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Analysis of Variance of Partially Balanced Fractional

9M1*M2 pactorial Designs of Resolution IV

LEX 68 %M FF ( Masahide Kuwada )

Abstract
In this paper, attention is focused on the analysis
of variance of partially balanced fractional 2m!'*®2 fac-
torial designs of resolution IV by using the algebraic
structure. They can be obtained by partially balanced

arrays with some conditions.

1. Introduction
A partially balanced array (PB-array), which is a special
case of an asymmetrical balanced array of type 2 as introduced by
Nishii [14], has been studied by several researchers (e.g., [4]).
Necessary and sufficient conditions for the existence of a PB-
array were obtained by Kuwada and Kuriki [10]. A PB-array yields

Mi*M2  pactorial (20! *22_pRFF)

a partially balanced fractional 2
design under some conditions (see [5,6]). However a 20!*M2_pppp
design does not always mean a PB-array.

It is generally difficult to obtain the designs of resolu-
tion 2¢ since there is a little information about the £-factor
interactions. For earlier works on such designs, see for exam-
ple, Kuwada and/or Matsuura [3,11], Margolin [12,13], Shirakura
[17-20], Srivastava and/or Anderson [1,22], and Webb [23]. Espe-

cially, by using the triangular multidimensional partially bal-
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anced (TMDPB) association scheme and its algebra, Shirakura [17]
showed that a balanced array with index p,=0 turns out to be a
balanced fractional 2™ factorial design of resolution 2¢ under
some conditions. Such a design permits to estimate all factorial
effects up to the (f£-1)-factor interactions and some 1linear
combinations of the £-factor ones.

The analysis of variance (ANOVA) 1is a statistical technique
for handling the data or observations derived from an experiment
(cf. [9,15,16]). The ANOVA of 2M1*M2 _pppp designs of resolution
V which are derived from PB-arrays has been studied by Kuwada
[81]. In this paper, we present the ANOVA and the hypothesis
testing of 2M'*M2_ppFF designs of resolution IV, which are PB-
arrays. The designs considered here pérmit estimation of the
general mean, all main effects and (A) all (2’)+(22) two-factor
interactions and some linear combinations of the mim, ones, (B)
all (31) ones and some linear combinations of the (22) ones and
of the mim, ones, or (C) some linear combinations of the (gk)

ones (k=1,2) and of the miym, ones (see [3,11]).

2. Preliminaries

Consider a factorial experiment with m;+m; factors at two
levels (0 and 1, say) of each, where mg22. Further consider the
situation in which three-factor and higher order interactions are
assumed to be negligible., The vector of unknown factorial ef-
fects to be estimated is then given by (0%50;010:001:020;0%2:071)
(=@, say), where 050=({6(0;0)}), ©10=({6(u;0)}), 6%1=({6(0;V)}),
020=({6(u1u2;0)}), 0%2=({6(0;v1v2)}) and ©7:=({6(u;v)}). Here

l<u<m;, 1l=<v<m,, 1<u;<u<m; and 1=<v;<vy<m;, and A’ denotes the



transpose of a matrix A. Note that the total number of factorial

m‘;mz) (=v(mm,), say).

effects to be estimated is 1+(my+m,)+(
Let [T‘?;T(®)](=T, say) be a fraction with N assemblies (or
treatment combinations), where T‘*’’'s are (0,1)-matrices of size
Nxmg. Then the ordinary linear model is given by

yr = E10 + er, (2.1)
where yr and Er are the vector of N observations and the design
matrix of size Nxv(mim,), respectively, and er is an error vector
distributed as N(Onx,02Ix). Here 0, and I, denote the pxl vector
with all zero and the identity matrix of order p, respectively.
The normal equation for estimating © is given by MT@=E}yT, where
Mt=E}E". If the information matrix Mr is nonsingular, the BLUE
of © and its variance-covariance matrix are given by @=ME‘E}yT
and Var[81=0?Mi', respectively.

