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A characterization of log terminal normal graded rings

in terms of Pinkham-Demazure’s construction.

SRAR¥ B B E#*# (Masataka TOMARI)

This is the note for the former half part of Tomari- Watanabe’s talk at RIMS sym-
posium in March 1992. Our theme is “finite cyclic cover and rational singularity -
characteristic 0 and p ”. Our note is the part for characteristic 0. In the later half of
RIMS talk, K.-i. Wa.tanabe studied the characteristic positive analogy for log terminal
singularity and log canonical singularity by F-regular singularity and F-pure singularity

in some sense.

The purpose of this note is to give some criterion for the normal graded singularity
to be log terminal singularity which includes the Gorenstein rational singularity as the
case of index one. We also discuss the log canonical condition. Our main result (3.2)
is a natural continuation of the §4 of [14|, where we characterized the normal graded

isolated singularity in terms of Pinkham-Demazure’s construction. LetR = @ Rj be a
k>0

normal graded ring which is a finitely generated algebra over a field k. As a geometric

representation for such R , the following theorem due to M. Demazure is fundamental.

THEOREM ( DEMAZURE [1]). Let the situation be as above. Let T be a homo-
geneous element of degree one of the quotient field Q(R) of R. Then there exists
an ample Q—Cartier divisor D on X = Proj(R) which satisfies the relations R, =
H%X,0x(n.D)).T™ for n € Z. Further this D is uniquely determined by the choice of
T.

For 2-dimensional case, H. Pinkham characterize the rational singularity in terms
of (X, D) [9]. Later, Flenner and K.-i. Watanabe gave some criterion for the higher
dimensional case [18,3,19] ( cf.Theorem (3.2.1) of the present paper. ). In their the-
orems, the condition that Spec(R) — V(R4) has only rational singularity was a major
assumption. In the present paper we study this condition in terms of (X, D) in the same
line as in [14], [20] and §5 of [13]. In §1 we first recall the correspondence of the canonical

module of the cyclic cover and the base ring after [{14]. Then the remaining argument



using the log ramification formula would be rather familiar for the specialists. In §2 a
formula for Goto-Watanabe’s invariant a(R) is reviewed. This is a key for the reduction

of the proof in §3 to the case of index 1.

For the basic terminologies about “log terminal singularity, rational singularity
, canonical singularity, ... etc ”, we refer to [10,11,8,7]. We will employ the same
notation of [14] about ring theoretic objects. Throughout this note, we assume that all

singularities are defined over C, and all rings contains C.

§1. Finite cyclic cover and log terminal ( and log canonical ) condition.

(1.1) First we recall the description of finite cyclic covers of normal domains from
[14]. Let S = :@:S; be a Noetherian normal Z,-graded domain. That is, S is the direct
sum of subgroups S; (i =0,1,...,» — 1) satisfying S; - S; C Sy withi+j =k ( mod »
) and 1 € So. We will denote R = Sy. Then by our condition, each S; is an R—module.
For simplicity, we assume S; # 0 for every i. Let K = @Q(R) and we fix v € S; ® K,

a;

u# 0. Thena; ={ — € K |a; €S5; } is a fractional divisorial ideal of R and
u1

S;=a;-u'. Let f=v" € K and (f) = Pl(a’) A ... NP, where P, ..., P, are prime

ideals of height one of R. Then for each 7, we have

.

z-a,-

a; ={zeK|v(z) > -
of K such that »(R) > 0and v #v;, j=1,...3, }.

(7=1,..,8) and v(z) > 0 for every valuation v

We have associated the triple (R, Y %—i--V;, f) to the pair (S, «), where the fractional
i=1

divisor D = 3 i‘r_i_ Vi ( Vi = Spec(R/P;) ) satisfies the condition
i=1

(1.1.1) 'r-D=Za,- - Vi = divgr(f).
i=1

We will always write
(1.1.2) D= Zg—f—l/}, where ¢; and p; are
i=1 '

relatively prime integers with ¢; > 0 (¢ =1,...,3).
For this description , we attach the divisor D' as
s
(1.1.3) p=S%"1y

i=1 *
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Conversely, from the triple (R, D, f) which satisfies (1.1.1), we can recover S by § =
r—1 .
_é?oa,- -u*, where 2 € a; if and only if divg(z)+:-D > 0in Div(R)®z Q for 2 € K. We

sometimes denote
R(D) = {z € K | divg(z) + D > 0 in Di»(R) ®z Q}

for D € Div(R) ®z Q.

