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Abstr act In this paper, firstly we discuss the capability problem of feedforward

neural networks from the aspect of approximation theory. Secondly we prove that any

finite time trajectory of a given n-dimensional dynamical system can be approximately

realized by the internal state of output units of continuous time recurrent neural

networks with $n$ output units, some hidden units, and an appropriate initial conditions.

The essential idea of the proof is to embed the n-dimensional dynamical system into a

higher dimensional one by the approximate realization theorem of continuous mappings

of three-layer neural networks. As a corollary, we also show that any continuous

curve can be approximated by outputs of a recurrent neural network.

\S \S 1. $\ln$ trod ucti on
Neural networks are divided into two types namely, feedforward networks and

recurrent networks from the architectural aspect. For the former networks without

feedback connection, ever since the back propagation learning algorithm was proposed

by Rumelhart-Hinton-Williams [19], a lot of application was made mainly to the static

information processings such as pattern recognition. On the theoretical capability of

this networks, Funahashi [9], Hornik-Stinchcombe-White[ll] and Cybenko [8] proved

mathematically that a given continuous mapping on a compact set can be realized by

three-layer feedforward neural networks with any precision. In this paper we discuss

the related problems from the aspect of approximation theory.

The nonlinear dynamical behavior of the latter networks is suitable for the spatio-

temporal information processings. The theoretical studies for the recurrent networks
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have been mainly concemed with the stability of convergence of the trajectory to the

equilibrium point ( $e.g$ . Hirsch[12]). Hopfield network with symmetrical weight of

connection has been applied to the content addressable memory and combimational

optimization.

The learning algorithms which employed the steepest descent method for the

modification of recurrent network weight have been proposed both by Williams-

Zipser[25] in case of discrete time system and by $Pineda[18]$ , Perlmutter[16][17] and

$S$ ato[20] etc. for continuous time $s$ ys tem. Sato-Murakami [21] propos ed both the

modified recurrent network in order to approximate the dynamical system and its

leaming algorithm by the use of approximate realization theorem by three-layer

networks. Further they applied the algorithm to approximation of nonlinear dynamical

systems. Since the network they concerned is far from the ordinary recurrent

networks, the theoretical capability for the recurrent network is still opened for

question. Seidl-Lorentz[22] proved the approximation theorem for the trajectory of

dis crete dynamical system by the use of approximate realization theorem by three-layer

networks. The main goal of this study is to elucidate the theoretical capability of the

continuous time recurrent netw orks. In this paper we will prove that the intemal state

of the output units of the continuous time recurrent network approximate the finite time

trajectory of the dynamical system with any precision. The proof are yielded by

approximate realization theorem by three-layer networks and the fundamental theorems

on dynamical systems.

\S 2. Wh at a re $n$ eu ral $n$ etwo rks

Neural networks we consider in this paper are not natural neural networks, and are

artificial neural networks which are characterized by non-linearity and pararell

prosessings for engineering systems. Neural networks are clas sified into tw $0$ types,

multilayer feedforward networks and recurrent networks in terms of architecture.

There are two distinctive type of leaming methods, one has supervisor node the other

does not. The Hebbian learning rule is one of the unsupervised learning method

whereas the back-propagation algorithm is the example of superv ised one.
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\S 3. Mu ltil ay er fee dfo rw ard ne $u$ ral $n$ etw orks

Multilayer feedforward neural networks which are called multilayer Perceptrons

consist of input , output, and some hidden layers, and have connections between layers

from input to output (See Figure 2). Each layer consists of information processing

unit, simply called unit which is a model of neuron. Input-output relationship of unit

is given by

$y=\phi(\Sigma w_{i}x_{i}-\theta)$ ,

where $\{x_{i}\}$ is inputs to the unit, $y$ is output, and $w_{i}$ are connection weight to the unit

(See Figure 1). The function $\phi$ is called output function of the unit, and $\theta$ is called

the threshold. Usually, a nonconstant increasing and bounded function are used for

output function $\phi$ , but in some case a linear function $\oint(x)=x$ is used for output layer.

In the following, as output function of units, non-constant increasing bounded

continuous functions are called sigmoid functions. In this case, a multilayer

feedforward network with analog n-inputs and m-outputs defines a continuous

mapping $f$ : $R^{n}arrow R^{m}$ . The mapping $f$ is called the input-output mapping of the

network.