Suppose a relation of association is defined among the sets

{(ug++-u. ;vy+++v_ )}, where lsu;<:-+<u_ =m; and 1=sv <-:+.<V_ =<m,,
ai a» ai aa

in such a way that (ul--'ual;vl'-'vaz) and (ul---ubl;vl---vbz)

are the (aiaz2)th associates if

l{ul’...,ual} N {u{,---,ugl}l min(al,bl) - Qi

and

l{vli"’svaz} n {Vi)"'sv‘t')z}l min(a2,b2) - U2,

where |S| and min(a,b) denote the cardinality of a set S and the
minimum value of integers a and b, respectively. The scheme thus

defined is called the extended TMDPB (ETMDPB) association scheme
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(see [5]), which 1is regarded as a generalization of the TMDPB

A(a1a2 1b1b2)

association scheme (e.g., [24,25]). Let Qs

and
(ajaz,

Q1ds bib2) be the local association matrices of size n(a;a,)X
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n(bibs) and the ordered association matrices of order v(mym,) of
the ETMDPB association scheme, respectively (see [5]), where

n(a1a2)=(m1)(m2). Furthel‘ let A#(alaz’blb2)=A#(a1,b1)®A#(a2,b2),
a;’ ‘az BiB2 B1 2

where A¥*{2'®)’'s are the matrices which are linearly linked with
the local association matrices AS*'®) of the TMDPB association
scheme (e.g., [25]), and ® denotes the Kronecker product. A

relationship between A{®*'?’’s and A*{®'?)’s is given by

AL® P = (AP DYy = Foz{sPA*{* P for Os<asb=m
8
and
A¥ (B D) o fp¥(bLa) o E z%% pyALE D) for O<a<b=m,
where
&
Zgx' ") = I (1) P (2P ) Az (™ 5P P ) (™5 2aP) (B2 I/ (P 3" P)
for a=<b,
208, by = Pezfa P /{(D) () (b%22a)} for asb
and
¢9 = (l;) - (plfl)
(e.g., [7,21,25]). The matrices A#é?éiz'ble) have the following
properties:
a#{8182,01D2) _ 19 /45 a,a,)xn(b1by) 116 (2.2)

n(ajaz)xn(biby)’
#(ajaz,aias)

8782 B1ba " In(asan) (2.3)
#(ajaz,cic2),#(cica,b1ba) _ #(aja2,biby)
A BiB2 A 7172 B 6ﬁ1r1652T2 Bi1B2 (2.4)
and
#(aiaz,biby), _ -
rank(A ) - ¢le¢ﬁ2 (~¢51B2’ SaY) (2-5)

B1B2
(see [5]), where Gpxq and Jpq denote the pxqg matrix with all
unity and the Kronecker delta, respectively.

Let T be a PB-array of strength t;+t, and size N having m,+

m, constraints, two levels, and index set {u(iii,) | Osixs<ty=mx},
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where
J118% if mk=2»3’
tk = { (26)
4 if myg=4.
This array is written as PBA(N,m;+m,,2,t;+t2;{u(iii2)}) for brev-
ity. The information matrix Mr associated with T, which is a PB-

array with (2.8), can be expressed as
(aiaz2,bibz)

Mr = a%az b§b2 a§az Tla;-by1+2ay, lasz-byl+2a2 a1 az

_ aja,biby#(ajaz,bibs)

- a§az b§bz B?Bz Kﬂxﬁz D BiB2 ’ (2.7)
where D#éféiz’ble)’s are the matrices of order v(m;m,) which are
given by some linear combinations of Dé?&jz’ble)’s,

t ta 2 Jx .
= _1\PxJx tk-Jx .
Ti1.32 i§=0 1§=0 [kgl {P§=0 (-1) (pk)(ik'Jk+pk)}]#(1112)
and
aijaz,biby _ 2 (ak,bk)
Kﬂ1ﬁ2 - d%ﬁz [kgl {Zﬂkau }]Tlal'b1|+2a1.|a2-b2|+202
(see [5]).

3. 2M"M2_pBFF designs of resolution IV
Throughout this paper, we consider a design, which is a PBA

(N,mi+mz,2,ti+t2;{u(1112)}) with (2.8). Let Kﬁlﬂz=ux§12:'b‘b2u

for B18.=00,10,01,20 (if m,=24),02 (if m,=24),11. Then a necessary
and sufficient condition for the information matrix Mt to be non-

singular, i.e., T 1s of resolution V, 'is that every Kﬁxﬂa is

positive definite (see [5]). Note that a PBA(N,m:;+m2,2,t +t;;
{g(i112)}) ylelds a 2™'"™2_pBFF design of resolution V provided
Mt is nonsingular. However the converse is not always true.