r—1 .
In this terminology we can denote S(R,D,f) = & R(i-D) -« and call such S a
i=0
cyclic r-cover of R. If D is an integral divisor of R ( that is, if D € Div(R) ), we say

that S is an integral cyclic »-cover of R.
In this note , we always assume that
(1.1.4) r=min{i € Z|i>0 and i-D is a principal divisor}.
By [14], the cyclic cover S is also a normal d-dimensional normal domain.
We will study the criterion for S to be a Gorenstein rational singularity.
LEMMA (1.2). Lett be a positive integer. S is a log-terminal ( resp. log-canonical )
singularity of index t if and only if the following two conditions hold.
(1) There is an integer a' such that {(Kg + D') — o' D is a principal divisor of R.
(ii) (SpecR,D') is a Iog-termina.ll( resp. log-canonical ) sfngu]an'ty of (Kg + D')-

index t - u where u is the torsion index of @’ in Z/»Z.

Proof . First of all, we recall the following correspondence of the pluricanonical

modules of S and R.

In §2 of [14], the structure of the homogeneous divisor class group HCI(S) is
studied. HCI(S) is a subgroup of CI(S) and we have the relation

Div(R,D)
H =
Cl(S) P(R)®Z/+1-D
where Div(R,D) = {E € Div(R)®Q | E= Y ry-V with ryqy € Z } and
VeIrr(R)

P(R) is the group of principal divisors of R. For the element m(KR + D') € Div(R, D)

, we can control the corresponding element of CI(S) as : For m € N

r—1 '
Kl = © R(m(Kg + D') + kD)T*.
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Further K_[qm] = S if and only if there exists an integer « € Z such that m(Kg + D') —
aD € P(R).

In the below we always assume the equivalent these conditions and ¢|m.

There exists an integer N such that Nm(K g+ D') is a Cartier divisor on R. Hence
there exists ¢ € R(Nm(Kg + D')) = KI[ZmN](mN(D’)) where ngm](NmD’) =¢-R.
We obtain the relation

r—1
p-S= ° R(Nm(Kg + D') + kD)T*

=0

= kN,

Let us take resolution of singularities of Spec(R) and Spec(S) in the following.

114 T SpecS =W

T | T |
1% ——£—+ SpecR=V

where 7: W — W is a good resolution and ¢ : V. — V is a good resolution such that
the total transform of Supp(D — [D]) is normal crossing. % : W — V is a map which

is naturally induced and is surjective morphism.
Here we recall the following log-ramification formula.
LemMa (1.2.1) (Irtaka [5, THEOREM 11.5]). Let f : Y — X be a generically

finite and generically surjective morphism of non-singular algebraic varieties, and let L

be a reduced divisor on X with only normal crossings. Assume that f is étale outside

of M =def (.f*L)'red-
Then the following logarithmic ramification formula obtains :
Ky + M = f*(Kx + L) + R,

where R is an effective divisor on Y whose irreducible components are all mapped to

lower dimensional subvarieties by f, i.e., we have f,R = 0.

Now £*(¢) is a meromorphic Nm-ple d-form on V , and we have the relations
(") ERTINmDY) = ¢(p) - Oy
= Oy(Nm(Ky + D') — divg (6"(9))])
= 0y(Nm(Ky + E+ D') — divy (€*(9))|g — NmE)
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where E = £ P)rea = 'UoEj is the decomposition of the exceptional locus into the
=

irreducible components and D' is the strict transform of D', and divy (£*(p))|E is the
part over E of the divisor divy (£*(p)).

By definition (V, D') is log-terminal ( resp. log-canonical ) when div(p)|g + NmFE

is an effective divisor whose support coincides with E ( resp. is an effective .

Next #*(£*(¢)) = n*(x*(yp)) is a meromorphic Nm-ple d-form on W, and we have

the relations.

(**) 7Ky ™) = n*(x*(¢)) - Oy
= Oy (Nm(Ky,) — divy (7 (x*(¢))))
= Oy (Nm(Ky, + F) — divg (n*(x*(p))) — NmF)

where F = 7 1(p)req = _Gon is the decomposition of the exceptional locus into the
J:

irreducible components.

By definition W is log-terminal ( resp. log-canonical ) when div(p) + NmF is an

effective divisor whose support coincides with F ( resp. an effective divisor ).

