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CASCADE PAROCESS OF VORICES AND TURBULENCE STRUCTURE

S. Kuwabara

Deparment of Applied Physics, School of Engineering, Nagoya University

In this paper, modelling of turbulent boundary layer along a flat plate by means
of an ensembel of “individual eddies” and transverse vortex filaments and eddy
viscosity based on consideration of momentum and energy conservation are studied.
In Fig.1, a brief sketch of turbulent boundary layer along a flat plate is shown, in
which the Blasius laminar boundary layer starts at the leading edge, the transition
region from laminar to turbulent flow and fully developed turbulent boundary layer
are followed.

In the transition region, the burst phnomena are important and would produce
many three-dimensional vortices. In this process, a part of a transverse vortex
filament, which constitutes the Blasius flow, is lifted up, elongated and curled like
a hairpin. The further deformed $\Omega$-shaped vortex would be cut to be a vortex
ring. This vortex ring is not definitely circular, but deformed, bent and wrinkled.
The vortex is called “individual eddy” (Fig.2). The individual eddy is modelled by a
circular ring vortex and has a translational velocity $V$ , energy $E$ and momentum
$P$ :

.

$V= \frac{\Gamma}{4\pi a}(\log\frac{8a}{b}-\frac{1}{4}))$ $E= \frac{1}{2}\rho\Gamma^{2}a(\log\frac{8a}{b}-\frac{7}{4})$ , $P=.\pi\rho\Gamma a^{2}$ (1)

where $\Gamma$ is the circulation, $a$ the ring radius, $b$ the radius of the vortex filament and
$\rho$ the density. The axis of the vortex ring is roughly $perp\dot{e}$ndicular to the wall and
translational vel $o$ city seems to be $di_{1}\cdot ected$ upwards from the consideration of the
producing process of the vortex ring. These eddies travel with the mean velocity
and go into the $f\iota\iota 1ly$-developed turbulent region.

The fully-developed $re_{\dot{\theta}^{on}}$ wodd be described by an ensemble of individual eddies
and transverse vortex filaments, the latter of which are of an approximation for the
mean flow. Experiments show that the thickness of boundary layer increases roughly
linearly in the flow direction in the fully-developed region. In this region, geometrical
and dynamical $\sin\dot{u}larities$ of the vortex motion and the mean flow could be assumed.
Extension of aline of the edge of boundary layer may intersect the flat plate. The
intersection point is called the origin of $si_{1}nilarity$, which is chosen as the origin of
$x$ -axis. The origin may be located in the Blasius flow region. The similarities really
start about at $x=x_{0}$ , which is called starting point of similarity (Fig.1). Thus,
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the rear part of the Blasius region, the transition region and the initial part of the
fully-developed region would be between $x=0$ and $x_{0}$ . In the fully-developed
region, the molecular viscosity effect is almost negligible, and the characteristic outer
parameters are only $\rho$ and $U$ , the velocity outside the boundary layer. Thus, we
can not construct the characteristic lenght from the outer parameters. It is natural
to assume a similarity that dynamical variables depend only on $y/x$ , where $y$ is
the coordinate perpendicular to the plate.

The thickening of boundary layer in the fully-developed region is that the turbu-
lent vortex region swells out to the free uniform flow region, entrains this region into
itself and is called the “entrainment of the turbulent boundary layer”. The vortex
model gives a view that the entrainment phenomenon is due to the individual eddies
in the edge of the boundary layer going upwards and into the uniform flow.

We choose the independent variables:

$\xi=\frac{x}{x_{0}’}$ $\eta=\frac{y}{\delta_{0}’}$ $\zeta=\frac{y}{\delta(x)}$ (2)

where $\delta(x)=\alpha x$ is the boundary layer thickness and $\delta_{0}$ the boundary layer thickness
at the starting point of similarity. The boundary layer in the fully-developed region
is considered to be divided into three layers, $\zeta=0\sim\epsilon$ ( $\epsilon\ll 1$ , the viscous layer),
$\zeta=\epsilon\sim\zeta_{i}$ ( $\zeta_{i}\simeq 0.5$ , the log-layer) and $\zeta=\zeta_{:}\sim 1$ , (the intermittency layer).