\S 4. Capabilities of feedforward neural networks and approximation

theory

Feedforward networks which Heaviside function $H(x)(H(x)=0, x<0;H(x)=1,$ $x\geqq$

$0)$ is used as output functions of units is called Perceptron by Rosenblatt. McCulloch-

Pitts showed that multilayer Perceptron with $\{0,1\}$ inputs can realize any logical

function. The leaming algorithm of Perceptrons without hidden layer was given by

Rosenblatt. For multilayer feedforward network with differentiable output functions,

back-propagation algorithm is well known as a learning algorithm of the case with

hidden layers (Rumelhart-Hinton-Williams[19]).

For application to pattern recognition, feedforward networks without hidden layer

can classify only linear separable categories, but computer simulation show that

feedforward networks with hidden layers give good performance for several
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applications. The following result gives mathematical verification for these fact (For

proof, see Funahashi[9]).

The orem 1. (Fu $n$ ah as $hi$ )

Let $\sigma(x)$ be a sigmoid function( i.e. a non-constant, increasing and bounded

continuous function on R). Let $K$ be a $\infty mpact$ subset of $R^{n}$ , and $f(x_{1}, \ldots, x_{n})$ be a

continuous function on K. Then, for an arbitrary $\epsilon>0$ , there exist an integer $N$ ,

constants $c_{i},$ $\theta_{i}(i=1, \ldots,N)$ and $w_{ij}$ ( $i=1,$
$\ldots,$

$N;j=1,\ldots$ , n) such that

$\max_{x\in K}|f(x_{1},\cdots,x_{n})-\sum_{i=1}^{N}c_{i}ot\sum_{=1}^{n}w_{ij}x_{j}-\Theta_{i})|<\epsilon$

holds.

This theorem show that three-layer feedforward neural networks whose output layer

has linear units can approximate any continuous mapping $f$ : $R^{n}arrow R^{m}$ uniformly on an
arbitrary compact set.

The $orem1$ \dagger

Let $K$ be a compact subset of $R^{n}$ , and $f:Karrow R^{m}$ be a continuous mapping. Then,

for an arbitrary $\epsilon>0$ , there exist an integer $N$ , an $mXN$ matrix $A$, an N X $n$ matrix $B$ ,

and an $N$ dimensional vector $\theta$ such that

$\max_{x\in K}|F(x)-A\sigma(Bx+\Theta)|$ $<\epsilon$

holds, where $\sigma;R^{N}arrow R^{N}$ be a sigmoid mapping defined by

$\sigma$ $($ ($u_{1}t$ , ... $u_{N}$) $)=^{t}(\sigma(u_{1}),\ldots, \sigma(u_{N}))$ .
Similar $res$ ults have been obtained by Cybenko [8] and Hornik-Stinchcombe-

White[ll].

From theorem 1, it is shown that three-layer networks whose output units have

$s$ igmo id $0$ utput functio $n,$ $e.g$ .
$\sigma(x)=1/(1+\exp(- x))$

can approximate any continuous mapping $f$ : $R^{n}arrow(0,1)^{n}$ on an arbitrary compact set

with any precision. Further it is shown that more layer networks have the same

property.
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For the proof of Theorem 1, Fourier integrals, especially Irie-Miyake‘ $s$ integral

formula[15] and Paley-Wiener Theorem are used. Cybenko[8] showed that for output

function $\sigma(x)$ which is continuous, but not increasing and

$xarrow M_{\infty}\sigma(x)=1$ , $xarrow M_{-\infty}\sigma(x)=0$ ,

a similar result holds, by the use of Hahn-Banach Theorem and Riesz Theorem in

functional analysis (cf. Yosida[24]). Hornik-Stinchcombe-White[ll] showed that, for

increasing but generally discontinuous $\sigma(x)$ , similar result holds by the use of a

sigmoid function called cosine squashier which is defined by cosine function and

Stone-Weierstrass theorem.

In the study of capability of multilayer feedforward networks stated above,

feedforward networks are considered as approximator of continuous mappings, but in

engineering application, networks have capability of identifying input-output

relationship by learning of finite samples. This property is called the generalization of

leaming. Theoretical study of generalization have been begun by Baum-Haussler[2]

based on the $res$ ult of Vapnik-Chaevonenkis, but only Heavis ide output function case
are studied.