By (*) and (**) , we obtain the relation

(+5%) #*{Nm(Ky + E + D') — divy(£*(¢))|lg — NmE}
= Nm(Ky, + F) — divg (7*(x*(¢))) — NmF

Let D be the support of the strict transform of D’. Since # : W — V is étale outside
E U D, we have the relation ’

Ky + F 47 (D)yed
=#(Ky +E+D)+R

where R is an effective divisor whose irreducible components are all mapped to lower

dimensional subvarieties by %, in particular Supp(R) C F. We have

Nm(Ky + F + 7 (D), eq)
=#*(Nm(Ky + E+ D)) + NmR.
Nm(Ky + F) + Nm#*(D),eq
=7*(Nm(Ky + E+ D')) + NmR + #*(Nm(D — D")).
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By (***),

i’{divf,(f'(ga))lE + NmE} + NmR
— divg (" (*(9))) + NmP + {Nm#* (D) — #*(Nm(D — D)}.
Suppose (V, D') is log-terminal ( resp. log-canomical ) , then divy(£*(¢))|lE +

NmE is an effective divisor whose support is E ( resp. effective ). Since R > 0,

divg (" (7*(¢))) + NmF is an effective divisor whose support is F ( resp. effective ).
Converse implications are also clear, because #,(R) = 0.

Finally we discuss the index of Kg + D' more closely. Let us consider the following

two integers.
H=min{a €Z|a>0,anda-(Kr+D')—-0-D € P(R)},
t = min{a € Z | « > 0, and there exists @ such that a-(Kgr+ D')—8-D € P(R)}.

There exists v > 1 with H = ut and

w=min{y€Z|v-a' =0inZ/rZ}.

This completes the proof.

§2. The canonical cover of normal graded rings ( [15,16]).

We recall the description of the canonical covers in terms of Demazure’s construc-

tion.

THEOREM (2.1).  Suppose the canonical module Kg of R(X, D) is Q— Cartier of index

r. Let the integer a' satisfy the condition that r.(Kx + D')—a'.D is an integral principal
.. -1 . . =
divisor on X ; where D' = ) Y= Vasin [18]. Then the canonical cover R is

VeIrr1(X) qv

isomorphic to the graded ring R(Y, D) as follows ;

(1) the normal projective variety Y is defined by the finite covering

o '
p: Y = SPecX(l?SOX(l (%(KX + D') _ %D) )) — X,
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where 3 = (»,a'),
(ii) the ample Q—Cartier divisor D on Y is defined by D = p*{a(Kx + D')+ 3D}

, where o and 3 are integers with aa' + f3r = s.

: 1
(iii) Further we obtain the relation Kz = R(aj).
One can find the prboof of this in [15,16].

REMARK (2.2). In the situation of (2.1) , we have the following relation

Ky + (D) =p ' (Kx + D) in Din(Y)®Q.

I

“\! -
By this we can conclude that Ky + (D) — — - D is an integral principal divisoron Y .
3

!
This fact also provides the relation a(R) = z (cf [18,19], (1.6) of [15]).
s

Proof. We have

[

r a
, —(gv —1) — —pv
(kx+D)-LDp=Kx+ Y 2 s .y
s 8 8 av
VeIrr1(X)
—1N—a
and rlav —1) —a'pv € Z. We represent

qv

!

r a
_(qV - 1) Y 44 ty .
3 3 =, tV € Z’BV € N with (t“"V,-SV) =1

qv v

where sy is the ramification index of p atV'el 7r1(Y) which dominates V. we have
~1(17) — -1
P (V)=sv-p" (V)ea

and

Ky =p"Ex)+ Y, (sv=1)p(V)ea
VeIrr1(X)

Hence

~ _ : syv{a -1)+ 8- _
D=pHa -Kx)+ Y, viddey =)+ 8 pv} P (Vs
VeIrri(X) v

From the equality

1= Z(a(t-qv) =B pr) + {5 svat flov - S -t}
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we see that 2 and a(qgv — 1) + B - pv are relatively prime. Hence
Sy .

& _y

(B) = 3 T Ve
Velrs(X) o7

Therefore

N 3 —-1)s _ -
K+ (D) =p K+ 3 ), = e+ D),
VeIrr(X) v

~\! P '
Now Ky + (D) ~L.Dh= B-pt (:(KX +D') - a—D) and this is an integral principal
8 3 3

divisor on Y.

§3. Log terminal graded singularity and log canonical graded singularity.

As same as Theorem (3.12) of [14] we can show the following.

ProrosITION (3.1). Let R(X,D) be a normal d-dimensional graded ring over a field
k with char(k) = 0. Then U(X,D) = Spec(R(X,D) — V(R4) has log terminal ( resp.
log canonical ) singularity at any point z € X, if and only if the following two conditions
hold.

(1) At any point z , there are integers a!, and t, (> 1) such that
tz(KX + -D’) - a;D

is a principal divisor at .

