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1. INTRODUCTION

Let $G$ be a finite group with a dihedral Sylow 2-subgroup

$D=\langle x,$ $y|x^{2}=1,$ $y^{2}=1,$ $(xy)^{2^{n-1}}=1$ }

and let
$w=(xy)^{2^{n-2}}$
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be the central involution in $D$ . Structures of such finite groups had been

deeply investigated by D. Gorenstein, J. H. Walter and R. Brauer. But

our starting point is the following simple fact.

Fact 1.1. One of the followin$g$ holds:

(1) both $\langle x\rangle$ and { $y\rangle$ are conjugate to $\langle w\rangle$ in $G$ ;

(2) one and only one of $\{x\}$ an $d\langle y\rangle$ is conjugate to $\langle w\rangle$ in $G$ ;

(3) neither of $\langle x\rangle$ and \langle $y\}$ are conjugate to $\{w\rangle$ in $G$ .

We are concerned with the cohomology algebra

$H^{*}(G, F_{2})= \bigoplus_{n=0}^{\infty}H^{\prime n}(G, F_{2})$

with coefficients in the field $F_{2}$ of two elements.

Cohomology algebras of such groups have been determined individu-

ally. For instance

Example 1.2.

Type (1) $G=SL(3,2)$ [Benson-Carlson 4]

$H^{*}(G, F_{2})\simeq F_{2}[\epsilon, \theta_{1}, \theta_{2}]/(\theta_{1}\theta_{2})$

$wh$ere $\deg\epsilon=2$ and $\deg\theta_{1}=\deg\theta_{2}=3$ .

Type (2) $G=S_{4}$

$H^{*}(G, F_{2})\simeq F_{2}[\chi,\epsilon, \theta]/(\chi\theta)$

where $\deg\chi=1,$ $\deg\epsilon=2$ , an $d\deg\theta=3$ .

Type (3) $G=D_{2n}dih$edral $gro$up of $ord$er $2n$ .

$H^{*}(G, F_{2})\simeq H^{*}(D, F_{2})\simeq F_{2}[\xi, \eta, \alpha]/(\xi\eta)$

where $\deg\xi=\deg\eta=1$ an$d\deg\alpha=2$ .
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The purpose of this report is to show the preceding results hold not
only for these groups but also for all groups of each type:

Main Theorem. Let $G$ be a finite $gro$up with a $dihe$dral Sylow 2-
subgroup $D$ .

(1) If the $gro$up $G$ is of type (1), then

$H^{*}(G, F_{2})\simeq F_{2}[\epsilon, \theta_{1}, \theta_{2}]/(\theta_{1}\theta_{2})$

where $\deg\epsilon=2$ and $\deg\theta_{1}=\deg\theta_{2}=3$ .

(2) If th$e$ group $G$ is of type (2), then

$H^{*}(G, F_{2})\simeq F_{2}[\chi,\epsilon, \theta]/(\chi\theta)$

where $\deg\chi=1,$ $\deg\epsilon=2$ , and $\deg\theta=3$ .

(3) If the $gro$up $G$ is of type (3), then

$H^{*}(G, F_{2})\simeq F_{2}[\chi,\psi,\epsilon]/(\chi\psi)$

where $\deg\chi=\deg\psi=1$ and $\deg\epsilon=2$ .

One of our main tools is the theory of relatively injective hulls. The no-.
tion of relatively projective covers of modules was introduced by R. Kn\"orr

in [8]. Considering duals we can get the notion of relatively injective hulls.
In his paper [1] T. Asai gave a dimension formula for the homogeneous
submodules of the cohomology algebra $H^{*}(G, F_{2})$ by utilizing relatively
injective hulls of trivial modules. Adding further consideration on gener-
ators and relations, we shall determine the structure of the cohomology
algebras. It has been known that in the case (3) the group $G$ has a nor-
mal 2-complement, which was proved by using the theory of fusions. We
shall also give another proof to this fact by our method.
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Recently the 2-1ocalization of the classification spaces of finite groups
with dihedral, generalized quaternion, or semidihedral Sylow 2-subgroups
have been given by J. Martino and S. Priddy in [9]. As a consequence the
$mod 2$ cohomology algebras of such finite groups are determined. On the
other hand our methods are entirely algebraic and completely different
from theirs.