In this paper, we consider three cases as follows:

(A) det(Kg g )#0 for £182=00,10,01,20 (1f mi=4),02 (if mo=4),
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and det(K11)=0,

(B) det(Kﬂlﬁz)¢O for B8:B2:=00,10,01,20 (if m;=4), and det(Ko2)

=det(K;;)=0 for m;=4
and

(C) det(K51ﬁ2)¢O for B1B2=00,10,01, and det(Kzo)=det(Koz)

=det(K;11)=0 for my=24
(see [3,11]), where det(A) denotes the determinant of a matrix A.
Let ¥x=(00030103001:020:002;(HY1011) ), ¥s=(0%0;010;001;0%0; (HS>
x002) ;(H?;0,1)" ) for my24 and ¥e=(0%0;010;001;(H$0020) ;(HS:

x002) ;(H$10:1)’ ) for mkx=4, where

H?l = heoAﬂé(l’l.ll)_{,h?oAﬁl((l’l,11)+hélA§é}.1.ll),
H?l = hBééA”éél'1‘”+hB}éA“1‘6"“)+hBHA"o(i1'“),
HE, = hP§3A*{8%- 02 +nga*(r o),

HE, = hORAR§3" 10 4nCHBA (31 1 anChiARg1 ),
ng = th%Aﬁég2,02)+hC8¥A#6(1)2,02)’

Ho = hCREA*§3° 200 +n18a% (3020,

A s pdi1dz, caaz,
and hﬁlﬁz S, h B1 B2 s and h 8182 s are real constants. Then we
have the following (see [3,11]):
Proposition 3.1. Let T be a design which satisfies Condition (A)
((B) or (C)). Then ¥, (¥s or ¥¢) is an estimable function of O,
and the BLUE of ¥a (¥p or ¥c) is given by @A=XAE}yT (@B=XBE%yT or

$C=XCE%yr). where Xapo (X or Xc¢) is a matrixr of order v(m;m,)

which satisfies XaMr=Za (XsMr=Zp or XcMr=Z¢), ZA=diag‘(IuA;H’1‘1)
(Zp=diag(I ;HB2:H?:) or Zc=diag(I, ;HFo;HG2;HT1)) and va=l+m;+m,
+(gl)+(gz) (VB=1+m1+m2+(21) or ve=l+mj+m,).

Note that a design satisfying Condition (A) ((B) or (C)) 1is

of course of resolution IV.
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4. Algebraic structure

It is empirically known that the main effects are more im-
portant than the two-factor interactions. Thus we are interested
in testing the hypotheses such that there exist some linear com-
binations of the two—faétor interactions or not; If they do not
exist, we wish to test the hypotheses such that there exist an-
other linear combinations of them (or some linear combinations of
the main effects) or not, and so on.

Using the properties of A#éabiz'alaZ)’s as in (2.3), the

linear model (2.1) can be rewritten as

#(a;az,azas)

yr = 5§ﬁ2 aXa, Faia, BiB:2 aja, & €T

where Ealaz's are Nxn(a;a,) submatrices of Et corresponding to

i.e., Er=[E¢o;E10;E01;E20;E02:;E11]. By (2.2), (2.4) and

a]az’
(2.5), (i) every element of the vector A#(a‘az’ala“@ala2 re-
presents the average of © for a;a»,=00,10,01,20,02,11, (ii)

ajaz

#(8182»8182)6

the elements of A B1 B2 for f182=10,01,20 (if m;=4),02

182
(if m.=4),11 represent the contrasts between these effects and

any two contrasts are orthogonal, and (iii) there exist ¢51ﬁ2

. . #(ajaz,asaz)
t f t f i ,
independent parametric functions o @aiaz n A B1B2 a8,

respectively (e.g., [17]).
aiaz,bib, #(ajaz,bibz)
Let Fﬁ B2 Ea;azA B1Bs Eb b, Then by (2.4) and
(2.7), we get the following (see [8]):

Lemma 4. 1.

