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On Trinity of Parabolic Subgroups

Koicut TAKASE %40 % — CZIXER A X )

§0 Introduction

Let f(Z) be a Siegel modular form of degree n and weight £ with the Fourier expansion

f(Z2)= Z a(T) exp(2aV =1tr(1T'7)).
T>0
Maass [Ma)] considered a Dirichlet series

Dafl= Y i ((1)=(GL@NOD)
0<T(modGLn(Z))

and showed that it has a meromorphic continuation to the whole s-plane and has a
functional equation with respect to s — k — s. Let us consider the Dirichlet series of

Maass assoclated with a theta series

05(Z2)= Y exp(nV-1tr(*GSGZ))

GEMp n(Z)

where S € SL,,(Z) is symmetric positive definite even diagonals. Then 5(7) is a Siegel

modular form of degree n weight m/2, and

' 2”5
D(Sa 95) = E -
GEMm n(Z)/GLn(Z) |det(tGSG)|s
rankG=n

if m > n. The right hand side is called a Koecher’s zeta function associated with S. It

is a zeta function associated with a prehomogeneous vector space
(O(S) X GLn, p, Min,n(C))  (p(h, g)z = hag™").

On the other hand, the theta series 5 is the simplest case of theta lifting of automorphic

form arising from a reductive dual pair (Sp(n, R), O(S,R)). One purpose of this note is
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to generalize this relation between the prehomogeneous vector spaces and the reductive

dual pairs or theta lifting of automorphic forms (§4).

A Jacobi form is an automorphic form on a Jacobi group SL2(R) x Hg (c.f. [EZ]).

The Heisenberg group Hg is isomorphic to
1 = z : 1 0 1
N = 0 12 JO T ESP('LR) (J: JO ) JOZ (_1 O>)
0 0 1 -1
which is the unipotent radical of a parabolic subgroup

*

* % v
P = 0 * x| €Sp(J,R)
0 0 =

of Sp(J,R). On the other hand, SL4(R) is isomorphic to a subgroup

1
G, = g 1 € Sp(J,R) | g € SL2(R)
of the Levi part of P. The action of SLy(R) on Hg is compatible with the action of
G1 on N by conjugation (N is normal subgroup of P). The space of Jacobi forms
i1s described by the “holomorphic discrete series” of Jacobi group which is a tensor
product of a holomorphic discrete series of the 2-fold covering group of SL2(R) and a
Weil representation [Tal,Chap.3]. The other purpose of this note is to generalize these

relations among Jacobi forms, parabolic subgroups and Weil representations (§5).

Any way, reductive dual pairs, prehomogeneous vector spaces (or zeta functions
associated with them) and Jacobi groups (or Jacobi forms) arise naturally from parabolic
subgroups and they are connected by Weil representations. I’d like to call this scheme

a trinity of parabolic subgroups.

§1 and §2 are brief reviews of automorphic forms on locally compact groups and
theta lifting of automorphic forms associated with reductive dual apirs respectively. In

$3 we will show how parabolic subgroups produce all the reductive dual pairs (Theorem

3.1).
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81 Automorphic forms

Let G be a locally compact unimodular group, K a compact subgroup of G, I' a closed
unimodular subgroup of G' and A a closed subgroup of I' N Z(G) where Z(G) is the
center of G. Let x be a continuous unitary character of I'. Let (m, Hr) (resp. (6, Vs))

be an irreducible unitary representation of GG (resp. K) satisfying the conditions
1) the multiplicity of § in | is equal to one,
2) m(a) = x(a) for all a € A.

Let H(8) be the é-isotypic component of (7|x, Hr), that is, H.(6) = {v € H, l
m(es)u = u} where es = (dim 8)%; with xs(k) = tré(k). The spherical function ¥, 5 of
7 with K-type § is defined by ¥, s(z) = w(es) o m(z) o w(es) € Ende(H-()) (z € G).
The function ¢ s(z) = tr¥, s(z) (z € G) is called the spherical trace function of =
with K-type 6.