2. NOTATION AND PRELIMINARIES

In this section let $G$ be an arbitrary finite group and let $F$ be a field
of characteristic $p$ dividing the order of $G$ . By an FG-module we shall
always mean a finitely generated right FG-module.

For $H\leq G,$ $M$ an FG-module and $\alpha\in H^{n}(G, M)$ we denote by $\alpha_{H}$

the restriction ${\rm Res}_{H}^{G}(\alpha)$ of $\alpha$ to $H$ .

The nth cohomology group $H^{n}(G, F)$ is isomorphic with the vector
space $Hom_{FG}(\Omega^{n}(F), F)$ . For an element $\alpha\in H^{n}(G, F)$ we denote by $\hat{\alpha}$

the FG-homomorphism of $\Omega^{n}(F)$ to $F$ which corresponds to $\alpha$ . Also we
denote by $L_{\alpha}$ the kernel of $\hat{\alpha}$ : $\Omega^{n}(F)arrow F$ .

Our aim is to determine generators of $H^{*}(G, F)$ and relations. In
general if the group $G$ has p-rank $n$ , then there exist $n$ homogeneous
elements $\zeta_{1},$

$\ldots,$
$(_{n}$ for which the cohomology algebra $H^{*}(G, F)$ is finitely

generated over the subalgebra $F[\zeta_{1}, \ldots, \zeta_{n}]$ . This condition is equivalent

tO

$L_{\zeta_{1}}\otimes\cdots\otimes L_{\zeta_{n}}$ is projective

When p-rank $=2$ , we can say about bases over $F[\zeta_{1}, \zeta_{2}]$ :

Lemma 2.1. [Okuyama-Sasaki 11] For $(\in H^{r}(G, F)$ an$d\eta\in H^{s}(G, F)$ ,

if the $t$ensor product $L_{\zeta}\otimes L_{\eta}$ is a projecti $1^{\gamma}e$ module, then it $holds$ that
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for $n\geq r+s-1$

$H^{n}(G, F)=H^{n-r}(G, F)\zeta+H^{n-s}(G, F)\eta$.

Namely

$H^{*}(G, F)=$ $[ \bigoplus_{n=1}^{r+s-2}H^{n}(G, F)]F[\zeta, \eta]$

Also useful is to determine the dimensions of homogeneous submod-
ules. The following lemma will be applied to our situation.

Lemma 2.2. [Asai 1] Let

$0arrow Marrow^{f}Uarrow Narrow 0$

be a short exa$ct$ sequence of FG-modules. Suppose that the modules $M$

and $N$ are projective free and that th $e$ mod$uleU$ is periodic so that $U\otimes L_{\gamma}$

is projective for an element $\gamma\in H^{r}(G, F)$ . For $S$ a simple FG-module, if

$[f_{n}^{*} : Ext_{FG}^{n}(U, S)arrow Ext_{FG}^{n}(M, S)]=0$ for $0\leq n\leq r-1$

then
$f_{n}^{*}=0$ for all $n\geq 0$ .

If this happens, the long exact Ext-sequence

$0arrow Hom_{FG}(N, S)arrow Hom_{FG}(U, S)arrow Hom_{FG}(M, S)arrow$

$Ext_{FG}^{1}(N,S)arrow\cdotsarrow Ext_{FG}^{n}(N,S)arrow Ext_{FG}^{n}(U,S)$ 輩

$Ext_{FG}^{n}(M, S)arrow Ext_{FG}^{n+1}\Delta(N, S)arrow Ext_{FG}^{n+1}(U, S)^{f_{n+1}^{*}}arrow$

$Ext_{FG}^{n+1}(M, S)arrow\cdots$
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breaks into short exact sequences

$0arrow Ext_{FG}^{n}(M, S)arrow^{\Delta}Ext_{FG}^{n+1}(N, S)arrow Ext_{FG}^{n+1}(U, S)arrow 0$

$n=0,1,2,$ $\ldots$ .