(ii) At any point z, (X, z) has log terminal ( resp. log canonical ) singularity with
respect to Kx , + D'.

Proof. Let V(P) = ¢ € Spec(R) C X be a closed point of X and set U(X, D), =
U(Rp, Dp) be the fiber over z € X with respect to U(X, D) — X. Here we denote

U(R,D) = Specg(A(R, D))

A(R,D) = &ez R(kD)T* C Q(R)[T, T
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(cf. Watanabe [20]). We have the k*-fiber structure U(R, D) — Spec(R). We will discuss
the log terminal property ( resp. the log canonical property ) of Z-graded singularity

U(Rp,Dp) = Specgr(A(Rp, Dp)).

We choose f,r as divg(f) = »D in Div(Rp) and r is the minimal at Rp. Then f~177 €
R(»D)pT" is a unit of A(Rp, D) . We obtain

A(Rp,D)/(f*T" —1)A(Rp, D) = S(Rz, D, f) = S = @, Rp(kD)T*.

Following Flenner (3], we define o : A(Rp, D) — S[U,U~1] with
a(g) = {g mod (f~'T"—1)A(Rp,D)}-U™ for g € Rp(mD)T™. Since the characteristic
of the base field is zero, a is étale ([3, §2 ]). Hence S is log terminal (resp. log canonical

) of index ¢ if and only if so is U(Rp, D). So the assertion follow from Lemma (1.2).

As an application , we will show the following .

THEOREM (3.2). Let R = R(X,D) be a normal d-dimensional graded singularity
represented by Demaszure’s construction. Let t > 1 be an integer. Then R(X,D) is a

log terminal singularity of index t if and only if the following two conditions hold.

(i) There is an integer o' € Z with o' < —1 such that ¢(Kx + D') — a'D is an
integral divisor which is a principal divisor on X. Further t € N is the minimal integer

such that there exists a' as above.

(i) At each point z of X , (X,z) has log terminal singularity with respect to
Kx + D'.

Proof. First we prove the assertion in the case t = 1.

We recall the result of Watanabe [18,19, cf. 3]
THEOREM (3.2.1). Let R = R(X,D) = ®4>0R, be a normal graded ring over the

field Ry with charRy = 0 . Then R(X,D) has canonical singularity of index 1 if and
only if the following two conditions hold.

(3.2.1) There is an integer a with a < =1, such that Kx + D' —aD € P(X). Here
P(X) is the set of principal divisor of X.

(3.2.2) U(X, D) = SpecR — V(R,) has only rational singularity.
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Now the two conditions of (3.2) with ¢ = 1 imply the log terminal condition of
U(X, D) by Proposition (3.1). Further, by Theorem (3.2.1), R has only canonical sin-
gularity of index 1.

Here recall canonical singularity of index 1 is nothing but Gorenstein rational sin-

gularity (Elkik-Flenner [2,3]).

So the sufficiency are proved . The converse implication also followed by (2.3.1)
and (2.2). The proof of the case of ¢ = 1 is finished.

Assume R is a log terminal singularity of index ¢ . Here we recall R(X, D) has log
terminal singularity if and only if the canonical module of R(X, D) is Q-Cartier and the

canonical cover of R(X, D) is canonical singularity of index 1.

Then (i) follows from [18, (1.6), (2.8)]. Since U(X, D) is log terminal singularity ,
(ii) follows from Proposition (3.1).

Next assume the conditions (i) and (ii) hold. By [18, (1.6) and (2.8)], the canonical
module Kg of R is Q-Cartier of index ¢. Let R be the canonical cover of R and R =
R(Y, ﬁ) be the representation by Demazure’s construction. By Theorem (2.1), we have
a(R(Y, D)) = a'/s < 0 with s = (¢,a'). Since U(Y, D) — U(X, D) s étalein codimension
one and U(X, D) has log terminal singularity by (3.1), U(Y, D) has also log terminal
singularity. ( cf. [8,7] ) Since the canonical module of R(Y, D) has the index 1, U(Y, D)
has log terminal singularity of index 1, that is Gorenstein rational singularity. Hence
, by [3,18,19], R(Y, f)) has Gorenstein rational singularity. Therefore R(X, D) is a log

terminal singularity.

Next we will consider the condition of R to have log canonical singularity. The

following follows easily from (3.1).

ProPosITION (3.3). Let R = R(X, D) be a normal d-dimensional graded singularity
represented by Demazure’s construction. Let t > 1 be an integer and assume that R is

a log canonical singularity of index t. Then the following two conditions hold.