Let C.(G/A, x, 6)° be a C-vector space consisting of the C-valued continuous func-

tions ¢ on G such that
1) p(az) = x(a) to(z) .for all @ € A,
2) supp(yp) is compact modulo A4,
3) plkzk™) = p(2) for all k € K,
4) [x es(k)p(k~'a)dk = ¢(z).

C;C(G/A, x, 6)° is an involutive C-algebra with respect to the convolution product ¢ *
P(z) = fG/A go(:cy"l)@b(y)dy and the involution ¢*(z) = (z~1). Put

Brs(p) = (dim8)™! / o(2)x.5(x)d

G/lA
for ¢ € C.(G/A,x,8)°. Then 1;7(75 : C(GJA,x,8)° — C is a surjective involutive

C-algebra homomorphism.

Now we will define a space of automorphic forms og G (c.f. [Ta, Definition 5.1])

Definition 1.1. We denote by As(T\G, x, ) the complex vector space consisting of
the locally integrable functions f : G — Vs such that
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1) f(yz)=x(v"")f(=z) forall y € T,

2) fr\G |f($)|2d(33) < oo

3) f(zk) = 6(k=1)f(2) for all k € K,

1) Jo14 F@y ) e()d(y) = $r,s(2) f(2) for all g € C(G/A, x, 8)°,

endowed with an inner product (f,g) = fF\G(f(m),g(z))d(a}) with which As(T\G, p, 7)

1s a complex Hilbert space.

Let # (resp. &) be the contagredient representation of 7 (resp. §). We will de-
note by Az(x~!, %) the é-isotypic component of #-isotypic component of the induced

representation Ind&y~!. We have a C-linear isometry
As(D\G, x, m) @ Vi = A;(x™1, %)

defined by f ® o — (dim 8)'/2(f, ). Here V¢ is the dual space of Vs. Inparticular the
dimensin of A5(T'\G, x, 7) is equal to the multiplicity of 7 in the induced representation
Ind€y.

For the latter use, we will relax the conditions of Definotion 1.1 and define another

space of automorphic forms on G.

/

Definition 1.2. We denote by Ms(I'\G, x, 7) the complex vector space consisting of

the continuous functions f : G — Vj such that
1) f(yz) =x(y~1)f() for all y €T,
2) f(zk) =68(k"1)f(z) forallk € K,

1) fo4F @y ey)de(y) = ¥as(9)f(2) for all p € C.(G/A, x, 6)°.

It is easy to prove that As(T'\G, x, 7) is a subspace of M3(T'\G, x, 7).
If A= {1}, the involutive C-algebra C.(G/A,x, §)° is denote by C.(G, §)°.
Example 1.3. Put G = Sp(n,R), I' = Sp(n,Z) and K = {g € G | gt g =1} which is

identified with the unitary group U(n). Put also A = {1}. Let 7 be the holomorphic
discrete series of Sp(n,R) of minimal K-type § = det* € K = ﬁ(n) If £ > 2n, that
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is, 7 is integrable, then As(I'\G, 11, 7) is the space of the Siegel cﬁsp forms of degree n
and weight &k (c.f. [Tal,Chap.2]).

Example 1.4. Put V = M,, 5,(R). Let S, (R) be the real symmetric matrices of size
m. Define a R-bilinear form D : V x V — S,,(R) by D(z,y) = aJ ' y — yJ ' & with
J= (_‘i 1(; ) . Define a group law on H(V) = V x Sy (R) by (z,)-(y, u) = (z+y, t+
u—i—%D(m,’;)). Sp(n,R) acts on H(V) as an automorphism group by (z,?)-0 = (z0,t) and
we have a semi-direct product G = Sp(n, R) x (V') which is a locally compact unimodular
group. Put I' = Sp(n, Z) X (M,, 2n(Z) x S, (R)) which is a closed unimodular subgroup
of G. Let A = S,,(R) = Z(G) be the center of G. Let K be the standard maximal
compact subgroup of Sp(n,R) which is considered as a compact subgroup of G. Take
a positive integral symmetric matrix 0 < S € 5,,(Z) and define a unitary character ys
of I' by xs(7, z,1) = exp 2x/—1tr(St). Let 755 be the "holomorphic discrete series of
G defined in [Tal,§9] (n+m/2 < £ € Z). Put § = det’ € K = U(n). If £ > 2n + m,
that is 7% is integrable modula A, then As(T'\G, x5, 7%%) is the space of the cuspidal
Jacobi forms of weight £ and index S (c.f. [Tal,Chap.3]).