Especially

Corollary 2.3. Under the same assumption of Lemma 2.2, for all $n\geq 0$

$\dim Ext_{FG}^{n+1}(N, S)=\dim Ext_{FG}^{n}(M, S)+\dim Ext_{FG}^{n+1}(U, S)$

3. COHOMOLGY ALGEBRA OF DIHEDRAL 2-GROUP

Henceforth we let

$F=F_{2}$ .

Before discussing general cases we have to consider the cohomology alge-

bra of the dihedral 2-group $D$ . Let

$\xi$ and $\eta\in H^{1}(D, F)$

be the elements which satisfy

$\{^{\xi(x)=1}$
$\xi(y)=0$

$\{\begin{array}{l}\eta(x)=0\eta(y)=1\end{array}$

regarding $H^{1}(D, F)$ as $Hom(D, F)$ .

By direct calculation we have
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Proposition 3.1. $\Omega_{\{\langle x),\langle y\rangle\}}^{-1}(F_{D})=\Omega(F_{D})$:

$0arrow Farrow F_{\langle x)}^{D}\oplus F_{\langle y\rangle}^{D}arrow\Omega(F)garrow 0$

where
.

$g$ : $\{\begin{array}{l}(1\otimes 1,0)(0,1\otimes 1)\end{array}$ $-x-1\vdasharrow y-1$

.

Let
$\alpha\in H^{2}(D, F)$

be the element corresponding to the extension

$0arrow Farrow F_{\langle x\rangle}^{D}\oplus F_{\langle y\rangle}^{D}farrow\Omega(F)garrow 0$

and let

$z=xy$

$\zeta=\xi+\eta$ .

Proposition 3.2. (1) The restriction $\alpha_{(z)}$ does not van$ish$ . In particular
$\alpha$ is not a zero-diviser in $H^{*}(D, F)$ .
(2) The ten$sor$ product $L_{\alpha}\otimes L_{\zeta}$ is projective. Hence for $n\geq 2$

$H^{n}(D, F)=H^{n-2}(D, F)\alpha+H^{n-1}(D, F)\zeta$

Proof. (1) The restriction of the extension above to the subgroup \langle $z$ } does
not split.
(2) This follows from the fact that the restriction of the tensor product
to each four subgroup of $D$ is projective. Lemma 2.1 gives the second
assertion. 口
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Let
$U=F_{\langle x\rangle}^{D}\oplus F_{\langle y\rangle}^{D}$ .

Then

$U\otimes L_{\zeta}=(F_{(x\rangle}^{D}\oplus F_{(y\rangle}^{D})\otimes L_{\zeta}$

$=L_{\zeta}|_{\langle x\rangle}^{D}\oplus L_{\zeta}|_{\langle y\rangle}^{D}$ : projective,

because both $\zeta_{(x\rangle}$ and $\zeta_{\langle y\rangle}$ are nonzero elements. Since

im$f\subset soc(U)\subset rad(U)$

we see that

$[f_{0}^{*} : Hom_{FD}(U, F)arrow Hom_{FD}(F, F)]=0$ .

Hence Corollary 2.3 gives a dimension formula

$\dim Ext_{FD}^{n+1}(\Omega(F), F)=\dim Ext_{FD}^{n}(F, F)+\dim Ext_{FD}^{n+1}(U, F)$

$=\dim Ext_{FD}^{n}(F, F)+2$ .

Namely
$\dim H^{n+2}(D, F)=\dim H^{n}(D, F)+2$ .