However, in the problem of function approximation, there have been remained many

mathematical problems. Theorem 1 for multi-layer feedforward networks is similar to

Weierstrass approximation theorem by polynomial functions, but is not similar in the

following points. In Weierstrass theorem, parameters are linear, but in Theorem 1,

weights $w_{ij}$ are nonlinear parameters. From this result, in $L^{2}$-approximation by

polynomials of finite degree, the best approximation exist, but in the approximation by

using three-layer networks with finite hidden units the bes $t$ approximation property

does not hold generally. Recently, we showed that multiplier f(x, y) $=xy$ can be

approximated with any precise on compact subset by three layer networks with four

hidden unit whose output function is $C^{2}$(cf. Toda-Funahas hi-Usui [23]). This show

that when the sigmoid function $\sigma(x)=1/(1+\exp(- x))$ is used and $K$ contains internal

points, function f(x, y) $=xy$ has not best approximation in the set of input-output

functions of networks with four hidden unit and liner output function, and arbitrary

near functions. However it is conjectured that except particular functions, any
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function have best $L^{2}$ -approximation in three-layer networks with finite hidden units.

And it is conjectured that four-layer networks are better than three-layer networks

generally in the number of hidden units. Funahashi[9] conjectured this and Chester[5]

showed a example. For solving these problem, capability of feedforward networks

must be further studied from the view point of approximation theory.

\S 5. Approximate realization of identity mappings

Recently, it is studied that feedforward networks have capability of a sort of

multivariate analysis by learning. One of the study is realizing identity mapping by

feedforward network on the input data, and was begun from the study by Cottrell et

al. [6] study of coding image by three-layer networks with few hidden units. The

another is relation between pattem recognition by feedforward networks and

dis criminant analysis.

Theoretical study of the former problem was firstly done by Boulard-Kamp [3] in the

case of three-layer networks with linear hidden units (See also Baldi-Hornik [1]).

Theorem (Boulard-Kamp)

Let $K=\{x_{i} ; i=1,\ldots,N\}$ be a finite set of $R^{n}$ , and $f$ be the input-output mapping of

three-layer network with $n$ inputs, $n$ outputs and $k(<n)$ hidden units. Then the

minimum of

$\frac{1}{N}\sum_{i=1}^{N}|x_{i}- f(x_{i})|^{2}$ ,

where $|$ $|$ is the Euclidian norm of $R^{n}$ , is equal to the mean-squared error of

approximation of $\{x_{i}\}$ by K-L(Karhunen-Loeve) trans formation $w$ ith $k$ terms (i.e.

approximation by $k$ principal components).

This theorem treats the case of three-layer networks with linear units, so the input-

output mapping is composite of affine transforms. Therefore, the essential problem is

to study the case of three-layer networks whose hidden units have sigmoid output

functions. Funahas hi [10] proved the following:
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Theorem 2. (Funahashi)

Let $f$ be the input-output mappings of three-layer networks with $n$ inputs, $n$ output

and $k(<n)$ hidden units such that only hidden units have nonlinear output function.

Then the mean squared error between $f$ and identity mapping id:

$\frac{1}{N}\sum_{i=1}^{N}|x_{i}- f(x_{i})|^{2}$ ,

is greater than or equal to the error by K-L transformation with $k$ terms. In the case of
$C^{1}$ -sigmoid function, the mean squared error can be approached to the k-terms

approximation error.
Therefore, on the approximate realization of identity mappings by three-layer

networks, the performance is lower than the K-L transfer-mation method, due to the

non-linearity of hidden units. Our theorem shows that when the leaming of network

proceeds ideally, k-hidden units capture the k-principal component of data. This

corresponds to experimental study by Cottrell-Munro[7]. To obtain better

performance than K-L transformation method, we must use five-layer networks with

few middle layer units. This is suggested by Theorem 1 (approximate realization

theorem of continuous mappings by three-layer networks).

\S 6. Co ntin uo us tim $e$ recurre nt $n$ eu ral $n$ etwo rks

There are two types of recurrent neural netw orks; discrete time neural netw orks and

continuous time one. In this paper, we study continuous time recurrent neural

networks.

The dynamics of a continuous time recurrent neural network with $m$ units which are

concemed in this paper is described by the following system of ordinary differential

equations.