p2182,C1C2 dids,b;bs _ 0102.d1d2Falaz.b1b2

Bi1B2 T172 BxT1 5272 ﬁiﬂz BiB2

Let Kﬁlﬁz(alaZ) be the matrices which are composed of the
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initial,--+-, the ai;asth rows and the initial,---, the aja.th

C102,d1d2
columns of Kﬁxﬁz' Further let Kﬁlﬁz(alaz) Hn (aiaq) |l

if K (aiap) 1is nonsingular. In addition, let K (aja*) !
BiB2 B1B2
_n.e1€2,f1T2 X X
lin (aga2®)|l, if K (ajas™) is nonsingular, where
3152 B1B2
Kﬂ1ﬁz(a1a2*) is the matrix which is obtained by deleting the last

BiB2,B1B2 Xy _
row and the last column of Kﬁaﬂz(a1a2)’ and nﬁ152 (B1B27)=0

for B1B2=00,10,01,20 (if m;24),02 (if m,=4),11.

Let
alaz a1a2
pd1a2 cicz,d; 1d, cicz,did>
Poip. = E&1Fr HBiFe Mpip, (MadTp g,
a;a: aias

X X X X eje,,fif2 xype1e2,f1T2

e§1ﬂz §1f§132 ”ﬁ1ﬁ2 (aia, )Fﬁlﬁz ,
aiaq aijaq

where %Tééﬁz and gt;élﬁz are the summations over all the values

of wiw, and s;s; such that (I) if B;B2=00 and (1) a;a:=00, then
wi;w2=00 and s;s, vanishes, (2) a;a,=10, then w;w;=00,10 and s;s:
=00, (3) a;a,=01, then w;w2=00,10,01 and s;s,=00,10, (4) a;a,=20,
then w;w,=00,10,01,20 and s;s5,=00,10,01, (5) aja,=02, then wiw:=
00,10,01,20,02 and s:s,=00,10,01,20, and (6) aja:=11, then w;w,=
00,10,01,20,02,11 and s:s.,=00,10,01,20,02, (II) if B1B2=10 and
(1) a;a,=10, then w;w,;=10 and s;s, vanishes, (2) a;a,=20 (if m;=
3), then wiw.=10,20 and s;s»=10, and (3) ai;a;=11, then w;w;=10,20
(if m;=3),11 and s:;8,=10,20 (if m;=3), (III) if B1B8:=01 and (1)
aia,=01, then w;w,=01 and s;s; vanishes, (2) aia,=02 (if m,=3),
then wiw,=01,02 and s;s.,=01, and (3) a;a.=11, then w,;w,=01,02 (if
m;=3),11 and s;152=01,02 (if m2=23), (IV) if B,:B82=20 (m;=4) and
a;a,;=20, then ww;=20 and s;s, vanishes, (V) if B:B:=02 (my=4)
and aj;a,=02, then w;w,=02 and s;s, vanishes, and (VII) if Bi8:2=

aiaz=11, then w;w,=11 and s;s, vanishes, respectively. Then the



following can be proved easily (see [8]):

Lemma 4.2. (i) The P%i%i’s are symmetric, mutually orthogonal

and idempotent matrices.

(ii) rank(p2!22)

Bi1B2 - ¢ﬂ152'

First we consider a 2m1+m2—PBFF design which is a PB-array
with Condition (A). If Nz2v(m;m;), then there may exist a design
of resolution V. However if N=y(m;m:), there is no d.f. due to
error. Thus we consider the case in which {3(m;+m;)+m}+m}}/2

3182

_ A A_ _
(=v*(mym,), say)<N=y(mimjz). Let Pe=In ﬁ ﬁ a?az BB’ where the

summation BZ% is extended over all the values of B;f2 such that

B182=00,10,01,20 (if m;=24),02 (if m,24). Then it follows from

Lemma 4.2 that (PA)2=p3, AP%‘%: lel‘gz =Onxy and rank(P2)=N

-v4(mimz), where Opxq denotes the pxq matrix with all zero. Let

ajdz _ .
%5152 %R(a182*;ﬁ152)L(R(a1a2’ﬂlﬁz))’
where
. - #(ﬁ1ﬁ2,ﬁ ﬂz) ..... #(ajaz,ajaz)
Riasazififa) [EB1ﬁ2 B1B2 ‘Eaya,? BiB2 ]
for B.18.=00,10,01,
ON 1f m1=2:8!
R(20;20) = {
’ [E20A*§3°°297]  if m,=24,
ON if m2=2’3’
R(02;02) = {
[Eq2A%§32-02)] if mp,=4

and R(aja,*;B:1B82)’'s are the matrices which are obtained by delet-

#(ajaz,ajasz)

ing EaiazA BB from R(aiaz2;B:182), and R(B1B2%:B1B2)=0x.