§2 Theta lifting of automorphic forms

Let V be a symplectic R-space with symplectic R-form D, and Sp(V') the symplectic
group of (V, D). The group Sp(V) acts on V from right. Let W and W' be Lagrangian
subspaces of V' such that V. =W & W'. Any o € Sp(V) is expressed by o = (Z 2)
with ¢ € Endg(W), b € Homg(W, W'), ¢ € Homg(W’', W) and d € Endg(W'). Fix
a non-trivial unitary character x(z) = exp2my/—1z of R. There exists a non-trivial

two-fold covering group p : %(V) — Sp(V), and we have a unitary representation
(wy, L2(W)) of SA’;J(V) called Weil representation.

Let £ C W be a Z-lattice. Put £' = {Y € W' | D(L,Y) C Z} which is a Z-lattice
m W'. Let T be an arithmetic subgroup of Sp(V') consisting of o = (3 fl) € Sp(V)

such that

1) (,CX,C/)O':[:X;C’)
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2) D(Xa,Xb) € 2Z for all X € L, and
3) D(Ye,Yd)€2Z forall Y € L.
Put I' = p~1(T') which is a discrete subgroup of Sp(V) such that vol(T\Sp(V)) < oo.

A theta series 1s defined by

0,(9) = > _(wxl9)e)(®) (g€ Sp(V))

el

for a Schwartz function ¢ € S(W) on W. There exists a unitary character p of f‘,
independent of ¢, such that

b,(79) = p(7)0,(g) forall yeT.

See [We] for the details.

Let (G1,G2) be a reductive dual pair in Sp(V) such that Gy is compact. Put
éj = p'l(Gj). Then the elements of él and 6?2 are mutually commutative and we
have a continuous group homomorphism (g, k) = gh from Gy x G5 to SE(V) Let A;

be the von Neumann algebra generated by wx(éj). The commutant of Ay is equal to

A ([Ho,Th.6.1]). It means that
1) (wy 01, L(W)) is multiplicity-free, and
2) forany o € él, there exists at most one 7 € G such that c®7 is a subrepresentation

of wy o1

Because (1 is compact, the restriction w, | = wy ot decomposes discretely. So put

51X52

wxlg g, = Pmen)
AEA

and

L*(W) = P H

AEA
with a unitary intertwining operator Uy : Hr, ® Hr; = H,.
Let K; be a compact subgroup of Gj;, and put ]%j =p 1(K;). Take a 7 € G, and
§e K, (resp. 7' € G, and & € f{g) such that the multiplicity of é in Wlﬁl (resp. &'
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in 71"]}?2) is equal to one. Assume that 7 ® 7' is a subrepresentation of leglx&'g‘
U: Hy ® Hyo — L*(W) be a unitary intertwining operator. Put I'; = I'n éj and
pi = Pl

Take a f € A;(py', 7) and a Schwartz function ¢ € S(W). Here 7 (resp. §) denotes

the contragredient representation of 7 (resp. §). Put

Fy (k) = /~ 5 @0 (0G) (e Go)

which has the following properties;
1) Fy,p(vh) = pa(7) Fy,p (k) for all 5 € Ty,
2) Fruywye = ¥r,s(#)Fy,p for all € Ce(Gh, 6)°,
3) Sz, Fro(hy)d(y)dy = Fy o (s (k) for all ¢ € Co(Co).

Then we have

Proposition 2.1.
1) IfFon 7é 0, then e U(HW((S) & qul),

2) If o =U(u®v) for u € Hy(6) and v € Hy/, then

_ [ s () Fr(h), if v € He(8)
. Frothyitu)dy = { 0’ o B

for all € C.(Gy, 8')°.