$\frac{du_{i}(t)}{dt}=-\frac{u_{i}(t)}{\tau_{i}}+\sum_{j=1}^{m}w_{ij}o(u_{j}(t))+I_{i}(t)$ , $(i=1, \cdots, m)$ (1)

where $u_{i}(t)$ is the internal state of unit $i$ , $\tau i$ is the time constant of unit $i,$
$w_{ij}$ are

connection weights, $I_{i}(t)$ are the inputs to the system, and $\sigma(u_{i}(t))$ is the output of unit

$i$ . $\sigma$ is called the output function and $C^{1}$ -sigmoid functions (non-constant, bounded,

monotone increasing functions) are used. As $\sigma$ ,
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$\sigma(x)=1/(1+\exp(- x))$

is us ually us ed.

In the following, we deal with recurrent neural networks with the same time constant

and without inputs ( $i.e$ . $I_{i}(t)=0$ , see Figure 3). We set $u(t)=t_{(u_{1}(t),\ldots,u_{m}(t))}$ and

$W=(w_{ij})$ be an $m$ Xm weights maffix. Let $\sigma$ : $R^{m}arrow R^{m}$ be denoted by a sigmoid

mapping
$\sigma(^{t}(u_{1}, \ldots, u_{m}))=^{t}(\sigma(u_{1}),\ldots, \sigma(u_{m}))$ ,

then the vector expres sion of (1) is

$u’(t)=-\frac{1}{\tau}u(t)+W\triangleleft u(t))$ . (2)

\S 7. Approximation realization theorems of dynamical system

trajectories

Let points of n-dimensional Euclidian space $R^{n}$ be denoted by $x=^{t}(x_{1}, \ldots, x_{n})$ and the

Euclidian norm of $x$ defined by $|x|$ .
The dynamical system on an open set of $R^{n}$ means a system defied by autonomous

ordinary differential equations which has solution in the open set. Let the output

function $\sigma$ of recurrent neural netw orks be a $C^{1}$ -sigmoid function. As recurrent neural

networks studied here have no inputs, some of units are called output units and the

other are called hidden units.

In this paper, we prove the following theorems.

Theorem 3.

Let $W$ be an open subset of $R^{n},$ $F$ : $Warrow R^{n}$ be a $C^{1}$ -mapping, and $K$ be a compact

subset of W. $ThereisasubsetV\subset Ksuchthatanysolutionx(t)withinitialvaluex(O)$

in V of an ordinary differential equation
$x’=F(x)$ $x(O)\in V$ (3)

is defined on $I=[0,T](T<\infty)$ and $x(t)$ is included in $K$ for any $t\in I$ . Then, for an

arbitrary $\epsilon>0$ , there exist an integer $N$ and a recurrent neural network with $n$ output

units and $N$ hidden units such that for solution $x(t)$ satisfying (3) and an appropriate

initial state of the network,
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$\max_{\iota\in I}|x(t)-u(t)|<\epsilon$ ,

where $u(t)=^{t}(u_{1}(t),\ldots u_{n}(t))$ is the internal state of output units of the network.

As a corollary of the above theorem, we obtain the following:

Theorem 3’

Let $W\subset R^{n}$ and $F$ : $Warrow R^{n}$ be same above, and suppose that $x’=F(x)$ defines a

dynamical system on W. Let $K$ be a compact subset of $W$ and we consider trajectories

of the system on interval $I=[0,T]$ . Then, for an arbitrary $\epsilon>0$ , there exist an integer

$N$ and a recurrent neural network with $n$ output units and $N$ hidden units such that for

any trajectory $\{ x(t);0\leqq t\leqq T\}$ of the system with initial value $x(O)\in K$ and an

appropriate initial state of the network,

$\max_{\iota\in I}$ I $x(t)-u(t)|<\epsilon$ ,

where $u(t)=^{t}(u_{1}(t),\ldots u_{n}(t))$ is the internal state of output units of the network.

We obtain the following:

$C$ orolla ry I.

Let $\sigma$ be a strictly increas ing $C^{1}$ -sigmoid function such that $\sigma(R)=(0,1)$ . Let $W$

be an open subset of $(0,1)^{n}$ , $F$ : $Warrow(O, 1)^{n}$ be a $C^{1}$ -mapping, and suppose that

$x’=F(x)$ defines a dynamical system on W. Let $K$ be a compact $s$ ubset of $W$ and we

consider trajectories of the system on interval $I=[0,T]$ . Then, for an arbitrary $\epsilon>0$ ,

there exist an integer $N$ and a recurrent neural network with $n$ output units and $N$

hidden units such that for any trajectory $\{x(t);0\leqq t\leqq T\}$ of the system with initial value

$x(O)\in K$ and an appropriate initial state of the network,

$\max_{\iota\epsilon 1}|x(t)-y(t)|<\epsilon$ ,

where $y(t)=^{t}(y_{1}(t),\ldots,y_{n}(t))$ is the output of the recurrent network with the sigmoid

output function $\sigma$ .
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As a corollary of Theorem 1, we also obtain the following:

Theorem 4.

