N-NJ 132y Ip! q 19 1593 jO suolinjos rewydo-rest .Enﬂmwn_o 10§ .woamhz ¢'LeC9 - 121 6°€hI s} WnWIXeW 0SX00S
l6L szemoz ‘equig] 8'€9% 78 A4 swyy aferoae
punoq siaujjoz-equig 3y} £q swmojqoad 3s93 jo spunoq raoddn Sururejqo 10y sawmry,
610S1 8C8Y 8LES ‘' jo ‘wWnu xew
$'2950¢ S'PZHST 0'€E99 ¥TIPZ ¢egg wmmrxem | (g 4orod) 8'062 T vy 9'6 S WRULXew 05%001
6'¥L62 9°022¥ £0291 v'o6L $°991 a8eraae 10exy (34 €T ST amry afeloae
6769 8Ly 962 8°¢T 09 wnuxen reay 1A 4 69S€0T 8911 2921 »'#[€ JO ‘Wnu xew
€89 g9y 88T TSI A a8eroae ! 6°1S 1009 90 T (W} WRITXRW 05%0g
821 9’8 e 9T 60 wnmpem ot o6tz €0 vo bt
Jpuno
921 <8 T'e 9T 60 a8erase paned a o} g v [
..VN x
0SX000S 0SX000F 0SXO000E 0SX000Z 0SX00OL Parlxirl samnog !

swalqoid 1 2dAJ, Jo swonnjos remnyd()-res) 10§ sowl], [euoiyesndmo)) ¢ d|qe],

118

SIUIDYJP0)) 19823UT Yim

smajqord 1 od£J, 10} sy nsay reuonresndwo)) ‘y 2qe],