Now we will define a theta lifting of automorphic forms. Suppose that U(H,(8) ®
«(6')) € S(W). Take an ortho-normal C-base {uy,--- ,uq} of H(§). For any v €
HW'(‘SI)a put

d
0u(9) = Y u(u,eu)(9)v € He(8) (g € Sp(V))
J=1
which is independent of the choice of the orthonormal basis {uj, - ,ug} of H.(8).

Then we have the following theorem which descrive the theta lifting of automorphic

forms associated with the reductive dual pair (G, G3);
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Theorem 2.2. Take an automorphic form f € A@(fl\él,pl,ﬂ'). Define a function
Ff : éz — HWI((S’)* by
(B0 = [ (700, 0u(ah)dg (b€ G, ve Ho(s))
\G:
Then Fy € My(To\Gy, p3 ", %').
We have J
<Ff (h): U) = ZFfj,U(uj(Xw)(h)
Jj=1

where f;(g) = (f(g), u;) with an ortho-normal C-base {uy,--- ,uq} of Vs.

§3 Parabolic subgroups and reductive dual pairs
Let A be a simple R-algebra with a R-involution ¢, and put
G = {a € Autg(4) | aor=10a, a|lzu) =id}.

Then G is a semi-simple simple classical real Lie group of adjoint type. Let P be
a parabolic subgroup of GG such that its unipotent radical N is 2-step-nilpotent. Let
P = L X N be the Levi decomposition of P. Then the Lie algebra g = Lie(G) has a
canonical decomposition g = n~ & [ & n where [ = Lie(L) and n = Lie(N). The real
dual space of n is identified with n~ via a non-degenerate pairing (X,Y) = Byg(X,Y)
(X €n, Y € n7) with the Killing form By of g. Let

Ad: P — GLg(n) (resp. Ad": P — GLg(n7))

be the adjoint (resp. coadjoint) representation of P ({(X, Ad*(g)Y) = (Ad(¢~1)X,Y)).
Let 2 C n~ be a Ad*(N)-orbit. Then  is a symplectic manifold. In other word, the
tangent space Tp(Q2) = n/np of Q at F' € Q has a symplectic R-form Dp(X,Y) =
([X,Y], F). Here

np={Xen|(XY],F)=0forall Y € n}
is the Lie algebra of Np = {g € N l Ad*(g)F = F}. Put

Lo={geLl|Ad*(9)Q=Q}, Lrp={gel|Ad*(9)F=F}.
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Then Ly C Lg and there exist some examples such that Lg é Lq.

Take a F' € Z(n™) such that np = Z(n), and put Q@ = Ad*(N)F. Then we have
Lo = Lr, and Lg acts on Q fixing F' € Q. So Lg acts on Tr(Q) = n/np (the action is

given by Ad). The action induces a group homomorphism
Adp : La — Sp(Tr(Q)) (X Adr(g) = Ad(g™")X)

which is injective because of np = Z(n). Here we assume that Sp(7T#(f2)) acts on Tr(Q)
from right. Put

Gi={g9€La|Ad*(g9)X =X forall X € Z(n")}
Gy, = {h € Lqg [ [h, Gl] = 1}.
They are considered as subgroups of Sp(7F(2)) via Adr. Then we have
Theorem 3.1.
1) (G1,G4) is a reductive dual pair in Sp(Tr(Q?)) which is irreducible and type I.

2) All irreducible type I reductive dual pairs are obtained in this way.

Let us give a more explicit description. Put A = M, (D) with a division R-algebra D.
Fix a standard R-involution X* =¢ X on A. Here denotes the identity map for D = R,
the identity map or the complex conjugation for D = C, and the main involution for D =
the Hamilton quaternions. Then there exists a J € GLn‘(D) such that X* = JX*J~!
and J* = eJ (¢ = £1). The group G is isomorphic to GU(J,D)/Z (D) where
GU(J,D) = {g € GL.(D) | gJg" = v(9)J, v(g) € Z(D)}.

For the latter use, we will put U(J,D) = {g € GU(J,D) | v(9) = 1}. Choosing a

suitable R-basis of A, we can assume that

12’
J = Jo , Jo € GLy(D) st. J3 =€l
el,

-

and

:) € GU(J,D)/Z(D)}.