This together with the facts that $\dim H^{0}(D, F)=1$ and $\dim H^{1}(D, F)=$

$2$ yields the following:

Proposition 3.3.
$\dim H^{n}(D, F)=n+1$

Summarizing we have obtained that

$H^{*}(D,F)=H^{1}(D,F)F[\zeta,\alpha]$

and
$\dim H^{n}(D, F)=n+1$ .

We must determine the defining relations. Useful is:
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Lemma 3.4. For $\omega\in H^{n}(D, F),$ $n\geq 2$

$\omega_{(x\rangle}=0$ and $\omega_{(y\rangle}=0\Rightarrow\alpha|\omega$

Proof. Since $\hat{\omega}_{\langle x\rangle}$ and $\hat{\omega}_{\langle y\rangle}$ are projective maps and

$0arrow Farrow F_{(x\rangle}^{D}\oplus F_{(y\rangle}^{D}arrow\Omega(F)arrow 0$

is a $\{\langle x\},$ \langle $y$}}-injective hull, the homomorphism $\hat{\omega}$ can be extended to a
homomorphism $\phi$ of $P_{n}$ , the injective hull of $\Omega^{n}(F)$ , to $F_{\langle x\rangle}^{D}\oplus F_{\langle y\rangle}^{D}$ . Let
$\wedge\tau$ be the homomorphism of $\Omega^{n-1}(F)$ to $\Omega(F)$ which is induced from $\phi$ .
Then, letting $\tau$ denote the element in $H^{n-2}(D, F)$ represented by $\wedge\tau$ , we
see that $\omega=\alpha\tau$ .

$\Omega^{n}(F)arrow$ $P_{n}$ $arrow\Omega^{n-1}(F)$

$\hat{\omega}\downarrow$ $\phi\downarrow$ $\wedge\tau\downarrow$

$F$ $arrow F_{\langle x\rangle}^{D}\oplus F_{\langle y)}^{D}arrow$ $\Omega(F)$

口

Lemma 3.5.
$\xi\eta=0$

Proof. This follows from the facts that $(\xi\eta)_{\{x\}}=0$ and $(\xi\eta)_{\langle y\rangle}=0$ . 口

Considering the dimensions of the homogeneous submodules of the
subalgebra $F[\xi, \eta, \alpha]$ , we have

Theorem 3.6.
$H^{*}(D, F)\simeq F[\xi, \eta, \alpha]/(\xi\eta)$

where $\deg\xi=\deg\eta=1$ an$d\deg\alpha=2$ .
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4. GENERAL CASES

First we shall treat the case (3).

Proposition 4.1. If a finite group $G$ with a dihedral Sylow 2-subgroup
$D$ is of type (3), then $Gh$as a normal 2-complement. In $p$articular the
cohomology algebra $H^{*}(G, F)$ is isomorphic with that of the Sylow 2-
subgroup $D$ .

Proof A $\langle z\rangle$-injective hull of the trivial FG-module $F$ is of the form
$0arrow Farrow Sc\{z\rangle$ $arrow Marrow 0$ , where $Sc\{z\}$ is the Scott module with vertex
{ $z\rangle$ and $M$ is an indecomposable FG-module with vertex $D$ . We claim
that the right-hand module $M$ is isomorphic with $F$ . Since the group $G$

is of type (3), we see that $\{\{z\}\}\cap cD=\{\langle z\rangle\}$ . Hence, restricting the
extension above to $D$ , we see that the restriction $M_{D}$ is the direct sum of
the trivial module $F_{D}$ and a $\{z\}$ -injective module. Namely the module $M$

has a trivial source. We also note that the head of the module $M$ has the
trivial module $F$ as a direct summand. Thus we have that the module
$Jf$ is isomorphic with $F$ , as desired. Namely there exists an extension
$0arrow Farrow Sc\langle z$} $arrow Farrow 0$ . Such an extension splits over the subgroup
$O^{2}(G)$ , because it corresponds to an element in $H^{1}(G, F)\simeq Hom(G, F)$

and the restriction of $Hom(G, F)$ to $O^{2}(G)$ is the zero-module. Therefore
the subgroup $O^{2}(G)$ acts trivially on $Sc\{z\}$ so that a Sylow 2-subgroup
of $O^{2}(G)$ is contained in a vertex of $Sc\langle z$ }. Consequently the subgroup
$O^{2}(G)$ has a normal 2-complement, which means that $O^{2}(G)$ is itself a
normal 2-complement of the group G. $\square$