The mean flow velocity is discussed here, based on the approximate mean flow
equations. We adopt the following turbulent boundary layer equations:

$\overline{u}\frac{\partial\overline{u}}{\partial x}+\overline{v}\frac{\partial\overline{u}}{\partial y}=\frac{\partial}{\partial y}\nu_{T}\frac{\partial\overline{u}}{\partial y}$, (3)

$\frac{\partial\overline{u}}{\partial x}+\frac{\partial\overline{v}}{\partial y}=0$ , (4)

where $\nu_{T}$ is the eddy viscosity, which is a function of the position and the pressure
term is dropped like the Blasius equation. A following similarity solution would be
assumed for this equation:

$\overline{u}=Uf(\zeta)$ , $\overline{v}=Ug(\zeta)$ . (5)

From (4), we have

$- \frac{\dot{\delta}}{\delta}\zeta\frac{dUf}{d\zeta}+\frac{1}{\delta}\frac{dUg}{d\zeta}=\frac{U}{6}[-\dot{\delta}\zeta\frac{df}{d\zeta}+\frac{dg}{d\zeta}]=0$

or
$\frac{dg}{d\zeta}=\dot{\delta}\zeta\frac{df}{d\zeta}$ (6)

where $\dot{\delta}=d\delta/dx=const$ . Thus, we have

$g= \dot{\delta}\int_{0}^{\zeta}\zeta\frac{df}{d\zeta}d\zeta=\dot{\delta}[(f(\zeta)-\int_{0}^{\zeta}f(\zeta)d\zeta]$ (7)
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Further,
$\frac{1}{\zeta}\frac{d}{d\zeta}\iota/\tau\frac{d\overline{u}}{dy}=-U^{2}\frac{\dot{\delta}}{\delta}f’\int_{0}^{(}fd\zeta$

is derived from (3). Integrating this, we have

$\nu_{T}\frac{d\overline{u}}{dy}=-U^{2}\dot{\delta}\int_{0}^{\zeta}f’(\sigma)\int_{0}^{\sigma}f(\tau)d\tau d\sigma+\frac{\tau}{\rho}*$

or
$U \nu_{T}\frac{1}{\delta}\frac{df}{d(}=-U^{2}\dot{\delta}\int_{0}^{\zeta}f’(\sigma)\int_{0}^{\sigma}f(\tau)d\tau d\sigma+v_{*}^{2}$

where $v_{r}=\sqrt{\tau./\rho}$ is the friction vecocity and $\tau$, the tangential stress at $y=0$ . The
similarity solution of $f$ requires that $\tau_{*}=$ const. The similarity requirement gives
also

$\nu_{T}=U\delta(x)\hat{\nu}_{T}(\zeta)$ , (8)

where $\hat{\nu}_{T}$ is a nondimensional function of $\zeta.Then$ , we have

$\hat{\nu}_{T}\frac{df}{d\zeta}=-\dot{\delta}[f\int_{0}^{\zeta}fd\zeta-\int_{0}^{\zeta}f^{2}d\zeta]+(\frac{v}{U}*)^{2}$ (9)

The boundary condition for $f$ :

$\hat{\nu}_{T^{\frac{df}{d\zeta}}}arrow 0$ as $\zetaarrow\infty$

gives
$( \frac{v}{U^{2}}*)^{2}=\dot{\delta}\lim_{\zetaarrow\infty}[f\int_{0}^{\zeta}fd\zeta-\int_{0}^{\zeta}f^{2}d\zeta,]$ (10)

But, further analysis based on (9) would be difficult. The mean velocity profile
in the intermittency and $\log$ layers is roughly expressed by

$\overline{u}=-\frac{U-u_{0}}{\log\epsilon}\log\zeta+U$ . (11)

where $u_{0}=\overline{u}(y=\epsilon\delta(x))$ . We discuss the turbulence development in the intermit-
tency layer and log-layer. For brevity, we adopt a discretized model (Fig.3), i.e. the
intermittency and $\log$ layers are divided into many cells, which are separated by

$\xi=\xi_{0}=1,$ $\xi_{1}=2,$ $\cdots,$
$\xi_{l}=2^{l},$ $\cdots$ ,

(12)
$\eta=\eta_{0}=2^{-M},$ $\eta_{1}=2^{-M+1},$ $\cdots,$ $\eta_{m}=2^{-M+m},$ $\cdots$ .

The intermittency and $\log$ layers are bounded by $\xi\leq 1,2^{-M}\leq\eta/\xi(=\zeta)\leq 1$ ,
where $\zeta=1$ corresponds to the edge of the boundary layer and $\zeta=2^{-M}$ is the
approximate lacation of the buffer layer (between the viscous and $\log$ layer). The
mean flow stream lines would be almost parallel to the wall, i.e. $\eta=$ const. and
the mean flow is approximated by many equal vortex sheets, which are located at
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$\eta=\eta_{m}$ for $m=0,1,$ $\cdots$ . The vortex sheets at $\eta=\eta_{m}$ for $m=0$ , , $M$ start at
$\xi=1$ , but those at $\eta=\eta_{m}$ for $m=M+1$ , $\cdot$ . . start at $\xi=\xi_{M+1},$ $\cdots.According$ to
(11), discretized mean flow velocity (Fig.4) is given as