O O ¥
S X X
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Then

0
Z(n7) ={ 0 | S € M,(D), $* = —eS}.
S
0
Fora F = 0 € Z(n~), we have np = Z(n) if and only if S € GL,(D). For
' S

0
such a F = ( 0 > € Z(n~), we have
S

0 D 0
Te(Q) =n/Z(n) = { (0 0 —(DJO)*) l D e Mp,q(D)} ,

0 0 0
and
1, a*~t
Gy = € e €U(Jo,D) p, Go= 1, la€U(S,D) ;.
1, ' a

0 D 0 ‘

Identifying Tr(Q) with M, ,(BD) by [ 0 0 —(DJo)* | = D, the symplectic R-form
0 0 0

Dp(X,Y) is equal to
D(X,Y) = Te(X Jo)(SY)" + Te{(X Jo)(SY)*'}* (X,Y € M, (D))

up to a constant multiple, where Tr : M,(D) — Z(D) is the reduced trace. The

1,
group Gy (resp. () is identified with U(Jg, D) (resp. U(S,D)) by ( e ) =e
1,

a*—l

resp. 1 = a). Under these identification, we have G; — Sp(Tr(2)) by
q
a

g=[X+ Xg] and Gy — Sp(Tp(Q)) by h = [X — h*X].

Remark 3.2. The irreducible reductive dual pairs of type II are obtained in a similar
way. In this case, we should start from a semi-simple R-algebra A = A; @ A, with

isomorphic simple factors A;, and a R-involution 2 on A such that 1(A;) = As.
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§4 Zeta functions associated with prehomogeneous vector spaces

We will use the identification at the end of §3. That is, let V = M, (D) be a R-
vector space of the matrices of size p X ¢ with entries in a R-division algebra D. Take
a Jo € GLy(D) and S € GL,(D) such that Jo* = €Jy and S* = —&S respectively
(¢ = £1). Define a symplectic R-form D on V by

D(z,y) = Tr(2Jo)(Sy)* + Tr{(2Jo)(Sy)*}* (z,y € V).

The groups Gy = U(Jp, D) and G5 = U(S,D) are embedded in Sp(V') by
Gy = Sp(V) by g = [z — zg]
Gy — Sp(V) by h = [z — h*z].
Here Sp(V) acts on V from right. Then (G1, Gs) is a reductive dual pair in Sp(V).
We will assume that
1) G, is compact, that is, e =1 and Jp* = Jo > 0,
9) S is of hyperbolic type, that is, S = (_01 10 ) (p = 2r).

Let W and W' be Lagrangian subspaces of V defined by
T
W:{(()) eV |zeM, (D)}
W' = {(2) eV |yeM,, D)}

which are stable under the action of G1, and V = W @& W'. We will use the notations
and the convension of §2. The Weil representation (w,, L%(W)) of Sp(V) (x(z) =
exp 2w/ —1z) splits over

pt = {(g tab*1> € Sp(V) | deta>0}.

That is, there exists a continuous group homomorphism r : P+ — .%(V) such that

1) por=id (p: ,%(V) — Sp(V') the covering mapping)

2) ol (5 §)9)(e) = 03D, ) (o),
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) el (5 1 )))e) = (dete) (o)

Gy(W')={he G, | Wh=W'}
Ly={he€Gy|Wh=W' Wh=W}.
Let G, GF(W') and LT be the connected component of Gy, G2(W') and L, respec-

tively. They are subgroups of P¥.

A Z-lattice £ in W defines an arithmetic subgroup T' of Sp(V) as in §2. Put
I'j; =T'NG; and Ay =TI'N Ly. We have
I'={9€Gi|Lg=L}, Ay={h€Ly|Lh=L}
Put It =T, NG and AT = A, N LS.