Let be $f:I=[0,T]arrow R^{n}$ be a continuous curve, where $0<T<\infty$ . Then, for an arbitrary

$\epsilon>0$ , there exist an integer $N$ and a recurrent networks with $n$ outputs and $N$ hidden

$u$ nits $s$ uch that

$\max_{\iota\in I}|f(t)-u(t)|<\epsilon$ ,

where $u(t)=^{t}(u_{1}(t),\ldots u_{n}(t))$ is the internal state of output units of the network.

Samely as Corollary 1, the following corollary can be proved from Theorem 4.

$C$ orolla ry 2.

Let $\sigma$ be a strictly increasing $C^{1}$ -sigmoid function such that $\sigma(R)=(0,1)$ . Let be

$f:I=[0,T]arrow(0,1)^{n}*e$ a continuous curve, where $0<T<\infty$ . Then, for an arbitrary $\epsilon$

$>0$ , there exist an integer $N$ and a recurrent neural netw ork with $n$ output units and $N$

hidden units such that

$\max_{\mathfrak{l}\in I}$ I $f(t)-y(t)|<\epsilon$ ,

where $y(t)=^{t}(y_{1}(t),\ldots,y_{n}(t))$ is the output of the recurrent network with the sigmoid

output function $\sigma$ .

\S 8. Prelim in ar $ies$

In the following, we state the basic facts of theory of dynamical systems which are

used in the proofs of our theorems (See $e.g$ . Hirsch-Smale [14]).

Let $W$ be a open subset of $R^{n}$ . A mapping $F$ : $Warrow R^{n}$ is said to be Lipschitz on $W$ if

there exists a cons tant $L$ such that

$|F(x)-F(y)|\leq I\rfloor x-y|$

for all $x,$ $y\in$ W. We call $L$ a Lipschitz constant for F. We call $F$ locally Lipschitz if

each point of $W$ has a neighborhood $W_{0}$ in $w$ such that the restriction $F|W_{0}$ is
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Lipschitz.

$L$ em ma 1.

Let the mapping $F$ : $Warrow R^{n}$ be $C^{1}$ . Then $F$ is locally Lipschitz. Moreover, if $A\subset W$

is compact, then the restriction $F|$ A is Lipschitz.

(For proof, see Hirsch-Smale [14], chap.8, \S 3.Lemma and \S 6. Lemma)

Lemma 2.

Let $F:Warrow R^{n}$ be a $C^{1}$ -mapping and $x_{0}\in W$ . Then there is some $a>0$ and a unique

solution $x:(- a,a)arrow W$ of the differential equation
$x’=F(x)$

satisfying the initial condition $x(O)=x_{0}$ .
(For proof, see Hirsch-Smale [14], chap 8, \S 2. Theorem 1)

Lemma 3.

Let $W$ be an open subset of $R^{n}$ and $F$ : $Warrow R^{n}$ be a $C^{1}$ -mapping. Let $x(t)$ be a

solution on a maximal open interval $\cdot$ $J=(\alpha , \beta)\subset R$ with $\beta<\infty$ Then given any

compact subset $K\subset W$ , there is some $\iota\in(\alpha, \beta)$ with $x(t)\not\in K$ .
(For proof, see Hirsch-S male [14], chap. 8, \S 5. Theorem)

Lemma 4.

Let $F:R^{n}arrow R^{n}$ be a bounded $C^{l}$ -mapping. Then, the differential equation

$x’=-\frac{1}{\tau}x+F(x)$

where $\tau>0$ , has an unique solution on $[0, \infty$ ).

(proof)

From as sumption, we can take a constant $M>0$ such that

1 $F_{i}(x)|\leq M$ $(\forall i=1,\cdots,n)$

for all $x\in R^{n}$ . By comparing the solution $x(t)$ with solutions of the following

equations
$y’=\frac{1}{\tau}y+M$
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$y’=\frac{1}{\tau}y$ -M

we can easily show that

$| x_{i}(t)|\leq\max\{|x_{i}(0)| , \tau M\}=C_{i}$ .