Here %AL(B) is the orthocomplement subspace of %A(A) relative to
®(B) for the case A(A)c®(B), where R(A) denotes the linear sub-

space spanned by the column vectors of a matrix A. Then Lemma

91
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4.2 and the properties of P4 yield the following:

Theorem 4.1. Let T be a 2ml+m2-PBFF_design which is derived from

a PB-array with Condition (A). Then we have

Roo ® R10 © Ro1 © %é if m;,me=2,3,
%N %oo ® Rio © %01 oD %20 (&3] %3 if m;=4,m;=2,3,
Roo & Rio ® Ro1 ® Ro2 © Re if m;=2,3,m24,

Roo ® Rio ©® Ro1 © R20 © %oz © At if my,mz=4,
where ®Y is an N-dimensional vector space, ® denotes the direct

sum, %§=RE#, which is the orthocomplement subspace of #(Er) rela-

tive to &Y, and

Roo = Ry © R4 © R35 © 238 © RY5 © Abs,
4 1% © At} if my=2,
o "{mgwfsezﬂs if mi=3,
431 © 241 if mp=2,
Ho ={%8ie%3§e%é% if my=3

and

%3152 = R(R(B1B2;B1B2)) for B1B2=20 (if my;=4),02 (if my=4).

Next consider a 2m!"™2_pBFF design being a PB-array with
Condition (B), and {3(m;+2m;)+m}}/2 (=vB®(mim,), say)<N=v®(mm,),

>4. B_71._ yvB axaz, B
where mj=4 Let Pe=1In B§B2a§a2PBIﬁZ where B§52 is the summation

over all the values of B;B2 such that £:8.=00,10,01,20 (if m;=4).

Then (PB)2=pB, pBp2:82_p&182pB_g = and rank(PB)=N-vB(mm,).

BiB2 “BiB2

Theorem 4.2. For a 2™'"™2_PBFF design T, which is a PB-array
with Condition (B), we have

N - { Roo ® R10 ® Ro1 © A8 if m=2,3,
"\ %0 © %10 ® Fo1 © A0 © A if my=4,

where %3152,3 for B1B2=00,10,01,20 (if mi=4) are given in Theorem



4.1, and %2=%EL
T

Finally consider a 2™'*™2_pBFF design which is derived from
a PB-array with Condition (C), where 3(mi+m;) (=v®(m;m,), say)<Ns

paid ,
12 where ,X¢ 1is the

z
5 ﬁ aTas' Bif2’ B1B
summation over all the values of Bi:82 such that B1ﬂz=00,10,01.

vB(mim,) and myx=4. Let PS=Iy-

Then (PS)?2=pS, PE 2122 Pa132P2=oNxN and rank(PS)=N-v€(m;m,).

Theorem 4.3. Let T be a 2®'"™2_PBFF design which is a PB-array
with Condition (C). Then
AN = Roo ® Rio ® %01 © RS,

where %5152,5 (B1B2=00,10,01) are the same as in Theorem 4.1, and

Cc_
%e—%E#

5. ANOVA and hypothesis testing
We first consider the ANOVA and the hypothesis testing of

oMi*M2_pppp designs of resolution IV satisfying Condition (A).
Let 82122 YT Pﬂ B 2yr and Se=yrP2yr. Then by Theorem 4.1, we have

the following:

Theorem 5.1. Let T be a 2™'*™2_PBFF design which is a PB-array

with Condition (A) and v*(m;m,)<Nsv(m;m,). Then we have
a1a2

858, aZa, Spifs

yryr = + Se.

Theorem 5.2. For a design T of Theorem 5.1, an unbiased esti-

mator of o is given by
g% = SA/{N-v*(mim,)}.