Take a compact subgroup K; of G;. Let « (resp. 6) be an irreducible unitary
representation of Gy = p~1(G1) (resp. K = p~1(K1)) such that the multiplicity of §
in 71'}[1;1 is one. Take an automorphic form f € As(T1\G4, li;l,w) (T, = p~1(I'1)) and
put f, = (f(*),u) € ‘A5(1f“'1’ 7) (uw € V). f Gy =T - G, the theta lifting

Pras)= [ J@helah)dy (€ Gy= (G, 0 €SOV)
I'1\G1
has a Fourier expansion

Frop(r(h) =Y alfu, ¢ T, a)x(Te(Th))
- :

*—1
for h = ((1) l{) (a 0 2) € G§(W'). Here T runs over a Z-lattice in {T' € M, (D) |

T* =T}, and Tr : M, (D) — Z(D) is a reduced trace. Put

Ff ()= ) alfu,¢; T, a)x(Tr(Th))

N(T)#0

with a reduced norm N : M, (D) — Z(D).

Define a representation o of G; x Ly on V by a(g,h) = gh € Sp(V) C GLg(V).
Then the complexifications (G x Ly, o, W)¢ and (G X Ly, o, W')¢ are prehomogeneous

vector spaces which are mutually dual with respect to a non-degenerate pairing

W x W’'3 (z,y) — D(z,y) €R.



173

If ¢ > r, the relative invariants of (Gy x Lo, o, W)¢ are the integral power of P(X) =

N(zJoz™) (X = (g) € W). The character of P(X)is xp(g,h) = N(aa*)"! forg € G,

*—1 0
anth(ao a>€L2.

Zeta functions with automorphic forms associated with prehomogeneous vector
spaces are studied by F.Sato (c.f. his article in this volume and its references). In

our case, such a zeta function comes from a zeta integral

Z(fusprs) = Ixp(g,B)*fule) D e(to(g, h))d(g, h).

/(rfo;)\(erLD LeL,P(£)#0

Now we have

Theorem 4.1. Suppose G; =T -G} and ¢ > r. Then

= Z(furpr5+¢) (¢ =5(2(D):R)).

Let K9 be a maximal compact subgroup of G;. Then, in our case, G5/Ky =
VY @ v—1C C V¢ is a tube domain with an open convex cone C in a R-vector space
Y, and L'Z{'K?/IQ =+/—=1C C V¢. So the left hand side of Theorem 4.1 is in fact an
integral over A} \/=1C. Hence it gives a Dirichlet series of Maass type associated with
an automorphic form F; ., on (3. In this way, Theorem 4.1 gives a relation between
a Dirichlet series of Maass type and a zeta function associated with a prehomogeneous

vector space.
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§5 Jacobi forms

Let us start with general nonsense on representations of Jacobi groups. Let (V, D) be
a symplectic R-space, G a locally compact unimodular group and o : G — Sp(V) a
continuous group homomorphism. The symplectic group Sp(V) acts on V from right.
Let W and W' be Lagrangian subspaces of V such that V.= W @ W'. Define a R-
bilinear form B : V x V — R by B((z,y), (¢',v')) = D(z,y') (z,2' € W, y,y' € W’). A
group law on H(V) =V x R is defined by

(z,) - (y,u) = (2 +y,t + v+ B(x,y)),
and Sp(V) acts on H(V) as an automorphism group by
1 1
(,1) -0 = (z0,t + 5 B(2o, 20) = 5 B(z,2)) (o € Sp(V)).

With this action, we have a semi-direct product Gy = G x H(V) which we will call a

generalized Jacobi group. Let x be a non-trivial unitary character of R such that {a €
R| x(aZ) =1} =Z. Let L C W be a Z-lattice, and put £' = {y € W' | D(L,y) C Z}
which 1s a Z-lattice in W’. Let T’ be a closed unimodular subgroup of G satisfying the
conditions

1) (LoLYyy=LpL forallyeT

2) B(zv,2v) = B(z,2) (mod 2Z) forall y €T,z € L B L.
Put A= (L® L") x R which is a closed unimodular subgroup of H(V). Then the semi-
direct product 'y = I' X A 1s a closed unimodular subgroup of G;. Define a unitary

character x s (resp. xa) of I'y (resp. A) by x(7, z,t) = x(t) (resp. xa(z,t) = x(t)). Let
us denote by
(ﬂ'x, EX) = IIldICj]] XJ (resp. (ﬂ-X’ EX) — Indf(V)XA)

‘the induced representation. More explicitly, the representation space E,, consists of (the

equivalence classes of) the C-valued locally integrable functions ¢ on G such that
1) ¢(vz) = xs(7)¢(x) for all y € Ty,

2) frJ\G, lp(z)|?dd < oo,
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and (my(g)p)(z) = ¢(xg) for ¢ € G5 and ¢ € E,. The representation space EX is
defined similarly.

