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Representation theory for finite groups

in computer system "CAYLEY?”

FEERY HAMFEHE M 5ok (Katsushi WAKI)

Recently, computational methods are useful for the representation theory, and have been
executed by the CAYLEY system by Cannon[l]. In this paper, we will show a usage and
some applications of the CAYLEY in the representation theory.

1. Representation in CAYLEY

Let G be a finite group with a set of generators {g1, ..., ¢;} and F a splitting field for G
such that the characteristic of F' divides the group order |G].

In this paper we treat the action of an element g of G on the F-vector space V' as the
product of a vector by a matrix V(g) on the right. So we can consider the vector space V
as a right F'G-module for the group algebra FG. In the CAYLEY system, we treat a set
{M(g1),..., M(gi)} as a representation of FG-module V. A series of submodules of V

0=WW<WVi<--- <V, =V where V;/V;_ is simple

is called a composition series for an FG-module V.

2. The socle
Let Soc(V') denote the socle of V, namely the sum of all simple F'G-submodules of V.
LEMMA 1. Let V be an FG-module and U an FG-submodule of V' such that V/U is
isomorphic to a simple FG-module W. Then the following statements are equivalent.

(1) There is an FG-submodule T' which is isomorphic to W and Soc(V) = Soc(U)a T.
(i) V is isomorphic to U & W.

Proor: (i) = (i1). Since UNT = Soc(U)NT =0, U & T is an FG-submodule of V. But
the dimension of V' is equal to this submodule. So V =U & T.



154

(i) = (i). Immediate from the definition of the socle.

There is the standard function composition factor which is written by Schneider[3] in
the CAYLEY system. From Lemma 1, we can get the socle of the F'G-module V by the

following algorithm.

ArLGoriTEM SOC:
(1) Let get a composition series {Vi};=1,... ») of V and socsq be empty.
(2) For each i, see whether V; is isomorphic to V;—; @ V;/V;_1 or not. If V; can split then
append V;/V;_; to socsq.
(3) Print socsq as the socle of the FG-module V.

The main part of this algorithm is investigating that V; can split or not. Let V' be an
FG-module and U an FG-submodule of V' such that V/U is isomorphic to a simple FG-
module W. The dimension of the module U and the module W are « and w, respectively.

In a good basis of V| V(g) is a following matrix
U(g) 0 )
for each element ¢ of ¢
(ch) w(g) !
where D(g) is a wx u-matrix. Since V' is an FG-module, D is satisfies a following equation.

(*) D(gg") = D(g)U(g') + W(g)D(¢9')  for any g,¢' in G

The module V' is isomorphic to U @ W if and only if there are some regular matrices P

and

(1) PV(g9)P™! = (Ugf’) W?Q))

for all elements g of G. What made 1t difficult is the number of unknowns which have to
be processed to find the matrix P. Thus we prove the next lemma to reduce the number

of unknowns.
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LEMMA 2. Using the above conditions, the following statements are equivalent.
(1) There is such a matrix P.

(i1) There Is a w X u matrix @ such that D(g) = W(g)Q — QU(yg) for any g in G.

By Lemma 2, 1t suffices to find the matrix @ instead of the matrix P. So we can reduce
the number of unknowns from (m + n)? to nm and see it as the problem of basic linear

algebra.
Proor: (i) = (ii)

;1w X u matrix 5 14 X w matrix
Let P = Pr P2 where P P2 .
P3 P4 p3 s w X u matrix  pg @ w X w matrix

Then from (1), we get the following equations for all elements g of G.

(2) mU(g) +p2D(g) = U(g)m
(3) p2W(g) = Ulg)p
(4) psU(g) + paD(g) =

) ) =

paW(g

W(g)ps

(5 W(g)ps

If matrix py is regular then let @ be p;'ps. The matrix Q satisfies the condition (ii)
from (4) and (5).

Since W is the simple module and we can see that p4 1s an endomorphism of FG-module
W from (5).

So if the matrix p4 is not regular then ps must be a zero-matrix by Schur’s lemma. From
the equations (3) and (4), psp2W(g) = W(g)pap2. If psps is not a zero-matrix then pspy
is al by Schur’s lemma where « is a non-zero element of F' and I is the unit matrix. The

product of (2) and a~'p3 on the left gives

a”'p3p1U(g) + D(g) = W(g)a™ pap:

by the equation (4). So Q is o™ 'p3p;.
If pspo is a zero-matrix then there is a positive integer k such that p3plps, = 0 (0 < n < k)
and pgpfﬂpg # 0 and

(2') P?HU(Q) =Ulg n+1 ZPH’?D 9)py T for the natural nufnber n
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by the easy calculation. When n = k, the product of (2') and ps on the left gives
pspy T U(g) = W(g)pspt™" by the equation (4) and pspi+'pasW(g) = W(g)pspi*'pa by
the equation (3). We can see that pgplfﬂpg 1s al by Schur’s lemma where « is a non-zero
element of F and I is the unit matrix. When n = k + 1, the product of (2') and a~!p3 on
the left gives

o papi U (g) = W(g)e ™ papy™” = D(g)

by the equation (4). So @ is a’lpgpf"'z.

(i) = (i)
I 0

Let P——-(Q I,

) where I,, and I,, are the m and n-dimensional unit matrix.

Then the matrix P satisfies the equation (1).

By the way, let think about a w x u-matrix D(g). Let F**" be a set of w X u-matrices
over F| E(W,U) aset of map D from G to F*** which is satisfies (x) and e(W, U) a set of
map D¢ such that Dgo(g) = W(g)Q — QU(g) where @ is a w x u-matrix. Then E(W,U) is
an F-space and e(W,U) an F-subspace of E(W,U). And E(W,U)/e(W,U) is isomorphic
to Exthg(W, U) as F-space. So we can compute the dimension of Extkg (W, U) from this
equation. In particular, E(W,U) and e(W,U) are Z'(G,U) and B'(G,U) respectively if

W is the trivial module.

3. Q" Y(M)
Suppose G is p-group. Using F(W,U), we can construct the Heller module Q~1(M) of

anFG-module M. Let E(M) denote E(F, M)/e(F, M) where F is the trivial FG-module

and {d}} (1 <i < my) an F-basis of E(M). Then we can make a following representation

M(g) 0
)

dpn, (9) 1
where the FG-module M; has M as a submodule of M; and M; /M is isomorphic to m
copies of the trivial module F. Moreover Soc(M) =~ Soc(M;). By the same process, we
can make FG-module M; such that M, has M; as a submodule and M,/M; is isomorpic
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to ms(= dimp E(M,)) copies of the trivial module F and soc(M;) ~ Soc(Ms). So if we

continue this process, then we get

M(g) \
di(9) 1 0
My(g) = din;(g) 0 o
d3(g) 1
dfn;(g) Y,

as the injective hull of M. And it’s easy to calculate Q~1(M) = M /M.

4. Example
Let G =< z,y,z|2® = y® = 23 = (2,2) = (y,z) = 1,(2,y) = z > and F = GF(3) then

G is the extra-special 3-group ,|G| = 27 and

M the dimension Dof M | the dimension of thes;)do se;‘ies of M
FG 27 (1,2,4,4,5,4,4,2,1)
Q~1(F) 26 (2,3,3,5,4,4,2,1)
Q-2(F) 28 (4,4,6,3,6,3,2)
O~3(F) 80 (6,9,14,13,14,12, 8, 4)
Q~4(F) 82 (7,10,16,12, 15, ...)
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