Now we proceed to the cases (1) and (2). Similarly to the case of
dihedral 2-groups our methods are:
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(1) to find homogeneous elements $\epsilon$ and $\sigma$ for which

the tensor product $L_{\epsilon}\otimes L_{\sigma}$ is projective;

(2) to get the dimension formula

$\dim H^{n}(G, F)=?$ ;

(3) to determine the defining relations.
Let

$\mathcal{H}=\{\langle x\rangle, \{y\}, \{z\}\}$ .

Useful is the $\mathcal{H}$-injective hull of the trivial module. We begin with

Proposition 4.2. $\Omega_{\mathcal{H}}^{-1}(F_{D})=\Omega^{2}(F_{D})$ :

$0arrow Farrow F_{(x\rangle}^{D}\oplus F_{\langle y)}^{D}\oplus F_{\langle z\rangle}^{D}arrow\Omega^{2}(F)arrow 0$

Proof. This can be verified by direct computation. $\square$

Let
$T=F_{(x\rangle}^{D}\oplus F_{\langle y\rangle}^{D}\oplus F_{\langle z)}^{D}$ .

For a group $G$ of type (2) we assume that

$x\sim Gw$ but $y/ \oint_{G}w$ .

We let
$\mathcal{H}’=\{\{\{\{\begin{array}{l}zy\end{array}\},\}_{\langle z\}}\}$ $casecase(2)(1)$

.

Then by [Asai 1, Lemma 2.1] an $\mathcal{H}$-injective hull $S$ of the FG-module
$F_{G}$ is given by

$S= \bigoplus_{H\in \mathcal{H}’}ScH$

where $ScH$ is the Scott module with vertex $H\in \mathcal{H}’$ .
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Proposition 4.3. $\Omega_{\mathcal{H}}^{-1}(F_{G})=\Omega^{2}(F_{G})$ :

$0arrow Farrow Sarrow\Omega^{2}(F)arrow 0$

Proof. Let $0arrow Farrow Sarrow Marrow 0$ be an $\mathcal{H}$-injective hull. Because
$\mathcal{H}\bigcap_{G}D=\mathcal{H}$ , the restriction of the extension above to the Sylow 2-
subgroup $D$ contains the extension $0arrow F_{D}arrow Tarrow\Omega^{2}(F_{D})arrow 0$ as
a direct summand. Hence $\Omega^{2}(F_{D})$ is a direct summand of $M_{D}$ . Now
we note that the centralizer $C_{G}(w)$ has a normal 2-complement. Using
the Green correspondence with respect to $(G, D, C_{G}(w))$ , we have that
$M=\Omega^{2}(F)$ . 口

Let
$\sigma\in H^{3}(G, F)$

be the element corresponding to the extension

$0arrow Farrow Sfarrow\Omega^{2}(F)garrow 0$ .

We note that the restriction of the extension above to $D$ is

$0arrow F_{D}arrow Tf\oplus Xarrow\Omega^{2}(F_{D})g\oplus Xarrow 0$

where $X$ is projective.

Theorem 4.4. There exists a homogeneous element $\epsilon\in H^{2}(G, F)$ such
that

$\epsilon_{H}\neq 0$ for each $H\in \mathcal{H}’$

so that
the tensor product $S\otimes L$. is projective.
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It also holds that

the tensor product $L_{\epsilon}\otimes L_{\sigma}$ is projective.