We set $C=\max\{C_{i}\}$ , then the solution $x(t)$ satisfy

1 $x(t)|\leq\Gamma nC$

on the existing interval of the solution. From Lemma 3, $x(t)$ exists on the interval

$[0, \infty)$ . q.e.d.

This Lemma 4 guarantees that the equation (1) of recurrent neural network has an

unique solution on $[0, \infty$), because the output function $\sigma$ is bounded and $C^{1}$ .

Lemma 5.

Let $F,$
$\overline{F}$ : $Warrow R^{n}$ be Lipschitz continuous mappings and $L$ be a Lipschitz constant

of F. $S$ uppose that for all $x\in W$ ,

$|F(x)-\overline{F}(x)|<\epsilon$ .
If $x(t),$ $y(t)$ are solutions of

$x’=F(x)$

$y’=\overline{F}(y)$

respectively on some interval $J$ such that $x(t_{0})=y(t_{0})$ , then

$|x(t)-y(t)|\leq\dashv_{L}^{\epsilon}\exp I\rfloor t-\iota d-1)$

for all $t\in J$ . (For proof, see Hirsch-Smale[14], chap. 15, \S 1. Theorem 3)

\S 9. Proo $f$ of the the $0$ re ms
Under the above preliminaries, we will prove theorems stated in section 7.

$P$ ro of $of$ Th eo re $m3$ .
$SteD1$ .

For given $\epsilon>0$ , we choose $\eta$ so that $0< \eta<\min$ $\{ \epsilon , \lambda\}$ , where $\lambda$ is the

dis tance between $K$ and the boundary a $W$ of W. We set

$K_{\eta}=\{x\in R^{n} ; \exists z\in K, |x- z|\leq\eta\}$
,
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then $K_{\eta}$ is a compact subset of $W$, because $K$ is compact. Therefore, by Lemma 1, $F$

is Lipschitz on $K_{\eta}$ . We also choose $\epsilon_{1}>0$ so that

$\epsilon_{1}<\frac{\eta L_{F}}{2(\exp L_{F}T- 1)}$ .
where $L_{F}$ is a Lips chitz constant of $F|K_{\eta}$ .

By the approximate realization theorem of continuous mappings by three-layer neural

networks, there exist an integer $N$ , an $nXN$ matrix $A$, an NX $n$ matrix $B$ and an N-

dimensional vector $\theta$ such that

$\max_{x\in K_{\eta}}|F(x)-Ao(Bx+\Theta)|<\frac{\epsilon_{1}}{2}$ (4)

We define a $C^{1}$ -mapping $\overline{F}:R^{n}arrow R^{n}$

$\overline{F}(x)=-\frac{1}{\tau}x+Ao(Bx+6)$ , (5)

where $\tau$ is choose large enough so that the following conditions are satisfied:

(a) $\forall x\in K_{\eta};XH_{\tau}<\frac{\epsilon_{1}}{2}$

(b) $| \Theta\tau\dashv<\frac{\eta I_{4}}{2(\exp L_{G}T- 1)}$ and $H_{\tau}^{1}<\frac{k}{2}$

where $L_{G}$ is a constant and $L_{G}/2$ is a Lipschitz constant for the mapping $W\sigma$ : $R^{n+N}arrow$

$R^{n+N}$ which will be defined later ($W$ is defined by A and B).

Then, by (4) and (5)

$\max_{x\in K_{\eta}}|F(x)-\overline{F}(x)|<\epsilon_{1}$ (6)

holds. We set $x(t)and_{X}^{\sim}(t)$ the solutions of the following equations

$x’=F(x)$ ,

$\sim x’=\overline{F}(\overline{x})$ ,

with initial condition $x(0)=\overline{x}(0)=x_{0}\in V$ , respectively. Then, by Lemma 5, for any
$\iota\in I$ ,

$| x(t)-\overline{x}(t)|\leq\frac{\epsilon_{1}}{L_{F}}(\exp L_{F}t- 1)\leq\frac{\epsilon_{1}}{L_{F}}\langle\exp L_{F}T- 1)$ .