The noncentrality parameters, say, A3'%2/62, of the quad-

BiB2

ratic forms yTPB 5 2yr/a? are defined by 8[yr]P212:8[y1]/02, where

93
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&ly] denotes the expected value of a random vector y. Let

coo(Pi1P2,9192;a1832)

a;a aa
‘x$o00 wi(xfoo _CiC2,d1d; pPiP2,Ci1C2 d1d2,q192
§ 5 noo (ataz)ro0 Koo
1C2 1d2
aias ajasz’ -
x%)o00 Si(x%)00 _€1€2,7:T, xy PiP2,e1es T:1f2,q:q2
- g ; Noo (a1a2")K%0 Koo
1€2 12

if (1) pPip2=q192=11 for a;a,=11,

- 4 (2) P1P2,9192=02,11 for a;a,=02,

(3) p1P2,91492=20,02,11 for a;a,=20,

(4) P1P2,9:192=01,20,02,11 for a;a.=01,

(5) P1P2,9192=10,01,20,02,11 for a;a;=10,
(6) pP1P2,9192=00,10,01,20,02,11 for a,a.=00,

‘0 otherwise,
aias 182
)

a
where @‘;)°° and g‘**’°° are extended over all the values of wiw:
1wW2 192 .

and s;s, such that if aia,=11, then w;w,=11 and s,;s, vanishes, if
a1a2=02, then w;w:=02,11 and s;s;=11, if a;a»=20, then w;w.=20,
02,11 and s;5,=02,11, if a;a,=01, then w;w,=01,20,02,11 and s;s,=
20,02,11, if a;a»=10, then w;w,=10,01,20,02,11 and s;s2=01,20,02,
11, and if aia,=00, then w;w.=00,10,01,20,02,11 and s;:;s:=10,01,
20,02,11, respectively. Let

ci10(P1P2,41Q23a1a2)
a;aj aja;
cica,d;d ,Ci1Ca dyda,

glexo §f3;1° n13 2 1 z(aiag)x?$p2 1 2K13 2,9142

ajas aijas

,fif ;e )
_ éfz:)1o ;:;:)10 ﬂ?éez i 2(a,a8,%)kR1P?2 1ezxféf2 a:19:2

= < if (1) pip2=q1q2=11 for ajaz=11,
(2) P1P2,49192=20 (m;=3),11  for a;a;=20,

(3) P1P2,9192=10,20 (m;=3),11 for aja.=10,

‘0 otherwise,

aias a;aj
where %:;;1° and g‘;*"° are the summations over all the values
192

of w;w, and s;s; such that w;w;=11 and s;s,; vanishes if a;a,=11,
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wiws=20 (if m;=23),11 and s;sz=11 if a;a,=20, and w;wz=10,20 (if
m(=3),11 and s;s2=20 (if m;=3),11 if a;a,=10, respectively. Let

Coi1(P1P2,91923a182)
aias ajaz

g(*)Ol 5(*)01 ngicz,d1d2(a1a2)KP1P2.C102

D 1 Kgidz,Q1Q2
1C2 1d2

aia aiaz .
o1 Fixk 01 _ereq, 1, xy DiP2,ej1e2 T:f2,q:q2
- g ; F no1 (a1a2™) K01 Kot
1€2 112

= < if (1) pip2=q1q2=11 for aja.=11,
(2) P1P2,9192=02 (m,=3),11 for a;a;=02,
(3) P1P2,9:192=01,02 (m223),11 for aia,=01,

\ 0 otherwise,

aiaz ajas
where @‘;’°‘ and :;:)°‘ are extended over all the values of w;w,
1W2

and s;s; such that wiywz=11 and s;s: Vanishes if ajaz=11, wiwy=02
(if m.=23),11 and s;s2=11 if a;a,=02, and w;w,=01,02 (if m.,=3),11

and s:1s8,=02 (if m,=3),11 if a;a;=01, respectively. Further let

k38'%° if pip2=qi1qz2=a:8,=20,
c20(P1P2,91923a1a2) = {
0 otherwise,
if det(K;0)#0 and m;=4, and
k30?2 if pip2=q9:1q2=a,a2=02,
Co2(P1P2,91Q2:a182) = { ,
0 otherwise,

if det(Ko2)#0 and mz;=4. Then the following yields:

Theorem 5.3. Let T be a design of Theorem 5.1, then the non-

centrality parameters of the quadratic forms y&P%izzyT/oz for

B1B2=00,10,01,20 (if my=4),02 (if mz=24) are

aiaz, 2 _ . . 2
lﬁlﬂz/a p?pz q?qz {Cﬂlﬁz(Plpz.Q1Q2.a1az)/G }

, #(p1P2,49192)
xeplpzA BiB2 8Q1Q2'

aias #(ajaz,aas)
t H b =
Le By B2 e the hypotheses such that A By B2 @a1a2

On(alaz) (if they exist). We are first interested in testing the
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hypotheses HB 8, against Kﬁ 8, (B182=00,10,01), H3{ against K

(if m;=4), and H}} against K3} (if m;24), where K%izz’s are the

#(aiaz,aa,)

hypotheses that A B1Bs alag¢0n(a1a2)'

Next, if Hi{} (or

Y is ‘accepted, we then consider the testing hypothesis H28 (if
m;=3) or Hid (if m;=2) against Hi§ (or H{} (if m.23) or HE! (if
m,=2) against H§!). If Hi} 1is accepted, then we consider H{3}
against Hgs. Third, if H}J (if m;23) (or H$?} (if m.=23)) is ac-
cepted, then consider HiJ against H?J (or HY}! against H}?), and
if H{} is accepted, consider H33 against H$3. If H}) is ac-
cepted, consider HJ) against H33, and lastly if H}§ is accepted,
then consider H{{ against HJ$. This method 1s the so-called
nested test procedure (e.g., [2]). Notice that Theorem 5.3

ajas
implies that .n gR1b2 4 accepted if and only if 12!22-0, where
bTb. 18, 8, BiBa

a1a2
blbz , bxbz,
b1b2 B B2 denotes the 1intersection of Hﬁ B2 such that the

aias
running indices b;b, have the same values as wiw; of @ ; Bi1B2 for

B182=00,10,01, and as Bi1B82 for Bi12=20 (if m.24),02 (if m,=24).
The test statistics for the nested method are given by
(1) for B:1B2=00,

11

00/%00 _
S&8/{N-vA(m;m,)} (=F*33, say), (5.1)

S8%/%00 o
{SE+S55Y/IN-v 2 (mimz) +fa0) (T 00> Say), (5.2)
S38/%00 tao
(SA+S13+8831/{N-vA(mms)+2800) (- F 00, say), (5.3)
S88/%00 ot

(SA+S1T+832+S20)/{N-v A (mmz)+3%o00} (=F%%0, say) (5.4)

and



S§8/%00 Al
(SE+S31+503+520+S08 ) /(N-v (mim;) +4fo0) (- F 00, say),(5.5)

(il) for ﬁ1B2=10,

Sté/é10 A
S3/{N-vA(mm;)} (=F o, say), (5.8)
Si8/%10
s/ INy  mma ) F.a7 ("F 18, say) (if m,23) (5.7a)
Si3/é10

(o SIS/ (mme)+f1ey (T 180 s8y) (If mi=2))  (5.7b)

and
Si8/%10 Alo
(SA+sTTsI0}/{N-vA (m1mz ) +2%1 0} (=F%1¢, say) (if m;=23)
(5.8)
(iii) for B1B2=01,
S41/%01
S2/{N-vA(mim,)} (=F*31, say), (5.9)
, S63/%01 ‘
s/ N A (mm ) g.y (CF8%, say) (if mz23) (5.10)
S8i/%01

(oF  {SESITI /N v (mma) +hos) (T o1 say) (If me=2))

and
S81/%01 o
(5535013837 /(N-v A (m,ma )+ 28,7 (Froi, say) (if m.23)
(5.11)
(iv) for B:B2=20 and m;=4,
S38/%20 20
SA/IN-v A (m,m,) ) ("F 20, say) (5.12)

and (v) for BiB2=02 and m.=4,
S83/%02
S&/{N-vA(mimz)}

(=FA33, say).

All of them have F distributions, and the nesting procedure is

continued until a significant test is obtained for each Bi8:.

Note that FAZIZ:’S are central or noncentral F distributions with
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¢Bxﬁz and {N-VA(m1m2)}+TA(alaz;ﬂ1ﬁ2)¢ﬁ152 d.f., and noncentrality

aia; bib.