Hence on$eh$as for $n\geq 4$

$H^{n}(G, F)=H^{n-2}(G, F)\epsilon+H^{n-3}(G, F)\sigma$ .

Namely

$H^{*}(G, F)=[ \bigoplus_{n=1}^{3}H^{n}(G, F)]F[\epsilon, \sigma]$

Proof. We can choose a homomorphism $\lambda$ : $Sarrow F$ such that

$\lambda_{H}$ is not projective for all $H\in \mathcal{H}’$ .

Since
$[f^{*} :Hom_{FG}(S, F)arrow Hom_{FG}(F, F)]=0$

we have that

$g^{*}:$ $Hom_{FG}(\Omega^{2}(F), F)\simeq Hom_{FG}(S, F)$ .

Let $\wedge\epsilon$ be the element in $Hom_{FG}(\Omega^{2}(F), F)$ such that $g^{*}(\epsilon\wedge)=\lambda$ . Then it
holds that

$\epsilon_{H}\neq 0$ for each $H\in \mathcal{H}’$ .

Because each subgroup $H\in \mathcal{H}’$ is cyclic, the restriction $L_{\epsilon}|_{H}$ is projective.
Hence we have that

$S \otimes L_{\epsilon}|(\bigoplus_{H\in?t’}F_{H}^{G})\otimes L_{e}$

$= \bigoplus_{H\in T\ell}L_{\epsilon}|_{H}^{G}$
: projective.
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Since soc$(S)\subset rad(S)$ , there exists an essential epimorphism $\rho$ : $P_{2}arrow$

$S$ such that $\partial_{2}=g\rho$ . We obtain a commutative diagram

$0$ $0$

$\downarrow$ $\downarrow$

$0arrow$ $L_{\sigma}$ $arrow\Omega(S)arrow$ $0$

$\downarrow$ $\downarrow$ $\downarrow$

$0arrow\Omega^{3}(F)arrow$ $P_{2}$
$arrow^{\partial_{2}}\Omega^{2}(F)arrow 0$

$\wedge\sigma\downarrow$ $\rho\downarrow$ $\Vert$

$0arrow$ $F$
$arrow^{f}$

$S$ $arrow^{g}\Omega^{2}(F)arrow 0$

$\downarrow$ $\downarrow$ $\downarrow$

$0$ $0$ $0$

The second assertion holds from $L_{\sigma}\simeq\Omega(S)$ . $\square$

Next let us determine the dimensions of the homogeneous submodules.
We have observed in the proof of Theorem 4.4 that

$[f_{0}^{*} : Hom_{FG}(S, F)arrow Hom_{FG}(F, F)]=0$ .

If
$[f_{1}^{*} : Ext_{FG}^{1}(S, F)arrow Ext_{FG}^{1}(F, F)]=0$

then we will obtain by Corollary 2.3 that

$\dim Ext_{FG}^{n+1}(\Omega^{2}(F), F)=\dim Ext_{FG}^{n}(F, F)+\dim Ext_{FG}^{n+1}(S, F)$.

Now it is sufficient to verify that

$[f^{*}|_{D} : Ext_{FD}^{1}(S|_{D}, F)arrow Ext_{FD}^{1}(F, F)]=0$ .
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This is equivalent to

$[f_{1}^{*} : Ext_{FD}^{1}(T, F)arrow Ext_{FD}^{1}(F, F)]=0$

where $f_{1}^{*}$ is induced from the extension

$0arrow Farrow F_{\langle x\rangle}^{D}f\oplus F_{\langle y\rangle}^{D}\oplus F_{\langle z)}^{D}arrow\Omega^{2}(F)garrow 0$.