$\vec{u}=u^{M}=U$ , $\zeta>\zeta^{M}=1$ ,

$\overline{u}=u^{n}=U+(-M+n)$Au, $\zeta^{n}<\zeta<\zeta^{n+1}$ ,
(13)

$n=1,2,$ $\cdots,$ $M-1$ ,
$\overline{u}=u^{0}=U-M$Au, $\zeta=\zeta^{0}$

$\triangle\overline{u}=\frac{U-u_{0}}{M}$ , $\zeta^{n}=2^{-M+n}$ , $\zeta^{M}=1$ , $\zeta^{0}=2^{-M}=\epsilon$ (14)

The vortex sheet could be modelled further to be a train of many vortex filaments
(a vortex street) of the interval $d$ with the same circulation $\Gamma$ :

$\Gamma=2\triangle\overline{u}d$ (15)

Each vortex composing the vortex streets is directed to the negative z-axis (Fig.3).
The individual eddies, which are produced in the transion region, have the advec-

tion velocity and the self-propulsive, translational velocity, parallel and perpendic-
ular to the wall, respectively. The similarity arugument implies that the individual
eddies would travel roughly along $\zeta=$ const. Thus, we would have trains of in-
dividual eddies along $\zeta=consts$ . Let us consider a train of individual eddies on
( $=$ ( $=2^{-M+n}$ for $n=1,2$ . $\cdots,$ $M-1$ , which passes through $(\xi)\eta$) $=(\xi_{l}, \eta_{n+l})$ ,
for $1=0,1,$ $\cdots$ (Fig.5). The train of individual eddies goes diagonally through
each similarity cell of $C^{n}=\{C_{l^{n}}\}_{l=0,1},\cdots$ , whose dialonal corners are on $(\xi_{l}, \eta_{n+l})$ and
$(\xi_{l+1)}\eta_{n+l+1})$ for $l=0,1,$ $\cdots$ . This is called a series of similarity cells (Fig.6).

The advection velocity of individual eddies travelling on $\zeta_{n}$ would be preserved.
Thus, the translational velocity should be also preserved, in order that these eddies
do not leave $\zeta_{n}$ . The geomtrical similarity gives that the size of eddies is propor-
tional to $\xi.The$ most simple model for the trains of eddies satisfying those similarity
requirements, is the one, in which the unification of two similar eddies and then the
merging of two similar unified eddies or vice versa would happen for every travelling
from $(\xi_{l,\eta_{n+\mathfrak{l}}})$ to $(\xi_{l+1)}\eta_{n+1+1})$ (Fig.5). The unification of two similar eddies would
give a one twice in size and with the same ciculatioin as before. After the merging
of two similar eddies, the size would remain as before and the circulation would be
twice.Then, we would have an eddy twice both in size and circulation from four
similar eddies, after the unification and merging. The above consideration gives

$\Gamma_{1}^{n}=2^{1}\Gamma^{n})$ $a_{l}^{n}=2^{l}a^{\iota}$ , $b_{l}^{n}=2^{l}b^{n}$ ,
(16)

$a^{n}=a_{0}^{n}$ , $\Gamma^{n}=\Gamma_{0}^{n}$ , $b^{n}=b_{0}^{n}$ ,

$V_{l}^{n}=V^{n}$ , $E_{l}^{n}=2^{3l}E^{n}$ , $P_{l}^{n}=2^{31}P^{n},$ $N_{l}^{n}=2^{-2l}N^{n}$ , (17)
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from (1). Here, $a_{l}^{n}$ is the value of $a$ at $(\xi_{1}, \eta_{n+1})$ and so on and $N_{l^{n}}$ is the number
of individual eddies passing that point per unit time. In our model, there are the
vortex sheets or trains of vortex filaments at $\eta=\eta_{m}$ for $m=0,1,$ $\cdots$ , which are
parallel to the wall, but the trains of eddies on $\zeta=\zeta_{n}$ are radial from the origion of
similarity and should pass through the vortex street.