The Weil representation w, of %(V) associated with the character x is realized on
EX. Here Sp(V) is a non-trivial 2-fold covering group of Sp(V) with projection mapping
p. Define a fibre product .

G=0G X $p(V) S’;(V) ={(g,7) € G x Sp(V) | o(g) = p(7)}

which is a 2-fold covering group of G with projection mapping p(g,7) = g. The group
homomorphism ¢ : G — Sp(V) is lifted to & : G — Sp(V) defined by 5(G,7) = 7.
Being connected with o, the Weil representation w, defines a unitary representation of
G on EX which is also denoted by wy. Put T = p~}(T'). Then there exists a unitary
character € of T such- that (wy(7)e)(k) = e(7)p(hy) for v € I',oeEXand h e H(V).

We will denote by (7%, E¢) = Indgé the induced representation.

The group G acts on H(V) via p : G — G, and we have a semi-direct product
Gy =G« H(V). Define a projection mapping py : Gy — Gy (resp. ¢ : Gy — é)
by ps(g,h) = (p(g),h) (resp. q(g,h) = g). Put Iy, = p~1(T'y). Then the unitary
representation m, op; is equivalent to Indgj (xgopy) = (7%, Ey). We have an irreducible

unitary representation wy, y of Gy on EX defined by w, 7(g, h) = wy(g) o 7X(h). Then
Proposition 5.1. We have a unitary equivalence
(WEO?]‘)®wX,J = myopy via @Y= oKy
where ¢ M1 € Ey Is defined by
(e B¥)(g,h) = p(9)(wx(9)¥)(hp(9)™Y)  ((g,h) € G)
for ¢ € E° and ¢ € EX.

Now we will recall a result of Satake [Sa,Prop.2]. Let éJ(X) be the unitary equiv-
alence classes © € Gy such that 7|g = x (R= Z(H(V)) C Z(Gs)). Then
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Proposition 5.2. We have a bijection ¢ — (00 q) @ wy s from G to G(x).
These two propositions give

Theorem 5.3. Takeaw € GJ such that w|g = x. Then
1) there exists uniquely a o € G such that wopy = (00§ ®wy,,

2) the multiplicity of = in Ind?;XJ is equal to the multiplicity of ¢ in Ind?é.

Now let us suppose that (G, H) is a reductive dual pair in Sp(V) and o : G — Sp(V)
is the inclusion. Let K be a maximal compact subgroup of G. What is remarkable in
this case is that, taking the centralizer M of K in Sp(V), the pair (K, M) is a reductive
dual pair in Sp(V) [Ho]. If H is compact, then M is compact, G/K is a Hermitian
symmetric space and (K, M) is a reductive dual pair of complex unitary groups. In this
case, the irreducible decomposition of wy |~ (K = p~(K)) is given by [KV Theorem
7.2]. The result is that (.UX,JII’;; has the minimal f(’—type 6 with multiplicity one and

dimé = 1. Take a non-zero vector ¢ in the é-isotypic component of wy j|~. Then the

correspondence
(*) p— X6

gives a correspondence from the space of the automorphic forms on G (in other words,
the half-integral weight modular forms on G) to the space of the automorphic forms on

Gy (in other words, the Jacobi forms).

In the case of (G, H) = (Sp(n, R), O(m,R)), the correspondence (x*) gives the corre-
spondence given by [EZ] or [Ib]. Confer [Tal,Chap 3] for the representation theoretic

treatment of Jacobi forms.

The above arguments work also on adeles. In other words, the correspondence (x)

1s compatible with the Hecke operators.

The details will be treated in the forthcoming paper [Ta2].
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