Therefore, by the condition of $\epsilon$

$\max_{t\in I}|x(t)-\overline{x}(t)|<\frac{\eta}{2}$ (7)

holds.
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$\underline{Ste_{-}D2.}$

We consider the following dynamical system defined by $\overline{F}$ stated in step 1.
$x’=-\frac{1}{\tau}x+Ao(Bx+9)$ . (8)

We set $z=Bx+\theta$ , then

$z’=Bx’=-\frac{1}{\tau}z+C\sigma(z)+\frac{1}{\tau}\Theta$ ,

where $C=BA$ and $C$ is NX $N$ matrix. We set

xz $=t_{(x_{1},\ldots,x_{n},z_{1},\ldots,z_{N})}$

and we define a mapping $G$ : $R^{n+N}arrow R^{n+N}$ by

G(xz) $=- \frac{1}{\tau}xz+W\sigma(xz)+\frac{1}{\tau}6_{1}$ (9)

where $W$ is $(n+N)\cross(n+N)$ matrix and $\theta_{1}$ is $(n+N)$ matrix defined by

$W=(\begin{array}{ll}0 A0 C\end{array})$

$e_{1}=(\begin{array}{l}0\Theta\end{array})$

$res$ pectively. Then, by Lemma 2, first $n$ components of the solution of the equation of
(xz)’ $=$ G(xz) , $z(O)=$ Bx(O) $+\Theta$

is equivalent to the solution of the system (8).

Now, we define a mapping $\overline{G}$ : $R^{n+N}arrow R^{n+N}$ by the use of $\tau$ and $W$ stated above, as

the following:

G(xz) $=- \frac{1}{\tau}$xz+Wo(xz). (10)

Then the dynamical system defined by $\overline{G}$ ,

(xz)’ $=- \frac{1}{\tau}$xz+Wo(xz) (11)

is realized by a recurrent neural network, if we set $x(t)$ the internal state of $n$ output

unit and $z(t)$ the intemal state of $N$ hidden unites. As $G$ and $\overline{G}$ are $C^{1}$ -mappings, and
$\sigma$

\dagger (x) is bounded function, so the mapping $xzarrow W\sigma$ (xz) is Lipschitz on $R^{n+N}$ and

let $L_{G}/2$ be its Lipschitz constant. Then $L_{G}$ is a Lipschitz constant of $G$ as $L_{G}/2$ is

Lipschitz constant of-xzl $\tau$ by condition(b)of $\tau$ .
Using (9), (10) and the condition (b) of $\tau$ , we see that for any xz $\in R^{n+N}$

$| G(xz)-\overline{G}(xz)|=6H_{\tau}<\frac{\eta I_{\triangleleft}}{2(\exp kT- 1)}$

holds. Therefore we set xz(t), uh(t) the solutions of the following equations



32

$res$ pectiv ely:

(xz)‘ $=G(\overline{x}z)$ , $\{\begin{array}{l}\sim x(0)=x_{0}\in Vz(0)=Bx_{0}+\Theta\end{array}$

(uh)‘ $=\tilde{G}(uh),$ $\{\begin{array}{l}u(0)=x_{0}\in Vh(0)=Bx_{0}+\Theta\end{array}$

then, by Lemma 5 we see

$\max_{t\in I}|\overline{x}z(t)- uh(t)|\leq\frac{\eta}{2}$ (12)

holds, where $\sim x(t)$ is same $asx(t)\sim$ on (7).

$Ste_{-}D3$ .
Using (7) and (12) stated above, for a given $\epsilon>0$ , we can construct a recurrent

neural networks with intemal state uh(t) by $\tau$ and $W$ stated above. For $x(t)$

satisfying (3), if we set the initial state of the network by

$u(O)=x(O)$ and

$h(0)=Bx(0)+\theta$ ,

we see
$\max_{t\in I}|x(t)- u(t)|\leq\frac{\eta}{2}+\frac{\eta}{2}=\eta<\epsilon$

$q.e.d$ .

$Rem$ ar $k$

The recurrent netw ork constructed in the above proof has connections between hidden

units and have connections from hidden units to outputs units, but have no connection

from output units to hidden units. It is obvious from the method of the proof that we

can construct a recurrent network with very small connections from output units to

hidden units which satis fies the condition of the Theorem.