Here, we consider the time rates of the x-component of momentum and energy
in the physical area $D_{l}^{n}$ , the size of which is $(2^{t}x_{0})\cross(2^{-M+n+l}\delta_{s})$ , corresponding
to $C_{l}^{n}$ :

$\dot{P}_{x}\equiv\frac{\partial}{\partial t}\int\int_{D_{t}^{n}}\rho ud^{2}x=-\int_{\partial D_{t^{n}}}\rho uv_{n}$ ds $+ \int_{\partial D_{l^{n}}}p_{nx}$ds, (18)

$\dot{E}\equiv\frac{\partial}{\partial t}\int\int_{D_{l^{\hslash}}}\frac{1}{2}\rho v^{2}d^{2}x$

$=- \frac{1}{2}\int_{\partial D_{1}^{\hslash}}\rho v^{2}v_{n}ds-\int\int_{D_{l^{n}}}\{dissipationfunction\}d^{2}x$ . (19)

for the case of no body force, no heat source and flow. $p_{n\alpha}$ is the normal stress
component on $\partial D_{l^{n}}$ , the boundary of $D_{l}^{n}$ and $n$ the outward normal on $\partial D_{l^{n}}$

Our assumption of trains of individual eddies only on $\zeta^{n}$ , for $n=1,$ $\cdots,$ $M-1$
ascertains that the individual eddies except on $\zeta^{n}$ do not pass through each similarity
cell belonging $C^{n}$ .

Here, (18) could berecognized both the turbulence and the mean flow equations.
We consider

$\dot{P}_{x}=-\int_{\partial D_{l}^{n}}\rho\tau\iota v_{\iota}ds$ , (20)

the turbulence equation, i.e. the increase oi x-momentum is due to the inflow of
momentum through the boundary $\partial D_{l}^{n}$ , which corresponds to that of the individual
eddies. The individual eddy has the y-momentum, the third of (16), entering $C_{l^{n}}$

from $C_{l-1}^{n}$ , and also passing through a vortex street at $\eta=\eta_{m}$ . Just after enter-
ing $C_{\iota^{n}}$ , the individuaJ eddy is slower than the surrounding fluid in the x-direction
sense. It would be accelerated and have the same velocity with the surroundings
in some time, after full mixing. This momentum increase of individual eddy may
be $P_{l}^{n}\triangle\overline{u}/V^{n}$ . Thus, we have the decrease of momentum as the reaction of the
momentum increase of individual eddies:

$\dot{P}_{x}=-\int_{\partial D_{l}^{n}}\rho uv_{n}ds=-42^{l}\pi^{2}\rho\frac{(a^{n})^{2}N^{n}\triangle\overline{u}}{A_{1}^{n}}$ (21)
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where $A_{1}=\log 8a/b-1/4$ . The momentum increase should be ballanced by the
righthand side of (18) as the mean flow, in wbich the eddy viscosity relation would
be used.

$\int_{\partial D_{1^{\hslash}}}p_{nx}ds=-\frac{1}{2}2^{Al-?1}\frac{x_{0}}{\delta_{s}}\rho\nu_{T}\triangle\overline{u}$, (22)

where $\nu_{T}$ is the eddy viscosity, which is function of place, but takes an averrage
value in $D_{t}^{n}$ here. From (21) and (22), we have

$\nu_{T}=8\pi^{2}\frac{\delta_{s}(a^{n})^{3}N^{n}}{x_{0}A_{1}^{n}}\xi_{l}\eta^{n}\sim 8\pi^{2}\frac{\delta_{s}}{x_{0}}(\frac{a^{3}N}{A_{1}})(\eta)\xi\eta$ (23)

The similar consideration for energy equation (19) gives

$\nu_{T}=\frac{1\delta_{s}}{(\triangle\overline{u})^{2}x_{0}}A_{2}^{n}(\Gamma^{n})^{2}a^{n}N^{n}\xi_{l}\eta^{n}\sim\frac{1\delta_{s}}{(\triangle\overline{u})^{2}x_{0}}(A_{2}\Gamma^{2}aN)(\eta)\xi\eta$ (24)

where $A_{2}=\log(8a/b)-7/4$ . In (23) and (24), the last terms are in the expressions
as continuous variables, translated from those of the discretized model.

We considered the vortex model for the turbulent boundary layer along a flat
plate. In this model, the turbulence in the boudary layer is recognized as an en-
semble of the individual eddies, which correspond to the turbulence and the vortex
streets, which are modelling of the mean flow. Similarity consideration and the equa-
tions of momentum and energy give the expressions for the eddy viscosity, which
is related to the size, the circulation and production rate of the individual eddies.
Problems to determine the characteristics of individual eddies to refine the eddy
viscosity analysis and to obtaine solutions of the mean flow equations are left in
future.
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Fig.1. Turbulent Boundary Layer along a Flat Plate

Transition Region

Fig.2. Appearance of Individual Eddies .
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Mean Flow
Velocty.Profile

Fig.3. Modelling of Mean Flow by Many Vortex Streets

Fig.4. Discritized Mean Flow Velocity
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Fig.5. ?kains of Individual Eddies and Connection and Merging of Individual Eddies
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$Fi\cdot g_{:}6$ . Normalized Coordinates and Series of Similarity Cells