In the Ext-exact sequence

$0arrow Hom_{FD}(\Omega^{2}(F), F)arrow^{*}Hom_{FD}(T, F)90arrow^{*}Hom_{FD}(F, F)f_{0}arrow\Delta$

$Ext_{FD}^{1}(\Omega^{2}(F), F)arrow^{*}Ext_{FD}^{1}(T, F)g_{1}arrow^{*}Ext_{FD}^{1}(F, F)f_{1}arrow\ldots$

it can easily be seen that $f_{0}^{*}=0,$ $\dim Ext_{FD}^{1}(\Omega^{2}(F), F)=4$ , and
$\dim Ext_{FD}^{1}(T, F)=3$ . Hence we obtain that

$Ext_{FD}^{1}(T, F)\geq kerf_{1}^{*}$

$\simeq Ext_{FD}^{1}(\Omega^{2}(F), F)/im\Delta$ ; of dimension 3

so that
$Ext_{FD}^{1}(T, F)=kerf_{1}^{*}$ .

Namely it holds that
$f_{1}^{*}=0$

as desired. Therefore, as we have mentioned

Lemma 4.5.

$\dim H^{n+3}(G, F)=\dim H^{n}(G, F)+\dim Ext_{FG}^{n+1}(S, F)$ .

We must determine $\dim Ext_{FG}^{n}(S, F)$ and $\dim H^{n}(G, F),$ $0\leq n\leq 2$ .
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Lemma 4.6. For each $H\in \mathcal{H}$ one has

$\dim Ext_{FG}^{n}(ScH, F)=1$ for $n\geq 0$

so that for $n\geq 0$

$\dim Ext_{FG}^{n}(S, F)=i$ in $case(i)$ .

Proof. The modules $Sc\{x\rangle$ , $Sc\{y\rangle$ , and $Sc\{z\}$ are periodic of periods one,
one, and two, respectively. Let $N=N_{G}(\langle z\})$ and let $L$ be the Green
correspondent of $Sc\langle z\rangle$ with respect to $(G, \langle z\rangle, N)$ . Then we have that
$Ext_{FG}^{1}(Sc\langle z\rangle, F)\simeq Ext_{FN}^{1}(L, F)$ . Since the normalizer $N$ has a normal
2-complement, the Green correspondent $L$ is isomorphic with $F_{\langle z\rangle}^{D}$ . Hence
it holds that $Ext_{FN}^{1}(L, F)\simeq Ext_{FD}^{1}(F_{\langle z\rangle}^{D}, F)$ . $\square$

Thus we have

Theorem 4.7. [Asai 1]

$\dim H^{n+3}(G, F)=\dim H^{n}(G, F)+i$ in case (i)

Lemma 4.8.
$\dim H^{1}(G, F)=i-1$ in case (i)

$\dim H^{2}(G, F)=i$ in case (i)

Proof. Recall that $H^{2}(G, F)\simeq Hom_{FG}(S, F)$ , which implies the second
assertion. The homomorphism $g_{*}$ : $Hom_{FG}(F, S)arrow Hom_{FG}(F, \Omega^{2}(F))$

is epimorphic, because its restriction to $D$ is epimorphic. The kernel of
$g_{*}$ is one dimensional. We note that the vector spaces $Hom_{FG}(F, \Omega^{2}(F))$
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and $Hom_{FG}(\Omega(F), F)$ have the same dimension. Thus we obtain that
$\dim H^{1}(G,$ $F$ ) $=\dim Hom_{FG}(F, S)-1$ . 口

By Theorem 4.7 and Lemma 4.8 the dimensions of homogeneous sub-
modules are completely determined.

Now we are in a position to proceed to the final stage. We shall
determine generators of $H^{*}(G, F)$ and relations in connection with those
of $H^{*}(D, F)$ .

Lemma 4.9. One $h$as

$\epsilon_{D}=\alpha+\zeta^{2}$

$\sigma_{D}=\alpha($ .