$P$ ro of $of$ Th eo re $m3’$

Because the flow $\oint_{t}(x)$ of the dynamical system is a continuous mapping $RXWarrow W$

$(( t, x)arrow\oint_{t}(x))$ (see Hirsch-Smale[14]), the set of trajectories on time interval I
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whose initial points are in the compact set $K$ :
$\overline{K}=\{x(t)\in R^{n} ; x(O)\in K , 0\leq t\leq T\}$

is a compact subset of W. By corresponding $K$ and $\overline{K}$ to V and $K$ in Theorem 3

$res$ pectively, $0$ ur Theorem is $p$ roved. $q.e.d$ .

$P$ ro of $of$ Co roll ary 1.

By continuity of $\sigma^{-1}$ : $(0,1)arrow R,$ $W_{1}=\sigma^{-1}(W)$ is open $s$ ubset of $R^{n}$ , and $K_{1}=\sigma-\iota_{(K)}$

is compact subset of $W_{1}$ . For $x\in(O, 1)^{n}$ , let $u\in R^{n}$ be denoted by

$\iota_{(u_{1},\ldots,u_{n})}=\sigma-((x_{1}, \ldots, x_{n}))$ .
Then, by the sigmoid mapping $\sigma$ , the given dynamical system $x’=F(x)$ on $W$ is

transformed to a dynamical system defined by

$\frac{du_{i}}{dt}=\frac{1}{\sigma’(u_{i})}F_{i}(\sigma(u_{1})_{;}\cdot\cdot,o(u_{n}))$ $(i=1_{;}\cdot\cdot,n)$

on $W_{1}\subset R^{n}$ From this fact, our Corollary can be easily proved by the use of

Theorem 3‘. $q.e.d$ .

$P$ ro of $of$ Th eo re $m4$ .

Using a mollifier, we can take $C^{\infty}$-curve $\sim f:(-\delta,T+\delta)arrow R^{n}$ for some $\delta>0$ such that

$\max_{\downarrow\in I}|f(t)-\sim f(t)|<\frac{\epsilon}{2}$ .

We set $g(t)=(f(t),t)\sim\in R^{n}\cross R=R^{n+1}$ for $t\in[0,T]$ , then $g$ is an injective mapping and

so there exists a one-dimensional compact $C^{\infty}$ -submanifold $M$ of $R^{n+1}$ such that

$g([0,T])\subset M$ .
Taking a tubular neighborhood V of $M$ in $R^{n+1}$ (see M. W. Hirsh [13] Theorem 5. 1),

we can eas ily construct of a system of ordinary differential equations $x’=F(x)$ defined

in V such that $F\in C^{\infty}$ on V and $g([0, T])$ is a part of a trajectory of the system with

$x(O)=g(O)$ . Using Theorem 3, there exists a recurrent networks with $n+$ ] output units

$s$ uch th at

$\max_{\iota\in I}|g(t)-$ Oi(t) $|< \frac{\epsilon}{2}$ ,

where $\overline{u}(t)=^{t}(u_{1}(t),\ldots u_{n+1}(t))$ is the internal state of output units. Considering the
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projection $\sim f(t)$ of $g(t)$ to $R^{n}$ by $\pi$ : $R^{n+1}arrow R^{n}(^{t}(x_{1}, \ldots x_{n+1})arrow t_{(x_{1},\ldots x_{n}))}$ we obtain

a recurrent network with $n$ output units whose internal states $u(t)=^{t}(u_{1}(t),\ldots u_{n}(t))$

satis fy

$\max_{\iota\in I}|\sim f(t)-u(t)|<\frac{\epsilon}{2}$ .

Therefore we obtain

$\max_{\iota\in I}|f(t)-u(t)|<\epsilon$ .

$q.e.d$ .

\S 10. $Sum$ ma ry

Firstly, we discussed the capability of multilayer feedforward networks from the

$v$ iewpoint of approx imatio $n$ theory and $d$ is cus sed related problem on functio $n$

approximation.

Secondary, We proved that the finite time trajectories of a given n-dimensional

dynamical system are approximated by the internal states of output units of a recurrent

neural networks with $n$ output units, $N$ hidden units and appropriate initial states. The

important point of the proof is the use of the approximate realization theorem of

continuous mappings by three-layer feedforward neural networks to embed the given

dynamical system into a higher dimensional dynamical system which defines a

recurrent neural network. We consider that one of the capability problems of

continuous time recurrent neural networks is solved in a form of existence theorem of

networks which approximates trajectories of a given dynamical system. Our theorem

are the first step to studying the capability problems of continuous time recurrent neural

networks unlimately.
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