(i) There is an integer a' € Z with a' < 0 such that {(Kx + D') —a'D is an integral
divisor which is a principal divisor on X.And t € N is the ;minimal integer such that

there exists a’' as above.

(ii) At each point ¢ of X , (X,2) has log canonical singularity with respect to
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Kx + D'

Proof. As in the same way of the proof of Theorem (3.2), we will discuss the log
canonical condition for the canonical cover R = R(Y, D). Let C = Proj <k€>9 Rlx- Uk)
>0

. SpecR be the filtered blowing up with respect to the grading R. C is normal and

we have the relation

wo = 0c(—(a(R)+1)-Y)= @ Oy(kD)T*.
k>a(R)+1

By the log canonical condition for the partial resolution C — SpecR, we obtain the

!

condition a(R) = = < 0
8

We will discuss the sufficient condition for R(X, D) to have log canonical condition.
We will prove the following.

THEOREM (3.4) (cF. (4.8) oF [12] ). Let R = R(X, D) be a normal d-dimensional
graded singularity represented by Demazure’s construction. Let t > 1 be an integer.

Suppose the following conditions hold.

(1) There is an integer @' € Z with a' < 0 such that t(Kx + D') —a'D is an integral
divisor which is a principal divisor on X.And t € N is the minimal ihteger such that

5

there exists a’ as above.

(i) At each point # of X , (X,z) has log terminal singularity with respect to
Kx + D' ‘ '
Then R(X, D) is a log canonical singularity of index t .

Proof. ( One can find a similar argument in [6]. See also §4 of [12]. ) We assume
t = 1. By (3.1), U(X, D) has only log terminal singularity. If a’ < 0, then we had already

seen that R has only log terminal singularity (3.2). Hence we will assume a' = 0.
By [3, 18], C = Proj ( ® R 'T") >~ Specy ( ) Ox(kD)T") has only rational
k>0 k>0
singularity. Let ¢ : ¢ — C be a morphism induced from resolution of singularity of
C and we assume that ¢~ 1(X) C C is a simple normal crossing divisor. We denote

the proper transform of X C C as X C €. Since the canonical module of R is locally

principal, we can represent the canonical divisor of C as follows:

KC" =—FE;y+ Ef
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where E; and Ey are effective divisors on C whose supports have no common irreducible
component. Further , since Spec(R) — V(R4 ) has only rational singularity, the support
of E; is contained in ¢~ 1(X). Clearly we have E; > X .

We will show the relation F; = X by a contradiction method. Assume Ej # X.

Then E; — X is an non-zero effective divisor. Hence

0 # OEJ—X- C OEJ__X'(EI).
We have the natural inclusion relations

H°(o?(EI>) £, 0, ¢(E1)
H(Og) -  H%Og,_x)

Since 7(1) # 0, £ is not the zero-map. We have the commutative diagram of exact

sequences:

0 0

! .

Wé = wé.

Iy )

1 ! 1=

0 - wy — wE, -  wg,/wg — 0

l l

0 0

and we have

0 - H“(wf(fé» - HOc(En) £ (05, £(B) =
0 -  H%yg) & H%ws,) B Hus,jwg) —

Hence 3 is not the zero-map and « is not an isomorphism.

In the resolution of singularity ¢|3 : X — X, X has only rational singularity.
Hence we have the relation

HY(wg) = Hwx).

By the Grauert-Riemenshneider vanishing theorem H 1(C~',c«.:é) = 0, we have the

exact sequence

0— Ho(é,wé) — Ho(é,wé(EJ)) — Ho(wE,) — 0.
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We have a natural isomorphism
HO(C,w0a(E2) 2 HYE - p™(X), wg)-

For , since the support of Ej is contained in ¢~ !(X) , the relation C is obvious. We
will show the converse inclusion relation. Since Spec(R) — V(Ry) has only rational

singularity,

HY(C ~ ¢™(X),wg) = H°(Spec(R) — V(R4),wr) = H(Spec(R), wr)
& Ho(é,Wé(EJ — EI)) C Ho(é,Wé(EJ)).

Since C has only rational singularity , we obtain
H°(C, wé) = H°(C,w¢) and H®(C — o ' (X),wg) = H(C - X,we).

Hence

Hwg,) & — = kegoﬂ"(ox(Kx + D' + kD)T*.

Since a(R) = 0 , we have H%(wg,) = H*(Ox(Kx))-

But this contradicts to the fact that a is not an isomorphism.

PrROBLEM (3.5). Do the two conditions of (3.3) imply the log canonical condition of
R(X,D) ?. Obviously the conditions of (3.4) are too strong.
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