8182 ,,2 depending on which bszﬂﬁlzz are true, where

te
parameters lﬁ1ﬂz

tA(a;a,;B182)’s are some integers as above.
Next consider the ANOVA and the hypothesis testing of

2m1+m2—PBFF designs of resolution IV which satisfy Condition (B).

Theorem 5.4. Let T be a 2"'"™2_PBFF design which is a PB-array
with Condition (B) and v®(mym,;)<NsvA(mim:). Then

, _ B aa: B

yryr = B§ﬁ2 a§az Sﬁ1ﬂ2 * Ses

where Sh=y+tP8yr.

‘Theorem 5.5. For a design T of Theorem 5.4, an unbiased esti-

mator of o? is
6% = SB/{N-v®(m;m,)}.

Theorem 5.6. Let T be a design of Theorem 5.4. Then the non-

centrality parameters of the quadratic forms y%PZi%Zyr/oz for

B1B2=00,10,01,20 (if mi=4) are given by
a;aq 2 _ . 2
1/31/32/0 p§p2 q§q2 {cﬁlﬁz(plp2vqlq2:ala2)/c }

, #(pP1P2,4919Q2)
X .
eplpzA ﬁ1ﬁz q1q:2

We now consider the hypotheses Hkiﬂz against Kéiﬁz for BB

=00,10,01, H3}$ against K}§ (if m;24). Next if Hi{} (or H}}) is
accepted, consider the testing hypothesis Hi§ (if m;=3) or Hi$
(if m;=2) against H}{§ (or H}? against H§i). If Hi{ is accepted,
then consider H{3 against Hg4. Third, if Hi§ (if m;=23) (or HE})
is accepted, then consider ﬁi% against H2?J (or HY! against H$?),
and if H$3 is accepted, consider H?{ against H33. If H3J is ac-
cepted, consider H}} against H3J, and lastly if HJ} is accepted,

then consider H§§ against H{}). Note that Theorem 5.6 means that



6132
50b, ;122 is accepted if and only if 121;2 =0. The test statis-

tics, say FBZIZE, for the nested method are given by replacing S4
and v®(m;m,;) of (5.1) through (5.12) with S® and v®(m;m,), re-

spectively. The FB;I%:,S have F distributions 'similar to

AalaZ'
F 3152
We finally consider the ANOVA and the hypothesis testing of

m

2 1+mz—PBFF designs satisfying Condition (C).

Theorem 5.7. Let T be a 2™ "™2_pPBFF design which is a PB-array

with Condition (C) and v®(mim;)<NsvB(mim,). Then we have:
a1a2

C
856, ata, Spips *
where SS=yrPSyr.

Yryr = s¢

Theorem 5.8. Let T be a design of Theorem 5.7, then an unbiased
estimator of o is given by

0% = S¢/{N-v¢(m;m,)}.

Theorem 5.9. For a design T of Theorem 5.7, the noncentrality

parameters of the quadratic forms y%P%i%in/az (B182=00,10,01)
are

a1a2 2 _ . 2
B 8, /o¢ = p§p2 q§q2 {cﬂlﬂz(plpz,q1Qz.a1az)/o }

, #(pipz,qlqz)
xeplpzA B1B2 GQxQz'

Consider the testing hypotheses Hﬁ B2 -against Kﬂ B2 for BiB:

=00,10,01. Next if His (or Hpl) is accepted, then consider the
testing hypothesis H?{ against H!} (or H}? against H$}). If H§}
is accepted, then consider H{}3 against H§i. Third if H?}J (or

$2) is accepted, consider H!{ against H}{ (or HJ! against HJ?),

and if H$3 is accepted, consider H3J) against HJ}3. 1If H3} is ac-
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cepted, consider H}} against H}J, and lastly if HJ§ is accepted,
consider H}) against HJ§. Note that Theorem 5.9 implies that

apaz b1b2

ajaz
b?b2H51Bz is accepted if and only if 2

Bi1B2
tics, say FCZiZZ, for the nested method are given by replacing

=0. The test statis-

SA and vA(m;m,) of (5.1) through (5.11) with SS and v¢(m;m.),

respectively. The Fczi;z’s have F distributions similar to
FAalaz. .
BiBa °
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