Proof. First, recall that $\epsilon_{H}\neq 0$ for each $H\in \mathcal{H}’$ . Then one has that
$(\epsilon_{D}+\alpha+\zeta^{2})_{\langle x\rangle}=0$ and $(\epsilon_{D}+\alpha+\zeta^{2})_{\langle y\rangle}=0$ so that, by Lemma 3.4,
$\epsilon_{D}+\alpha+\zeta^{2}=\alpha$ or $0$ . Since $\epsilon_{(z\rangle}\neq 0$ , we see that $\epsilon_{D}+\alpha+(^{2}=0$ . Second,
recall that $\sigma_{H}=0$ for each $H\in \mathcal{H}$ and that $\alpha_{\langle z\rangle}\neq 0$ . Then we have by

Lemma 3.4 that $\sigma_{D}=\alpha(.$ $\square$

Case (1): $x$ and $y$ are conjugate to $w$ .

Notice by Lemma 4.8 that $H^{1}(G, F)=0$ and $H^{2}(G, F)=\langle\epsilon$ }. Since
$\dim H^{3}(G, F)=2$ , we take another basis element $\theta$ :

$H^{3}(G, F)=\langle\sigma, \theta\rangle$ .

Because $|z|\geq 4$ , we see that

$\theta_{(z\rangle}^{2}=(\theta_{(z)})^{2}$

$=0$ .
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Then by our assumption we have that

$\theta_{\langle x)}=0$ and $\theta_{\langle y)}=0$ .

Hence by Lemma 3.4 there exists an element $\omega\in H^{1}(D, F)$ such that

$\theta_{D}=\alpha\omega$ .

Because $\theta_{D}$ is linearly independent to $\sigma_{D}=\alpha\zeta$ , it follows that

$\theta_{D}=\alpha\xi$ or $\alpha\eta$ .

In either case we obtain that

$\theta^{2}=\sigma\theta$ .

By putting $\theta_{1}=\theta$ and $\theta_{2}=\sigma+\theta$ , this is rewritten as

$\theta_{1}\theta_{2}=0$ .

Summing up we see that

$H^{*}(G, F)=F[\epsilon, \theta_{1}, \theta_{2}]$ with $\theta_{1}\theta_{2}=0$ .

Finally considering the dimensions of homogeneous submodules, we have

$H^{*}(G, F)\simeq F[\epsilon, \theta_{1}, \theta_{2}]/(\theta_{1}\theta_{2})$

where $\deg\epsilon=2$ and $\deg\theta_{1}=\deg\theta_{2}=3$

Case (2): $x$ or $w$ but $y \oint_{G}w$ .

Recall that $\dim H^{1}(G, F)=1$ . We put

$H^{1}(G, F)=\{\chi\rangle$ .
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We observe that
$\chi_{D}=\eta$ .

Because the subgroup $\langle w\rangle$ is contatined in the commutator subgroup

of the group $G$ , the restriction $\chi\{w\rangle$ vanishes. By our assumption the

restriction $\chi_{\langle x\rangle}$ also vanishes, which implies the assertoin above.

Since $\chi_{D}^{2}=\eta^{2}$ and $\epsilon_{D}=\alpha+\zeta^{2}$ are linearly independent and the
second cohomology group $H^{2}(G, F)$ has dimensioin 2, we have that

$H^{2}(G, F)=\{\chi^{2},$ $\epsilon\rangle$ .

Similarly we see that

$H^{3}(G, F)=\{\chi^{3}, \chi\epsilon, \sigma\}$ .

The following can be verified by applying the restriction to $D$ :

$\chi^{4}+\chi^{2}\epsilon+\chi\sigma=0$ .

By putting $\chi^{3}+\chi\epsilon+\sigma=\theta$ , this can be rewritten as

$\chi\theta=0$ .

Thus we know that

$H^{*}(G, F)=F[\chi, \epsilon, \theta]$ with $\chi\theta=0$ .

Finally, again considering the dimensions of homogeneous submodules,

we see that the above relation is enough:

$H^{*}(G, F)\simeq F[\chi, \epsilon, \theta]/(\chi\theta)$

where $\deg\chi=1,$ $\deg\epsilon=2$ , and $\deg\theta=3$
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